

A machine learning-powered dashboard for the exploration of high-throughput transcriptomic datasets

V. Bernu¹, C. Lescure¹, H. Brull Corretger¹, P. Dhillon¹, E. Fox¹, C. Marijon¹, A. Nordor¹, C. Petit¹, A. Behdenna¹ ¹Epigene Labs, Paris, France

Introduction

- NCBI's GEO² database is a major repository for **high-throughput** transcriptomic datasets³ referencing ~7,000,000 samples⁴, including a significant number of tumor biopsy samples⁴.
- Today, this invaluable database is underused because of technical roadblocks^[1].
- We demonstrate that recent Al developments unlock this vast potential to infer new biological understanding and shape future clinical study designs.

Key results

- Our high-performance and state-of-the-art Al models identify the most relevant GEO datasets in oncology, representing the top 10%, which we refer to as **Epigene Labs data lake**.
- These models are integrated into a filtering and prioritization pipeline (Fig. 2), designed and developed for high scalability, modularity, and updatability.
- A GEO² dashboard (Fig. 3) enables a user-friendly interface with the Epigene Labs data lake by aggregating the results of the above-mentioned models.

Figure 1: Screenshot of the description of a GEO² dataset

Lexicon

- **NCBI**: National Center for Biotechnology Information^[IV].
- 2. **GEO**: The Gene Expression Omnibus is a public genomics data repository.
- 3. Dataset: Refers to a GEO² Series, (GSExxx), it is "an original submitter-supplied record that summarizes a study"[IV].
- 4. **Sample**: "A Sample record describes the conditions under which an individual Sample was handled. Each Sample record is assigned a unique and stable GEO accession number (GSMxxx)"[IV].
- 5. **Technology**: Method for the production of the gene expression profiles (e.g., Microarray or RNA-seq).
- 6. Platform: "A Platform record is composed of a summary description of the array or sequencer and, for array-based Platforms, a data table defining the array template. Each Platform record is assigned a unique and stable GEO accession number (GPLxxx)"[IV].
- 7. NER and NEN: Named Entity Recognition and Named Entity Normalization are natural language processing methods.
- 8. **LLM**: Large Language Model (e.g., GPT-4^[II] or Mistral^[III] models).
- 9. **AUC**: Area Under the receiver operating characteristic Curve. It is a score between 0 and 1.

Figure 2: End-to-end pipeline, from heterogeneous datasets³ to harmonized virtual cohorts

Methods

Classification models

Our models (Table 1) classify datasets³ based on ground truth data that were labeled by cancer scientists. They are divided into two categories:

- Dataset description-based models:
 - Utilize only dataset-level descriptions (Fig. 1).
 - Offer high scalability to encompass the entirety of Epigene Labs data lake.
- Sample description-based models:
 - Require detailed sample-level descriptions.
 - o Demand increased computational power but deliver enhanced precision in results.

Large Language Models (LLMs⁸)

Performance metrics

Adaptation for treatment-related models:

- Traditional training approaches were infeasible due to limited labeled data.
- Prompt engineering strategies harness the capabilities of pre-trained **LLMs** from OpenAl^[II] and Mistral^[III].

- The models are evaluated by the metrics below, depending on the format of their respective output. All three are scores between 0 and 1.
- Classic binary classification: **AUC**⁹ (the higher the better).
- Multiclass and LLM-based binary classification: **F1-score** (the higher the better).
- Multilabel classification: Hamming loss (the lower the better).

GEO dashboard

- Intuitive data mapping: Our Metabase^[V] dashboard visualizes the vast landscape of the Epigene Labs data lake, integrating diverse GEO explicit attributes and model-predicted attributes.
- Dynamic filtering system: With advanced filtering capabilities, the dashboard also permits in-depth interactive exploration of the data.
- Seamless research integration: The dashboard, combined with the Al models, empowers researchers to create tailored virtual cohorts for computational oncology (Fig. 2), sourced from the GEO database.

Conclusion

Al techniques enable the annotation and exploration of the GEO² database, facilitating secondary analysis of oncology research omic data.

Table 1: Description, methods, and performance evaluation of the models

Figure 3: GEO Data Mapping Dashboard visualization example

References

- . Hawkins, N., Maldaver, M., Yannakopoulos, A., Guare, L. & Krishnan, A. Systematic tissue annotations of genomics samples by modeling unstructured metadata. Nature Communications 13, (2022).
- II. OpenAl et al. GPT-4 Technical Report. Preprint at http://arxiv.org/abs/2303.08774 (2023).
- III. Jiang, A. Q. et al. Mistral 7B. Preprint at http://arxiv.org/abs/2310.06825 (2023).
- IV. National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 26 Feb 24]. Available from: https://www.ncbi.nlm.nih.gov/.
- V. Metabase | Business Intelligence, Dashboards, and Data Visualization. https://www.metabase.com/
- Contact: Akpéli Nordor, PharmD, PhD
- (akpeli@epigenelabs.com). • Final publication number: 2P.
- The authors have no conflict of interest to declare.