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Abstract
Wireless Communications in Reverberant Environments

Ryan Thomas Measel
Moshe Kam, Ph.D., P.E., and Kapil R. Dandekar, Ph.D.

Implementation of WLANs in reverberant environments, such as industrial facilities, naval vessels,

aircraft, and spacecraft, has proven challenging, because rich electromagnetic scattering can degrade

link quality through multipath interference. As a result, the adoption of Wireless LANs in these

environments has been slow. Previous studies concerning reverberant environments have focused on

characterizing electromagnetic properties for the purpose of electromagnetic compatibility testing.

Little attention has been given to the performance of wireless communications. In this effort, the

effect of electromagnetic reverberance on wireless communications is investigated in order to assess

the feasibility of WLAN deployment.

Work centered around two experimental measurement campaigns. The first campaign was per-

formed in coupled reverberation chambers. The reverberation chambers provided a controllable

environment which was configured to emulate the reverberance of below-deck spaces on a naval ves-

sel. The process for quantifying and configuring the electromagnetic properties of a reverberation

chamber is presented. The second campaign was performed on a naval vessel. Experimentation was

conducted in a variety of locations on the ship. Locations were selected to represent a wide range

of practical environments. Across both campaigns, several environment and node parameters were

evaluated: level of reverberance, cavity coupling (effective aperture size), and LOS versus NLOS

links. Additionally, advanced physical layer schemes and reconfigurable antennas are presented as

methods to improve performance and mitigate multipath interference. To perform this work, a mea-

surement platform and testing protocol were developed for systematic characterization of wireless

communications in reverberant environments.

The primary contributions of this work are empirical characterization of wireless communications

in reverberant environments, approaches to improving the performance of wireless communications



xiv

in presence of high levels of multipath interference, and a methodology for experimentation in

reverberant environments.





1

Chapter 1: Introduction

1.1 Motivation

WLANs are ubiquitous in many common environments including residential, office, urban, and out-

door spaces. The migration from wired communications to WLANs has been much slower in some

less “typical” environments, such as industrial facilities, military vessels, and spacecraft, though there

has been increased interested in deploying WLANs to these environments [1, 2, 3, 4, 5, 6, 7, 2, 8, 6].

The slow adoption is due in part to regulation and standards but also because the environments have

traditionally been viewed as challenging for wireless communication [1, 9, 10]. These environments

are atypical because they characteristically exhibit high electromagnetic reflectivity resulting from

physical obstructions and largely metallic construction. The notion that these highly reverberant

environments are challenging is because the multipath interface produced from the high reflectivity is

thought to degrade (and perhaps prevent) communication. Nevertheless, highly reverberant environ-

ments can benefit from the adoption of WLANs for all the same reasons that “typical” environments

do: node mobility, ease of implementation, and reduction of infrastructure.

Often, highly reverberant environments are also physically complex and operationally demanding

spaces which make WLANs particularly attractive to supplement or fully replace hardwire infras-

tructure. For example, consider the below deck spaces on a naval vessel: corridors, workshops, living

quarters, storage compartments, machinery compartments, and engine rooms. The spaces range in

shape, purpose, and design but share in that they are all highly reverberant. A selection of these

spaces is shown in Figures 1.1-1.3 where the tight dimensions, physical obstructions, and metallic

construction are evident.

A multitude of communications are needed throughout a naval vessel for telemetry, voice, and

other purposes. Currently, these signals are routed via hardwire which presents many challenges and

implementation constraints when installing new infrastructure, performing maintenance on existing

infrastructure, and providing system redundancy:
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Figure 1.1: Engine Room on the Thomas S. Gates (CG 51).

• Installation - Boundaries between decks and bulkheads must remain watertight, so it is not

possible to drill a hole between compartments as you would to install a cable in a home or

office. New hardwire infrastructure has to be routed through existing interfaces between the

boundaries. While the compartments are watertight, they are not electromagnetically sealed.

Electromagnetic leakage can occur from doors, hatches, windows, bulkhead penetrations, and

floor joints, so a wireless signal can propagate between compartments without jeopardizing

structural integrity.

• Maintenance - Performing maintenance on existing infrastructure is also simpler with WLANs.

A faulty cable for a hardwire connection can be difficult to repair. If the cable can be fixed in

place, the technician must first determine the point of failure (which is not always straightfor-

ward) and must be able to gain access to that point. If the cable has to be replaced, then it

must be removed and a new cable routed in its place. This process can become time-consuming

and cumbersome depending on the length and route of the cable. Comparatively, WLANs are

distributed, so failures occur on a per-node basis. When a failure occurs, the faulty node can

easily be determined through network diagnostics. The node can then be repaired or replaced

at its point of installation and does not require the technician to work across multiple compart-
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Figure 1.2: Corridor on the Thomas S. Gates (CG 51).

ments or decks. To promote signal propagation, wireless nodes are often placed in a location

free from immediate physical obstruction, so it is likely the location will be easily accessible as

well.

• Redundancy - Many highly reverberant environments, including naval vessels, have critical

systems which require fail safes. To add redundancy with a hardwire connection, an addi-

tional cable must be installed. In situations where there is a threat of physical damage to

an area (military and spacecraft), it would be advantageous to install redundant cables along

different routes to prevent all redundant connections from being comprised in one physical

event. Installing along different routes may not always be possible or practical though. For

WLANs, redundancy can be added through network topology such that each node has multi-

ple connections. If every node has at least two connections, then network routing will ensure

that communications between end nodes continues even when a node fails. Multiple node

failures could be tolerated if the number of interconnections between nodes is increased. Ro-

bustness will increase as more interconnections are added. Depending on the implementation

of the system and the level of redundancy desired, little or no additional infrastructure will be
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Figure 1.3: Work room on the Thomas S. Gates (CG 51).

required.

While there are many benefits that can be realized by deploying WLANs in highly reverberant

environments, there are also potential trade-offs that must be addressed:

• Power - Wireless nodes require power which can be provided by either batteries or hardwire.

Previously, it was discussed how routing cables throughout a naval vessel can be difficult, and it

was a benefit of WLANs that they did not need to be routed. Yet, if power needs to be routed

to the nodes, perhaps this benefit is negated. While routing power has its own challenges, it

does not negate this benefit of WLANs, because naval vessels (and presumably many other

highly reverberant environments requiring communication) must route power regardless of

communications infrastructure. The power consumption of a wireless node is generally low

compared to other equipment and machinery, but it may still be a consideration for some

implementations (e.g., spacecraft).

• Installation Location - The coverage of a wireless node as well as the network design will dictate

the position of a node. Furthermore, to prevent attenuation, it is advisable to position nodes
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clear of immediate physical obstructions. These requirements may constrain deployment, but

generally, it is not an issue as nodes can be installed on nearly any surface of the environment.

• Data Rate - Currently, twisted pair Ethernet cables can support a date rate of up to 1 Gbps.

Fiber optic Ethernet cables can support up to 100 Gbps [11]. Meanwhile, IEEE 802.11 can

support 867 Mbps [12]. Obviously, fiber optic cables are considerably faster than current

wireless links, though the throughput of a connection is restricted to the data rate of the slowest

link or interface (including the end user). Only sophisticated systems with extreme data rate

requirements demand the use of fiber optic cables. Otherwise, the throughput provided by

WLANs should be sufficient.

• Cost - The cost of wireless vs hardwire infrastructure is completely dependent on the require-

ments and scale of the implementation. The installation and maintenance costs should also

be considered. In scenarios where the WLAN costs more upfront, it may still be cheaper to

deploy a WLAN when installation and maintenance costs are factored in.

• Lifetime - Wireless nodes have many electronic components that will wear over time. Cables

also wear over time but likely at a slower rate.

• Security - Wireless nodes communicate over the air which is disadvantageous for security

concerns, since communications may be jammed or snooped. This is especially important for

military applications [13].

Certainly, there are situations which would preclude the use of WLANs in highly reverberant

environments, but there are many applications and advantages as well. While the examples presented

were primarily in the context of a naval vessel, much of the discussion could easily be extended to

other highly reverberant environments.

While the effect of multipath on wireless communications has been thoroughly studied for “typ-

ical” environments, such as indoor [14, 15] and urban [16, 17, 18] spaces, little focus has been given

to communications in highly reverberant environments. Though, there has been work analyzing RF

propagation [19, 20, 21, 22] in these environments.
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1.2 Contributions

The primary objective of this work is to characterize the performance of wireless communications

in reverberant environments and investigate methods to improve performance. Interpretation of the

results and their application to practical wireless network implementations will also be provided.

The principal contributions of this effort are:

1. An experimental methodology was developed for evaluating the performance of wireless com-

munications including a measurement platform and testing protocol for SDRs.

2. A measurement campaign was performed in the coupled reverberation chambers of the NSWCDD

at the NSFD where the performance of wireless communications was assessed with respect to

node and environmental parameters.

3. A measurement campaign was performed in the below-deck spaces of a naval vessel on the

Thomas S. Gates. (CG 51) at the NISMF in Philadelphia, PA, where the performance of

wireless communications was assessed with respect to node and environmental parameters.

4. Empirical evaluation of a pre-existing RLWA was performed in the coupled reverberation

chambers of the NSWCDD to evaluate its ability improve wireless communications performance

in a highly reverberant environment.

1.2.1 Contribution 1: Experimental Methodology

Often, wireless communication performance is studied through modeling and simulation, but in this

work, performance was evaluated through live experimentation. Experimentation is necessary to

discover the practical implications of operating WLANs in highly reverberant environments which

may not be apparent through modeling and simulation. In [23], ray tracing is performed for com-

munications on board a ship. While the dimensions are realistic, the model is simplified to flat

boundaries. Actual ships, as shown in Figures 1.1-1.3, have many protrusions and obstructions

which vastly increase the surface area and the number of propagation paths. Though, advances

in computer vision have provided solutions to three dimensional mapping of spaces [24, 25]. As
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precision improves, this work could be used to develop highly accurate models of actual below-deck

spaces, as well as other reverberant environments with complex physical geometry. Additionally,

the simulation would need to account for electromagnetic leakage in the spaces.

The ability of modeling and simulation to predict the performance of communications in such

environments is limited due to the high level of small-scale fading (i.e., multipath). The quantity,

amplitude, and phase of the produced multipath components are dependent on the physical shape

of the environment. Any change to the environment, including moving obstructions (e.g, machinery

or people), moving the transmitter, moving the receiver, or changing boundary conditions (open-

ing a door), will produce vastly different channels. This dependency on the physical environment

diminishes the ability of stochastic modeling to accurately represent actual environments.

In order to thoroughly characterize the performance of wireless communications in reverberant

environments, it is necessary to empirically evaluate through field experimentation. An experimental

methodology was developed which includes a MIMO OFDM wireless measurement platform and a

test protocol.

Comprehensive measurement and analysis of wireless communications with consumer-grade equip-

ment is often hampered by lack of access to the physical layer. Specialized equipment tailored to

collect comprehensive measurements, such as signal generators and signal analyzers, is expensive and

incompatible with the constraints of field work and mobile applications. Software-defined radios can

provide a similar level of measurement capability while being more cost-effective, lightweight, and

mobile.

SDRs have been commonly used for research and commercial applications for several decades.

Today, a variety of both hardware and software [26] solutions exist which can be tailored to meet

the needs nearly any wireless application. Some notable current solutions include USRPs [27] and

GNURadio [28]. For this effort, the WARPv3 Kit [29] was selected as the hardware platform

(primarily due to availability). There are a few reference designs available for use with the WARPv3

Kit. Unfortunately, none of these designs could offer the full range of functionality which was desired

with this project. Accordingly, a new MATLAB wireless measurement platform was developed
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[30] that interfaces with the WARPv3 Kit. The platform implements IEEE 802.11g [31] wireless

transmissions with four physical layer schemes: 1×1 SISO [32], 1×2 MRC [33], 2 × 2 Alamouti

STBC [34], and 2 × 2 VBLAST SMUX [35]. Two different antenna types can be used with the

system: a COTS omnidirectional antenna and a RLWA [36]. The platform provides a series of

metrics, including channel capacity, EVM, PPSNR, and throughput to characterize link and network

performance.

A test protocol was developed [30] which leverages the wireless platform for live experimentation.

Since the platform operates with two antenna types and four physical layer schemes, it is vital to

execute tests in a consistent and efficient manner. The test protocol encompasses calibrating the

physical hardware, setting initial parameters, and executing the test. The protocol also considers the

nuisances of testing in both a controlled (i.e., reverberation chamber) and a live (i.e., naval vessel)

reverberant environment.

1.2.2 Contribution 2: Wireless Performance in Reverberation Chambers

A measurement campaign was performed in the coupled reverberation chambers of the NSWCDD

at the NSFD. The reverberation chambers provide a controllable environment where the reflectivity

of the wireless channel was configured to match the reflectivity of the below deck spaces on a naval

vessel. The parameters used to quantify the reflectivity will be discussed along with the configuration

of the reverberation chambers. Three (3) configurations were selected to emulate the full range of

reflectivity exhibited in actual below-deck spaces [37]. Through wireless experimentation, a series of

node and environments parameters were evaluated to provide insights on the expected performance

in an actual reverberant environments.

1.2.3 Contribution 3: Wireless Performance in Below-Deck Spaces

A second measurement campaign [38, 39] was performed on the Thomas S. Gates (CG 51) at the

NISMF in Philadelphia, PA. Tests were performed in a variety of locations which were selected

based on their perceived likelihood of WLAN deployment. Experiments were conducted in a similar

fashion to those done in the coupled reverberation chambers. Results and analysis will be provided
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from each of the scenarios. Furthermore, both campaigns will be compared to demonstrate the

validity of using reverberation chambers to emulate reverberant environments.

1.2.4 Contribution 4: Empirical Evaluation of Pre-Existing Reconfig-
urable Antennas

Electrically reconfigurable antennas can dynamically alter their radiation patterns through voltage

control signals. They have been proposed for mitigating the multipath interference in “typical”

environments [40]. Some work has been done concerning this proposition. The studies in [40, 41]

analyze the ability of reconfigurable antennas to mitigate multipath interference but do so only

through simulated results. The studies in [42, 43, 44] obtain communication performance measures

using software-defined radios in typical lab or office environments. Little work has been done ex-

perimenting with reconfigurable antennas in highly reverberant environments. In this effort [45], a

Reconfigurable Leaky Wave Antenna (RLWA) (developed by Piazza and Drexel Wireless Systems

Laboratory [46, 47, 48]) was used to test the effectiveness of altering radiation patterns to improve

the quality of communications in highly reverberant environments.
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Chapter 2: Electromagnetic Characterization of Reverberant
Environments

2.1 Introduction

Portions of this chapter have been included in a manuscript submitted to IEEE Transactions on

Wireless Communications [49].

Reverberant environments are characterized by rich electromagnetic scattering which is a result

of the low absorption of electromagnetic radiation by the surfaces within the environment. Energy

not absorbed by the surfaces is reflected back into the space which produces a high field strength.

Typically, reverberant environments have metallic surfaces with few openings through which energy

can leak out.

The level of reflectivity in a reverberant environment is known as the loading. Loading is corre-

lated to the absorption of the electromagnetic radiation and inversely correlated to the reflectivity

(i.e, low loading equates to low absorption and high reflectivity). Loading changes based on the

physical configuration of the environment. Any object (e.g., equipment, furniture, humans) added

to or removed from the environment will affect how energy is absorbed, Opening or closing apertures

(e.g, door, hatches, panels) alters how much energy leaks from the environment. For the remainder

of this document, the terminology of low and high loading will be used relatively to compare different

environmental configurations, but all the reverberant environments studied here will tend towards

low loading (and high reflectivity).

Considering wireless signals, high reflectivity results in multipath which can cause destructive

interference. Reverberant environments have high levels of multipath which is why they are being

investigated. Before the wireless performance can be evaluated, it is necessary to first characterize

the electromagnetic nature of the selected environments. The coupled reverberation chambers were

tuned to match the reflectivity of actual highly multipath environments. Similar work has been

done in [18] where the wireless propagation of outdoor urban environments was recreated in a
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reverberation chamber.

2.2 Quantifying the Electromagnetic Nature of an Environment

For this effort, measures which can be derived from the Power Delay Profile (PDP) [50] of the

wireless channel will be considered to characterize the electromagnetic nature of an environment.

The PDP is the complex integral of the impulse response [51] where the impulse response is the

output of a system given an instantaneous burst of energy as the input (i.e., an impulse) [52]. In the

context of a wireless channel, an impulse response can be measured using the forward transmission

coefficient, S21, between a pair of antennas attached to a network analyzer [22].

2.2.1 Electromagnetic Properties

Power Delay Profile

The PDP is the amount of power received with a delay between [∆,∆ + d∆]. It is expressed as the

complex integral of the impulse response (u(t,∆)) [51],

Pu(∆) =

∫ −∞
−∞

|u(t,∆)|2dt. (2.1)

While the PDP does provide detailed insight on the multipath channel to the receiver, it is often

useful to consider generalized measures of this data. These measures are calculated through the

moments of the PDP.

The normalized first-order moment is defined as,

Tm =

∫∞
−∞∆Pu(∆)d∆∫∞
−∞ Pu(∆)d∆.

(2.2)

Tm is called the mean delay, which is the average delay of all multipath components reaching the

receiver.

The normalized second-order, central moment of the PDP is calculated as,
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S∆ =

√√√√∫∞−∞ Pu(∆)(∆− Tm)2d∆∫∞
−∞ Pu(∆)d∆

. (2.3)

The measure S∆ is referred to as the Root Mean Squared (RMS) Delay Spread [32]. It is a

measure of the richness of the scattering environment. It can be interpreted as difference in arrival

times of the earliest and latest significant multipath components. The duration of symbols in wireless

communication must be sufficiently greater than the RMS delay spread (approximately one order of

magnitude) to prevent Inter-Symbol Interference (ISI).

Time Constant

The time constant, τ , is the rate at which energy is lost from the system when the input source

turned off. It may be determined from the slope of the PDP.

Q Factor

Highly reverberant environments are characterized by rich electromagnetic scattering which is a

result of low absorption of electromagnetic radiation by the metallic surfaces within the environment.

Energy that is not absorbed is reflected back into the space. A reverberant environment is a damped

resonator when excited by a wireless communication signal, so the loading can be quantified by the

Q factor, a dimensionless measure of the dampening of a resonator [53]. The Q factor is the ratio of

the energy stored to the energy lost per cycle in a resonator. A higher Q indicates less dampening,

so oscillations die out more slowly. Q is related to the rate of decay of the impulse response and

the volume of the space. It is calculated from the impulse response of the wireless channel which

is found by calculating the inverse Fourier transform of the channel transfer function. The transfer

function is measured using the forward transmission coefficient, S21, between two antennas attached

to a network analyzer [22].

The measure is expressed as a function of the volume of the space (V , m3), average received

power (PAvgRec, W), input power (PInput, W), transmit (ηTX) and receive (ηRX) antenna efficiency, and
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the wavelength (λ) of the center frequency (f) of the input source,

Q =
16π2 ∗ V 3 ∗ PAvgRec

PInput

ηTXηRX ∗ λ3
. (2.4)

The Q factor is also related to the time constant,

Q = 2π ∗ f ∗ τ. (2.5)

Q Bandwidth

The bandwidth of the resonance is equal to

BQ =
f

Q
, (2.6)

where f is the center frequency of the resonance. This relationship implies that a higher Q factor

results in a smaller (and more stable) resonant frequency.

Cavity Calibration Factor

The Cavity Calibration Factor (CCF) is the normalized electric field [37] with units V/m/
√
w. It is

defined[54] as

CCF =
8π

λ

√
5IL
ηRX

, (2.7)

where IL is the insertion loss. This metric is commonly used in electromagnetic compatibility testing.

2.2.2 Measurement Protocol

Due to the non-uniformity of the electromagnetic field in a static environment, it is necessary to

“stir” the environment and take multiple samples. An ensemble average of the time-resolved samples

provides a stochastic representation of the impulse response [22]. The electromagnetic field can be

stirred in several ways, including moving the transmitter, receiver, or obstructions. Each stirring
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method is equally effective. When considering the 2.4 GHz ISM band, the wavelength is 12.5 cm,

so even small variations impact the fading characteristics of the channel. With respect to wireless

communication, stirring varies the magnitude, phase, and quantity of multipath components arriving

at the receiver nodes.

For the experiment, stirring was performed by rotating two Z-fold mechanical tuners, each 2.7 me-

ters in length, inside the main chamber (Figure 2.1). One tuner was positioned vertically in the

southwest corner, while the other was located horizontally along the top of the north wall. The

tuners rotate at aperiodic intervals to prevent periodicity in the produced channels.

Two dual-ridged, horn antennas (frequency range of 1-18 GHz) were connected to a network

analyzer and placed inside the main chamber away from the walls. The network analyzer performed

a frequency sweep of 200MHz with a center frequency of 2.462 GHz (IEEE 802.11, Channel 11 [31]),

dwell time of 5 ms, and Intermediate Frequency (IF) bandwidth of 50 kHz. For each measurement,

25 sweeps were performed and averaged. The channel was stirred in between measurements. The

impulse response was calculated as the ensemble average of 20 time-resolved measurements. This

protocol is discussed in further detail in [22].

2.3 Below Decks Electromagnetic Characterization

The loading in below-deck spaces on naval vessels has been a primary focus of a number of studies

[37, 19, 13, 22] on electromagnetic compatibility and emissions. The range of loading in below deck

spaces was determined to be between 1100 and 5800. The reverberance in this highly reverberant

environment can be compared to other measured environments through the use of RMS delay spread.

The loading exhibited in below-deck spaces corresponds to a delay spread in the range of ˜200-

1200 ns. Meanwhile, empirical studies [55, 56] of non-reverberant environments have measured a

delay spread between ˜10-60 ns, which is approximately twenty (20) times less than the delay spread

in the reverberant environments. The order of magnitude difference between non-reverberant and

reverberant environments clearly demonstrates the stark contrast in their electromagnetic nature.
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Figure 2.1: Cross section view of the main chamber and ante chamber in the coupled rever-
beration chambers of the NSWCDD.

2.4 Reverberation Chamber Electromagnetic Characterization

A reverberation chamber is metallic enclosure primarily intended for electromagnetic compatibil-

ity testing. Reverberation chambers have naturally low loading as they are designed to minimize

electromagnetic absorption and maintain the electromagnetic field strength. The reflectivity of the

chamber may be lowered by adding electromagnetically absorptive material inside the chamber. By

varying the amount and location of the absorbing material, the chamber can be configured to mimic

the Q factor of actual highly multipath environments.

For this work, the coupled reverberation chambers of the Naval Surface Warfare Center Dahlgren

Division (NSWCDD) at the Naval Support Facility Dahlgren (NSFD) were used. The larger of the

two chambers (the main chamber) has a volume of 97 m3 (Figure 2.2), while the smaller of the two

chambers (the ante chamber) has a volume of 34 m3 (Figure 2.3). The chambers are adjoined by a

1×2 meter shielded door. A cross section of the environment is shown Figure 2.1.

The impulse responses of the three loading configurations are shown in Figure 2.4. The calculated
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Figure 2.2: Main chamber of the coupled reverberation chambers of the NSWCDD. This
picture was taken from the doorway connecting the main chamber to the ante chamber. The
horizontal Z-fold mechanical tuner along the north wall is shown at the top of the image. One
of the horn antennas used for the impulse measurements is on the tripod in the middle of
the image. Two of the wireless nodes (described in Chapter 3) are shown on non-absorbing
Styrofoam blocks.

Q factors were 5725 (High Q), 2031 (Medium Q), and 1142 (Low Q) which spans the range of loading

exhibited by below deck spaces. For the remainder of this document, the loading configurations will

be referred to as “High Q,” “Medium Q,” and “Low Q.” The electromagnetic properties of the

loading configurations are tabulated in Table 2.1.

2.5 Conclusions

The electromagnetic properties of highly reverberant environments need to be quantified in order

to assess the performance of wireless communications and correlate that performance to the envi-

ronment. A selection of measures, related to the PDP of the wireless channel, were described which
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Figure 2.3: Ante chamber of the coupled reverberation chambers of the NSWCDD. This
picture was taken from the south east corner of the ante chamber. One of the wireless nodes
is shown on a non-absorbing Styrofoam block. The shielded door separating the main chamber
and ante chamber is also shown.

serve this need. The protocol used to measure the PDP was presented as a means to develop a

stochastic representation of the wireless channel. The range of loading in below deck spaces had

been determined in previous studies and was used to calibrate three loading configurations in the

coupled reverberation chambers. The impulse response and electromagnetic properties were calcu-

lated for each configuration. The experiments utilizing these configurations are analyzed in Chapter

4.
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Figure 2.4: Coupled reverberation chambers. An ensemble average of the impulse response
for each of the chamber configurations. The calculated Q factors were 5725, 2031, and 1142 for
High Q, Medium Q, and Low Q, respectively.

Table 2.1: Coupled reverberation chambers. Electromagnetic properties at the low, medium,
and high loading configurations.

Q

Property Low Medium High

τ (ns) 75 133 374

Q 1142 2031 5725

BQ (MHz) 2.134 1.200 0.426

CCF (V/m/
√
W ) 11.47 15.29 25.67
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Chapter 3: Experimental Methodology

3.1 Introduction

Portions of this chapter were published in the IEEE Antennas and Wireless Propagation Letters

[38] and the Proceedings of the 2014 IEEE International Communications Quality and Reliability

Workshop [30].

In order to characterize the performance of wireless communications in these highly reverber-

ant environments, channel and link level metrics are needed which are not routinely available on

consumer-grade hardware. Specialized, professional equipment is often used in such circumstances

requiring considerable investment in hardware and logistics. Measurement platforms that incor-

porate Software Defined Radios (SDRs) are a viable option to fill this gap. SDRs have a small,

lightweight form factor, and they can be used in physically constrained locations and in conjunction

with mobile applications. They are also relatively inexpensive.

SDRs have been commonly used for research and commercial applications for several decades.

Today, a variety of both hardware and software [26] solutions exist which can be tailored to meet

the needs nearly any wireless application. Some notable current solutions include USRPs [27] and

GNURadio [28]. For this effort, the WARPv3 Kit [29] was selected as the hardware platform

(primarily due to availability). There are several reference designs available for the WAPRv3 kit

such as Mango 802.11 Reference Design [57], the WARPLab Reference Design [29], and the ODFM

Reference Design [29]. Unfortunately, none of these designs could offer the full range of functionality

which was required for this work including the ability to interface with mechanical components in

the coupled reverberation chambers and support for reconfigurable antennas. Thus, a new software

implementation was developed to accommodate these requirements.

A MATLAB-based SDR measurement platform is presented here for the direct characterization

of Multiple Input Multiple Output (MIMO) Orthogonal Frequency-Division Multiplexing (OFDM)

communications. The platform has a modular subsystem design that implements a MIMO OFDM



20

wireless network with one of four physical layer schemes similar to IEEE 802.11g: 1 × 1 Single

Input Single Output (SISO), 1× 2 Maximal Ratio Combining (MRC), 2× 2 Alamouti Space-Time

Block Code (STBC), and 2 × 2 Vertical Bell Laboratories Layered Space-Time (VBLAST) Spatial

Multiplexing (SMUX). The current version of the platform uses the Wireless Open-Access Research

Platform (WARP) v3 SDR [58], although its modular nature would allow it to employ any SDR with

appropriate buffer access. Data is OFDM-encoded and decoded based on the specified physical layer

scheme entirely within software. The raw receive data can be used to derive a variety of desired

channel and link-level metrics, including channel capacity, Error Vector Magnitude (EVM), Post

Processing Signal-to-Noise-Ratio (PPSNR), and throughput.

There are many benefits to implementing the PHY and MAC layers in software instead of the

SDR. The SDR only handles the transmission and reception of the RF waveforms, so no knowledge

of embedded systems is required. Furthermore, a common hardware framework can be used across

all four of the PHY layer schemes. It is not necessary to change physical connections or update the

firmware on the SDR, even when extending the platform to incorporate additional MIMO physical

layer schemes.

3.2 Measurement Platform Implementation

3.2.1 Packet Structure

This implementation of the OFDM packet structure is similar to IEEE 802.11g [31]. A packet

contains 30 OFDM words and each word contains 64 subcarriers. Four of the subcarriers are reserved

for pilot tones, which are used in frequency offset correction of channel estimates [31, Expression

18–25]. Twelve of the subcarriers are set to null as in [31, Figure 18–3], and the remaining 48

subcarriers contain data.

A packet is comprised of three types of blocks: preamble, training symbols, and data. The pream-

ble block has two IEEE 802.11 long OFDM training symbols [31, Section 18.3.3], which are used for

timing synchronization and packet detection. The training symbols block has four OFDM words.

Two of the four OFDM words are arbitrary BPSK streams used to estimate Channel State Infor-

mation (CSI). The remaining two OFDM words are null, to prevent beamforming when estimating
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Figure 3.1: Packet structure. The first 2 OFDM words contain the preamble. The remaining
28 words alternate between 4 OFDM words for training data and 10 words for the data payload.

the channel coefficients for MIMO physical layer schemes. The data block contains 10 OFDM words

filled with randomly generated data.

Due to the time varying nature of the channel, a trade-off exists between the length of a data

block and the validity of the Channel State Information (CSI). Long data blocks can have stale CSI

that causes carrier frequency offset, while short data blocks incur more overhead and require more

packet transmissions. Since all the processing on this platform is done in software, there is a large

delay (on the order of hundreds of milliseconds) between packet transmissions. While a slow rate of

transmission does not affect the results, it does increase the length of the test.

A method was developed to decrease the testing time of the platform. The training symbols and

data payload are duplicated and concatenated into a single packet as shown in Figure 3.1. A total of

20 OFDM words (960 symbols) of data is sent per transmission. The overhead is slightly increased

with the inclusion of the second set of training symbols, but the higher data payload transmission

rate vastly reduces the testing time without sacrificing the integrity of the data.

3.2.2 Transmitter Subsystem

Figure 3.2 shows the OFDM transmission subsystem for a single transmission stream. First, the

data is Quadrature Amplitude Modulation (QAM) modulated before being reshaped into the 48

OFDM data subcarriers. The subcarriers are then encoded if required by the specified physical layer

(e.g., Alamouti STBC). Pilot tones are inserted according to [31, Section 18.3.5.9]. In the MIMO
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Figure 3.2: Block diagram of the OFDM transmitter subsystem.

cases, the pilot tones are interleaved in space and time (i.e., across subcarriers and OFDM words)

to prevent deconstructive combining [59, Section 3.6]. The training symbols and preamble OFDM

words are prepended to the data/pilot tone OFDM words. The entire packet is then OFDM-encoded

via a 64 point IFFT, producing the OFDM waveforms for each word. For the second set of training

symbols and data payload, the first set is repeated and appended to the packet. A guard interval

consisting of a 16 sample cyclic prefix is added to each OFDM waveform, increasing the size of the

OFDM word to 80 samples. After serializing the OFDM waveforms, the entire packet is upsampled

by a factor of 4 to reduce the bandwidth to 10 MHz. The packet is upconverted to an IF of 5 MHz to

prevent attenuation near DC. Finally, the preamble, training data, and data payload waveforms are

individually scaled to the dynamic range of the WARP D/A and A/D converters to ensure maximum

resolution in quantization while preventing clipping.

3.2.3 Receiver Subsystem

Figure 3.3 shows the general OFDM receiver subsystem. For each reception, the raw received data

plus an additional 300 samples are downloaded from the SDR. The additional 300 samples act

as a synchronization buffer to ensure that sufficient samples are downloaded to synchronize the

transmission. Packet detection and synchronization occur via cross correlating the known preamble
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Figure 3.3: Block diagram of the OFDM receiver subsystem.

sequence (a single IEEE 802.11 long training symbol) with the received data. A packet is considered

detected if the largest cross correlation magnitude is greater than a prespecified threshold.

After synchronization, the stream is downconverted to baseband and downsampled by a factor of

4. The entire packet is reshaped into subcarriers, and the cyclic extension guard interval is removed.

The OFDM words are then recovered from the waveforms by performing a 64 point FFT. The channel

coefficients are estimated from the training symbols. The carrier phase offset for each OFDM word

is estimated using the dedicated pilot tones as in [33, Equation 8.17] and corrected by applying

an inverse phase shift. The data payload is equalized using the channel estimates according to the

specified physical layer, after which the received QAM symbols are serialized and demodulated.

3.2.4 Physical Layer Schemes

The platform currently implements four physical layer schemes: 1 × 1 SISO, 1 × 2 MRC, 2 × 2

Alamouti STBC, and 2× 2 VBLAST SMUX. In the SISO scheme, the channel coefficients of each

OFDM subcarrier are used to equalize the subcarriers of the OFDM packet. In 1 × 2 MRC [32],

the signals from each receive antenna are weighted according to their individual Signal-to-Noise-
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Ratio (SNR) and then summed. The weights are formed in terms of the channel coefficients for each

subcarrier, as in [60, Chapter 7]. In the 2 × 2 Alamouti STBC, the data is split into two separate

streams at the transmitter node and redundancy is added in the form of orthogonal representations

of the data [61]. Finally, a 2 × 2 SMUX scheme is implemented via the VBLAST algorithm [62]

which splits the transmitted data across two streams. At the receiver, the streams are decoded using

a combination of linear nulls and symbol cancellation on each OFDM subcarrier.

3.2.5 WARP v3 Software Defined Radio (SDR)

The WARP v3 Kit is a SDR platform developed by Rice University and Mango Communications [58].

It is built on a Xilinx Virtex-6 LX240T FPGA with two programmable RF interfaces operating at

2.4 and 5 GHz with a 40 MHz bandwidth. The WARP v3 Kit was selected for use with the platform

due to its accessibility and ease of interface with MATLAB. The WARPLab 7.1 reference design is a

buffer-based design with no physical or MAC layer which allows for implementation in software. The

generated transmit waveforms are sent directly to the transmit buffers and the received waveforms

are extracted directly from the receive buffer. Modulation, coding, and equalization are performed

in MATLAB.

3.3 Performance Metrics

The received data is converted first into raw IQ, decoded IQ, and finally demodulated IQ. The CSI is

estimated using the received training symbols. Several channel and link level metrics can be derived

from the data in each of these states.

1. System Capacity is the upper bound on the rate of information that can be sent through a

transceiver system (transmitter, channel, receiver) with an arbitrarily small level of error. For

this implementation, capacity is calculated (in bits per Hertz) on a per packet basis from the

normalized channel gain estimates recovered in each 802.11 packet. MIMO OFDM Channel

capacity is defined as a function of CSI and SNR. The physical interpretation of the SNR is

dependent on the channel normalization employed [63].

For a flat fading channel, the capacity is defined as
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C = log2

(
1 +

PTx|h|2

N0

)
, (3.1)

where PTx is transmit power, |h| is the complex channel gain, and N0 is the noise power in the

channel.

For an OFDM link with K subcarriers, there are K narrowband flat fading channels. The

channel capacity becomes the summation of the capacities of each subcarrier

C =

K∑
k=1

log2

(
1 +

PTx,k|hk|2

N0,k

)
. (3.2)

This expression can be further expanded for the MIMO scenario as

C =

K∑
k=1

log2

[
det

(
Im×n +

PTx,k

mN0,k
HkH†k

)]
. (3.3)

where Hk is an m × n channel matrix with m transmit antennas and n receive antennas.

The entries hi,j , represent the complex channel gain from Tx antenna i to Rx antenna j. To

compare system capacity fairly from experiments using separate physical layers, the channel

gains are normalized such that, ||H||Frobenius = mn [63]. While there are different methods of

normalization, the Frobenius norm was selected to coincide with the literature and common

practices [64, 65].

2. Error Vector Magnitude is the magnitude of the vector between a transmitted (expected)

symbol and the received (actual) symbol. The distribution of the EVM is used to assess the

quality of communications and has been proven to be a reliable predictor of signal integrity at

the physical layer [66].
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3. Post-Processing Signal-to-Noise-Ratio is defined as the ratio of signal power to signal error,

PP-SNR(dB) = E
[
‖x‖2

‖x̂− x‖2

]
. (3.4)

In addition to channel noise, PP-SNR includes noise resulting from the specific hardware and

processing implementation (e.g., non-linear distortion in the radio transceiver, error in channel

estimation, and noise enhancement from equalization) [38].

4. Throughput is the amount of data successfully transmitted to a receiver per unit time (bits

per second). Since the measurement platform implements the packet structure but not the

timing protocol of IEEE 802.11g, it is not possible to directly measure the link throughput,

but the achievable throughput can be estimated using the observed PPSNR and a Symbol

Error Rate (SER) constraint [66]. For a given M-ary modulation scheme, the theoretical SER

can be determined from the SNR [32]. Conversely, when SER is constrained, the minimum

SNR needed to achieve that constraint can be determined. Any SNR above this threshold will

support the chosen modulation scheme at the constrained SER or better. Thus, for a measured

link with an observed SNR and a selected SER constraint, any modulation scheme with an

SNR threshold less than the measured SNR will be supported. This process is demonstrated

in Figure 3.4.

The throughput (T ) can be estimated using the modulation order (M , number of symbols in

the constellation) and the symbol rate (S, Baud per second),

T = S ∗ log2M. (3.5)

The symbol rate of an OFDM word is calculated as

S = B ∗ rDSC, (3.6)

where B is the bandwidth and rDSC is the ratio of subcarriers which hold payload data.
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Figure 3.4: Theoretical SER curves for common, rectangular modulation schemes [32]. A
vertical line is extended at the observed PPSNR of a link. A horizontal line is extended at the
selected SER constraint of 1× 10−4. Each modulation scheme whose SER curve intersects the
vertical PPSNR line below the horizontal SER constraint line is supported. In this example, an
observed PP-SNR of 13 dB was selected with an SER constraint of 1×10−4. This link supports
both BPSK and QPSK with an achievable throughput of 6 and 12 Mbps, respectively. It is also
possible to use this graph to estimate the SER for a specified modulation scheme. Using the
same observed PP-SNR of 13 dB, the link would incur an SER of 3.4 × 10−2 if it were to use
the 16-QAM modulation scheme.

In this effort, the frames were constructed with 64 subcarriers (including 48 data subcarriers)

and a 16 sample cyclic extension with a bandwidth of 10 Mhz. Therefore, the symbol rate is

S = 10MHz ∗ 48

64 + 16
= 6MBdps. (3.7)

No coding schemes are considered, so the modulation schemes of BPSK, QPSK, 16-QAM,

64-QAM correspond to an achievable throughput of 6, 12, 18, and 24 Mbps, respectively.
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3.4 Experimental Protocol

When the doors on the reverberation chamber are sealed, the electromagnetic field becomes static

and the wireless channel exhibits only small variations. Such conditions are disadvantageous to

communication measurements, because a single channel does not represent well the range of channels

possible in actual environments. Typical wireless environments are more dynamic.

A dynamic wireless environment was created inside the reverberation chamber by altering, or

“stirring,” the reflective surfaces in the chamber. This stirring had the effect of changing the bound-

ary conditions of the system, varying the electromagnetic field and also the magnitude, phase, and

quantity of multipath components arriving at the receiver nodes.

Stirring was accomplished by rotating two Z-fold mechanical tuners, each 2.7 meters in length,

inside the main chamber (seen in Figure 2.1). One tuner was positioned vertically in the southwest

corner, while the other was located horizontally along the top of the north wall. The two tuners

rotated at aperiodic intervals to prevent periodicity in the changing boundary conditions.

For meaningful comparison of different antenna types, antenna pattern configurations, and phys-

ical layer schemes, it is necessary to have identical channel conditions across the different configura-

tions as experimental control. Modal stirring was used to ensure high channel correlation within a

single trial. Stirring only occurred between trials so that the environment would be static across all

test parameters.

A test protocol which uses the SDR platform is outlined below. Prior to the start of the test, the

gains on each transmitting port are normalized to allow for unbiased comparisons between single-

input and multiple-input transmission schemes. An Agilent U2001H USB Power sensor was used to

measure the output power. The transmit gains were adjusted accordingly to match output power.

When multiple physical layer schemes are being compared, the transmissions of the different schemes

are interleaved to improve the correlation between channels and reduce the effect of time variance.

The test protocol is as follows:

1. Configure the node topology.
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2. Calibrate the transmitter.

(a) Select a gain and send a SISO transmission.

(b) Repeat (2.a) until the PP-SNR is maximized without exhibiting gain saturation [67].

(c) Measure the transmit power of the transmitting port with a power sensor.

(d) Adjust the gain on the additional transmitting port to match the calibrated output power.

If saturation occurs, repeat 2.a with a lower initial gain.

3. Execute the test.

(a) Send a SISO transmission (SISO/MRC).

(b) Receive the SISO transmission on both antennas.

(c) Send a MIMO transmission (Alamouti code/SMUX).

(d) Receive the MIMO transmission on both antennas.

(e) Repeat (3.a-b) for the desired number of trials.

Both SISO and MRC can be decoded from a SISO transmission (Step 3.a), since a copy of the

transmitted signal is received on both receiver antennas. SISO decoding only uses a single RX

stream, while MRC decoding uses both streams. Similarly, both Alamouti code and SMUX can be

decoded from a MIMO transmission (Step 3.b) when the Alamouti encoding has been applied to

both transmitted streams. For SMUX decoding, the two streams are interpreted as independent

data streams, ignoring that they contain an Alamouti block code. By decoding all four physical

layer schemes using only two transmissions, the total number of transmissions (and length of the

test) is halved.

3.5 Conclusions

Consumer-grade equipment is incapable of performing detailed analysis of wireless communications

in certain challenging environments. Specialized equipment for these environments is often cost

prohibitive and not suited for mobile applications and field testing. A MATLAB-based SDR platform



30

was presented as a cost-effective, lightweight alternative. The platform implements four MIMO

OFDM transmission schemes based on the IEEE 802.11g protocol and allows full user access to

transmit and receive buffers. The raw data extracted from the platform can be used to derive a host

of metrics necessary for evaluation of channel and link properties.
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Chapter 4: Characterization of Wireless Communication Performance

4.1 Introduction

Portions of this chapter were published in the IEEE Antennas and Wireless Propagation Letters

[38] and the Proceedings of the 2014 IEEE International Communications Quality and Reliability

Workshop [30]. Portions of this chapter have been included in a manuscript submitted to IEEE

Transactions on Communications [49].

To characterize the performance of wireless communications in highly reverberant environments,

two experimental measurement campaigns were undertaken. The first campaign was in the controlled

environment of the coupled reverberation chambers at the Naval Surface Warfare Center Dahlgren

Division (NSWCDD). Using previously measured ranges for the loading in below deck spaces, the

loading in the chambers was selected to match. A series of node and environments parameters were

evaluated to provide insights on the expected performance in an actual multipath environment. The

second campaign was conducted on board the Thomas S. Gates (CG 51) at the Naval Inactive Ship

Maintenance Facility (NISMF) in Philadelphia, PA. A series of locations were selected in the vessel

to test based on their perceived utility as locations for wireless network installations. During both

campaigns, the measurement platform described in Chapter 3 was used for all experiments.

Discussion of the results begins with the first campaign in the coupled reverberation chambers.

The following section describes the second campaign in the below deck spaces. The chapter concludes

with a comparison of the results from both campaigns.

4.2 Coupled Reverberation Chambers

The objective of this effort is to investigate the effect of electromagnetic reverberance on WLAN

communications through experimentation in a controlled environment. Experiments were conducted

in coupled reverberation chambers of the NSWCDD at the Naval Support Facility Dahlgren (NSFD).

The level of electromagnetic reverberance (loading) in the chambers was tuned to mimic the rever-
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Figure 4.1: Cross section view of the main chamber and ante chamber in the coupled rever-
beration chambers of the NSWCDD.

berance in the below deck spaces of a naval vessel. The range was determined from measurements

taken on actual naval vessels [37]. A similar methodology was followed in [18] where the wireless

propagation of outdoor urban environments was recreated in a reverberation chamber. The influence

of several parameters was considered in relation to the loading: signal propagation (line-of-sight vs

non-line-of-sight), receiver diversity (Single Input Single Output (SISO) vs Maximal Ratio Combin-

ing (MRC)), and cavity coupling between the chambers (small vs large effective aperture).

4.2.1 Experimental Setup

To mimic practical, highly reverberant environments, the main chamber was tuned to the Q of

actual below-deck environments on a naval vessel in the range of Q = 1100 to Q = 5800 [37, 19, 13].

Reverberation chambers have naturally low loading as they are designed to minimize electromagnetic

absorption and maintain field strength. The loading of the chamber may be increased by adding

electromagnetically absorptive material inside the chamber.

Three (3) nodes were used in the experiments, one (1) transmitter and two (2) receivers. Receiver
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Figure 4.2: Coupled reverberation chambers. CDF of the EVM of the LOS Receiver.

1 (Line Of Sight (LOS) receiver) was deployed in the main chamber with the transmitter. Receiver (

Non Line of Sight (NLOS) receiver) was deployed in the ante chamber behind the adjoining, shielded

door such that it did not have line of sight into the main chamber. The precise locations are shown

in Figure 4.1. All nodes were elevated off the ground by non-absorbing, Styrofoam blocks.

The loading in the reverberation chamber was tuned by adding electromagnetic absorbing foam

into the chamber until the desired Q was achieved. At the start of each experiment, the transmit

gain was calibrated using an Agilent U2001H USB Power sensor to ensure equal gains across tests.

An experiment consisted of 500 transmissions where each transmission contained 960 symbols for a

total of 480,000 samples per experiment. The channel was stirred every 10 transmissions by rotating

the two Z-fold mechanical tuners.
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Figure 4.3: Coupled reverberation chambers. CDF of the EVM of the NLOS Receiver.

4.2.2 Results

Receivers (LOS v NLOS)

.

The two receivers were positioned such that one had a Line-Of-Sight (LOS) signal component

with the transmitter, while the other did not. The LOS receiver was positioned in the main chamber

with the transmitter while the NLOS receiver was positioned behind the door in the ante chamber

(Figure 4.1). The Cumulative Distribution Function (CDF) of the Error Vector Magnitude (EVM)

for the LOS receiver and the NLOS receiver are shown in Figures 4.2 and 4.3, respectively. Since

lower EVM is preferred, better performance is indicated by the distribution being closer to the top

left corner of the plot. For the LOS receiver in Figure 4.2, Low Q has slightly better signal quality

than Medium Q, while both are significantly better than High Q. As expected, when the loading

decreases, the performance of the LOS receiver degrades due to an increase in multipath interference.



35

 0

 5

 10

 15

 20

 25

 30

Low Medium High

A
ve

ra
ge

 P
P

-S
N

R
 (

dB
)

Q Level

LOS Receiver
NLOS Receiver
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across all loading configurations

This notion is further exemplified in Figure 4.4, where the PP-SNR drops by nearly 11 dB from Low

Q to High Q. The loss in PP-SNR decreases the achievable throughput from 18 Mbps to 12 Mbps

(Table 4.1).

Interestingly, the trend is reversed for the NLOS receiver (Figures 4.3 and 4.4). When loading

decreases, the performance improves. Since less signal energy is absorbed by the environment,

more energy propagates into the coupled chamber resulting in greater received energy at the NLOS

receiver. The largest improvement is between Low Q and Medium Q where the gain in PP-SNR is

enough to increase the throughput by 6 Mbps.

The NLOS receiver had lower signal quality than the LOS receiver in each case. The power of

the received signal at the NLOS receiver is lower due to path loss and partial absorption of reflected

multipath components that comprise its received signal. The gap in performance between the LOS

receiver and NLOS receiver narrows as the loading decreases. This observation is evident in both
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Figure 4.5: Coupled reverberation chambers. Observed system capacity for the LOS receiver
and NLOS receiver across all loading configurations.

Figure 4.4 and Table 4.1. For Low Q, the LOS receiver has a PP-SNR 13.8 dB higher than the

NLOS receiver. For High Q, the LOS receiver only has a PP-SNR 1.4 dB higher than the NLOS

receiver, and both receivers have a throughput of 12 Mbps.

It is likely that the trends for line-of-sight would extend to non-reverberant environments, albeit

at much smaller scales. The LOS receiver degrades significantly (˜11db) as multipath interface

increases in to High Q. In a non-reverberant environment, multipath interface will also decrease

signal quality, but not nearly at that magnitude [14, 15, 16, 17, 18]. It is more difficult to predict

the performance of a NLOS receiver in non-reverberant environments as the propagation paths can

vary widely. The trend for the NLOS receiver was observed in the coupled reverberation chamber

which is a highly controlled environment. As will be shown in the results from the below-decks

measurement campaign (4.3), the performance of NLOS receivers can change on a link-by-link basis

that it is depend on the physical geometry of the space. Similarly, there are most likely situations in
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Table 4.1: Coupled Reverberation Chambers. Achievable throughput (Mbps) with symbol
error rate constrained to 1× 10−4 for the LOS Receiver and NLOS Receiver across all loading
configurations.

Q

Receiver Low Medium High

LOS 18 18 12

NLOS 6 12 12

non-reverberant environments in which multipath both can improve and degrade the performance

of NLOS receivers.

The capacity for the LOS Receiver and NLOS Receiver are shown across all loading configurations

in Figure 4.5. The LOS receiver improves in capacity considerably as the loading increases and also

approximately double the capacity of the NLOS receiver. In following with the previous results for

the NLOS receiver, the capacity is greater for lower loading.

Receiver Diversity

Two physical layer schemes were used by the receivers: 1 × 1 SISO and 1 × 2 MRC [32]. SISO is

a simple point to point (1×1) scheme where the received signal from only one of the receiver’s two

antennas is used. MRC computes the weighted average of both received streams, so it is expected

to outperform SISO.

Line-of-Sight For the LOS receiver, the CDF of the EVM is shown in Figure 4.6, and the PP-SNR

is shown in Figure 4.7. In both figures, the performance of SISO and MRC are compared across all

three Q configurations where the results show MRC has a notable gain in signal quality over SISO.

The gap in performance widens as the loading decreases. The difference in PP-SNR goes from 3.0

dB at Low Q to 5.3 dB at High Q. MRC is able to mitigate increased multipath interference better

than SISO, so its performance does not degrade as much when the loading decreases.

At High Q, the individual received signals have lower correlation which is advantageous for MRC

since it computes the weighted average of the signals. This phenomenon is exemplified by the CDFs

of the EVM for SISO and MRC at High Q. In this case, SISO has a higher median EVM and a
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Figure 4.6: Coupled reverberation chambers. CDF for the EVM of the LOS Receiver across
both physical layer schemes.

heavier tail than MRC. When one received signal has a high level of error, MRC can heavily weight

the better stream to reduce symbol error (i.e., the heavy tail). The low correlation between received

streams is leveraged to improve signal quality. The effectiveness of receiver diversity is diminished

when the received streams are highly correlated. This implies that the use of receiver diversity

is particularly well suited for reverberant environments. Benefit would still be provided in non-

reverberant environments, which have higher received stream correlation (due to lower multipath),

but not at the magnitude provided in reverberant environments.

The throughput for the LOS receiver with both physical layer schemes is shown in Table 4.2.

Even though the transmit rate of SISO and MRC are equal, MRC outperforms SISO in throughput

by 6 Mbps due to its improved PP-SNR. While the gap in PP-SNR increases as the loading decreases,

the difference in throughput remains constant across all configurations.

The capacity for the LOS Receiver shown across all loading configurations and SISO and MRC
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Figure 4.7: Coupled reverberation chambers. PPSNR for the LOS Receiver across both
physical layer schemes.

is shown in Figure 4.8. MRC proves to have approximately double the system capacity of SISO

while each physical layer scheme individually improves substantially as the loading decreases. This

coincides with the earlier observations regarding the effect of multipath interference on the LOS

receiver.

Non-Line-of-Sight For the NLOS receiver, the CDF of the EVM is shown in Figure 4.9, and

the PP-SNR is shown in Figure 4.10. Again, the results show that MRC outperforms SISO. MRC

follows the same overall trend as SISO by increasing when the loading decreases. The difference in

PP-SNR is 4.6 dB at Low Q and 4.7 dB at High Q, so, unlike the LOS case, there is no significant

change in the performance gap between SISO and MRC.

The throughput for the NLOS receiver with both physical layer schemes is shown in Table 4.3.

There is not a significant difference in the throughput of SISO and MRC for the NLOS receiver.
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Figure 4.8: Coupled reverberation chambers. Observed system capacity for the LOS Receiver
across all loading configurations and both physical layer schemes.

MRC only has a higher throughput in the Low Q configuration. Despite the notable gains in PP-

SNR for MRC, the quantization which occurs when placing a threshold on the Symbol Error Rate

(SER) does not result in increased throughput in this case. Even so, the gains achieved by MRC

would often result in increased throughput for NLOS links.

The capacity for the LOS Receiver shown across all loading configurations and SISO and MRC

is shown in Figure 4.11. As in the LOS case, MRC approximately doubles the capacity of SISO.

Interestingly, there is not clear trend and minor differences in the capacity between the different

loading configurations. This result differs from the EVM and PPSNR which distinctly increase as

the loading decreases. The lack of improvement in the capacity likely indicates that the frequency

selectivity of the channel is not diminishing, rather the path loss is improving. The NLOS receiver

receives only reflected components, so there is no dominant line of sight component which it is being

disrupted. The decreased loading is improving the wave guiding effect such that more energy is
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Table 4.2: Coupled reverberation chambers. Achievable throughput (Mbps) for the LOS
Receiver across all loading configurations and both physical layer schemes with SER constrained
to 1× 10−4.

Q

Physical Layer Scheme Low Medium High

SISO 18 18 12

MRC 24 24 18

Table 4.3: Coupled reverberation chambers. Achievable throughput (Mbps) for the NLOS
Receiver across all loading configurations and both physical layer schemes with SER constrained
to 1× 10−4.

Q

Physical Layer Scheme Low Medium High

SISO 6 12 12

MRC 12 12 12

coupled into the ante chamber.

Cavity Coupling

“Cavity coupling” refers to the size of the effective aperture that exists between connected cavities.

The effective aperture size is the combined electromagnetic leakage from doors, hatches, windows,

cables, bulkhead penetrations, floor joints, etc. Since the reverberation chambers are constructed

to prevent electromagnetic leakage, the effective aperture size can be controlled by the position of

the door between the main chamber and ante chamber. To test the effect of the cavity coupling

on the performance of wireless communications, the loading was held constant at the Medium Q

configuration while the door between the cavities was varied across three settings: nearly closed,

halfway closed, and fully open. For the remainder of the document, these configurations will be

referred to respectively as “Low Coupling,” “Medium Coupling,” and “High Coupling.”

The Cumulative Distribution Functions (CDFs) of the EVM are shown for the LOS receiver

and NLOS receiver in Figures 4.15 and 4.16, respectively. The PPSNR of both receivers are shown

in Figure 4.17. Performance improves for both receivers as the level of coupling increases. Both

receivers improve in PPSNR by approximately 3 dB when moving from Low Coupling to High
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Figure 4.9: Coupled reverberation chambers. CDF for the EVM of the NLOS Receiver across
both physical layer schemes.

Coupling. At high coupling, more energy propagates into the ante (coupled) chamber. The LOS

receiver likely experiences less multipath interference as a result. Meanwhile, the NLOS receiver

receives greater signal power, thereby improving performance for that receiver as well.

The effect of coupling would likely be difficult to observe in non-reverberant environments, but

it results from a restricted propagation path. Non-reverberant environments are not electromag-

netically sealed and therefore exhibits electromagnetic leakage through physical barriers. Signal

propagation does not depend as much on “open apertures” to reach NLOS receivers. Furthermore,

LOS links will likely not be impacted by the coupling increasing since the change in multipath would

be minimal.

The throughput for both receivers across all levels of coupling is shown in Table 4.4. The improved

PPSNR is not enough to increase the throughput for the LOS Receiver which remains at 18 Mbps

throughput for all coupling configurations.



43

 0

 5

 10

 15

 20

 25

 30

Low Medium High

A
ve

ra
ge

 P
P

-S
N

R
 (

dB
)

Q Level

SISO
MRC

Figure 4.10: Coupled reverberation chambers. PPSNR for the NLOS Receiver across both
physical layer schemes.

The capacity for the LOS Receiver and NLOS Receiver are shown across all coupling configura-

tions with both physical layer schemes in Figures 4.18 and 4.19, respectively. There is a negligible

difference in capacity for the LOS receiver while the capacity does improve at higher capacity for

the NLOS receiver. This result implies the coupling has little influence on the frequency selectivity

of the channel. The reverberance is not changing, only the distribution of the energy in the cavities.

As the coupling increases, a greater quantity of the signal propagates into the ante chamber, thereby

improving the capacity for the NLOS receiver.
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Figure 4.11: Coupled reverberation chambers. Observed system capacity for the NLOS Re-
ceiver across all loading configurations and both physical layer schemes.

Figure 4.12: Position of the shielded door between the main chamber and the ante chamber
for Low Coupling configuration.
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Figure 4.13: Position of the shielded door between the main chamber and the ante chamber
for Medium Coupling configuration.

Figure 4.14: Position of the shielded door between the main chamber and the ante chamber
for High Coupling configuration.

Table 4.4: Coupled reverberation chambers. Achievable throughput (Mbps) for the LOS
Receiver and NLOS Receiver across all coupling configurations with SER constrained to 1×10−4.

Coupling

Receiver Low Medium High

LOS 18 18 18

NLOS 6 12 12



46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

E
m

pi
ric

al
 C

D
F

Error Vector Magnitude

High Coupling
Medium Coupling

Low Coupling

Figure 4.15: Coupled reverberation chambers. CDF for the EVM of the LOS Receiver across
all coupling configurations.



47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

E
m

pi
ric

al
 C

D
F

Error Vector Magnitude

High Coupling
Medium Coupling

Low Coupling

Figure 4.16: Coupled reverberation chambers. CDF for the EVM of the LOS Receiver across
all coupling configurations.
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Figure 4.18: Coupled reverberation chambers. Observed system capacity for the LOS Receiver
across all coupling configurations.
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ceiver across all coupling configurations.
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Figure 4.20: Cross section of the port-side passageway test scenario on the Thomas S.
Gates (CG 51).

4.3 Below-Deck Spaces

The scenarios that were tested on the decommissioned cruisers were selected to provide a range

of spaces that might be considered for deployment of wireless networks on a ship. Each scenario

represents a typical below decks configuration that might be encountered aboard any class of ship (or

even some aircraft). The chosen scenarios include the aft engine room; three clustered compartments

on the same deck near the stern; and the main port-side passageway. A description of each scenario

is described below along with the corresponding experiment results.

The experiment protocol was the same on the naval vessel as it was on the reverberation chamber

with one exception. Stirring was accomplished by moving the transmitter around a 1 meter radius at

periodic intervals. Since this method alters the wireless channel, it is equivalent to having rotating

tuners, as in the reverberation chambers.

4.3.1 Port-side Passageway

Experiment Description

A long passageway (Figure 4.20) was selected as a prime location for the installation of core network

infrastructure. Watertight doors located at each structural frame would normally be open, likely

allowing wireless communication over a significant distance due to the wave guide effect of the

passage. By testing with the doors both open and closed, performance was assessed both for normal

operating conditions and for adverse conditions when the doors would be closed.
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Figure 4.21: Port-side passageway. CDF of the EVM of across all physical layer schemes with
the door open.

A two node topology was deployed in the passage with a transmitter at the end of the corridor

and a receiver 25.9 meters down the corridor beyond two watertight doors as shown in Figure 4.20.

Both nodes were outfitted with two omnidirectional antennas. One test was conducted with both

doors open, and another was conducted with just the first door closed.

Results

The CDFs of the EVM with the door open and closed are shown Figures 4.21 and 4.25) respectively.

The amount of link degradation is indicated by increased variance and heavy tails of the EVM

distributions when the door is closed. Since the signal cannot penetrate the bulkhead, it must

propagate through apertures in and around the watertight door, including a rubber gasket and a

glass porthole.
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Figure 4.22: Port-side passageway. CDF of the EVM of across all physical layer schemes with
the door closed.

The signal integrity for all physical layer schemes with the door open and closed is displayed in

Figure 4.23. The two diversity schemes, MRC and Alamouti code, outperform SISO and Spatial

Multiplexing (SMUX) in both cases as expected. Since Alamouti code and MRC have similar

PPSNR when the door is closed, it is probably that one of the Alamouti code transmit streams

is severely degraded (likely by the door) which negates the benefits of the transmitter diversity.

Closing the door resulted in approximately 5 dB of loss for SISO, MRC, and Alamouti Space-Time

Block Code (STBC) and about 8 dB for SMUX.

The channel capacity of the physical layer schemes is shown in Figs. 4.24–4.25. The observed

Channel State Information (CSI) is normalized such that the horizontal axis shows the mean received

Signal-to-Noise-Ratio (SNR) per receiver from all transmitters [63]. The capacity for an Independent,

Identically Distributed (IID) channel is presented for comparison. The IID capacity represents the
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Figure 4.23: Port-side passageway. PPSNR across all physical layer schemes with the door
open and closed.

upper bound of the capacity in a MIMO link of equal channel gain. SMUX has the highest capacity

of all the physical layer schemes. Since the CSI is normalized, SMUX should have the highest

capacity, because it is transmitting at twice the rate of the other schemes. Alamouti code and MRC

both outperform SISO by a minimum of 24% due to the added transmit and receiver diversity.

Somewhat surprisingly, the capacity increases for all four schemes when the door is closed. In this

case, less energy couples into the cavity with the receiver, which decreases the multipath interference

characteristic of a highly reverberant environment. This trend indicates that the channel may become

less frequency selective when the door is closed.

With respect to the Multiple Input Multiple Output (MIMO) physical layer schemes, it should

be considered whether a “keyhole” channel is being created when the door is closed (i.e., the effective

aperture is decreased). In a keyhole channel, the capacity of MIMO schemes is low (i.e., significantly
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Figure 4.24: Port-side passageway. Observed system capacity across all physical layer schemes
with the door open.

less than the theoretical maximum of N times the single channel capacity where N is the lesser

number of transmit and receive antennas) despite uncorrelated channels [68, 69]. The low capacity

is due to a rank reduction in the transfer function matrix [70]. The keyhole channel was demonstrated

in [70] by placing a transmitting array in a shielded room and a receiving array in an adjacent room.

The propagation between them was restricted to a small hole, the “keyhole,” which had a waveguide

attached to it. This test scenario is very similar to the scenario in the corridor with the door closed.

It would appear the corridor is not a keyhole channel, because the capacity increases instead of

decreases. Additionally, the SISO link (which cannot succumb to the keyhole effect) also follows the

same trend as the MIMO schemes.
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Figure 4.25: Port-side passageway. Observed system capacity across all physical layer schemes
with the door closed.

4.3.2 Engine Room

Environment Description

Wireless measurements were taken in the aft engine room for the purpose of studying a contiguous

space with largely metal construction. The engine room spans four decks and includes large and

geometrically complex objects. This space was seen as a prime candidate for implementing a wireless

sensor network to monitor the status of the ship engines and other vital ship machinery. A cross

section of the environment is shown in Figure 4.26.

Nodes were located on three out of the four decks. The large void between Receivers 2 and 3

was occupied by the engine and exhaust stack, which spanned all decks. Receiver 1 was located so

that it had a line of sight with the Transmitter, whereas Receivers 2 and 3 were located on separate

decks with no line of sight to the transmitter. These locations were chosen to gain an understanding
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Figure 4.26: Cross section of the engine room test scenario on the Thomas S. Gates (CG 51).

of the network coverage possible in a contiguous space spanning multiple decks.

Results

Figure 4.27 shows the system capacity versus the received signal to noise ratio, averaged over all

wireless links for each physical layer tested. The water-filling curve represents the upper bound of

capacity for the links when the CSI is known [71, 32], while the IID curve represents the highest

theoretical gain achievable in a MIMO link of equal channel gain. Since the channels are normalized

with respect to gain per receiver, the effect of spatial correlation is isolated in the MIMO SMUX curve

[63]. As demonstrated in Figure 4.27, the channel is spatially decorrelated enough to support the

use of MIMO techniques to improve performance of SISO techniques. The capacity is approximately

doubled by using SMUX over SISO.

PPSNR values for each physical layer and receiver location are shown in Table 4.5. The link

between the Transmitter and Receiver 1 is the closest to a LOS condition. As a result, it has the
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Figure 4.27: Engine room. Observed system capacity averaged across all nodes for all physical
layer schemes.

highest PPSNR. In most scenarios, the PPSNR is highest when using Alamouti STBC. This result

is expected due to added diversity gain from space time coding at the transmitter. Comparable

PPSNR performance is achieved by MRC. While SMUX has the lowest PPSNR, it is transmitting

at twice the data rate of the other physical layers.

The minimum and maximum achievable throughput are shown in Table 4.5. The minimum

achievable throughput for each scheme represents the throughput of the worst performing link in

this scenario, while the maximum throughput represents the best performing link.

For the poorest quality links, the SISO physical layer was only able to obtain a throughput of 6

Mbps in the engine room, while MIMO techniques were able to provide double the throughput. At

maximum, Vertical Bell Laboratories Layered Space-Time (VBLAST)-SMUX throughput reached
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Table 4.5: Engine room. PPSNR (dB) across all receivers and physical layer schemes.

Receiver SISO MRC Alamouti MIMO-SMUX

1 21.4 23.1 22.8 16.8
2 11.5 17.6 18.5 11.6
3 10.4 13.9 14.6 7.4

Table 4.6: Engine room. Minimum and Maximum achievable throughput (Mbps) with SER
constrained to 1× 10−3.

SISO MRC Alamouti SMUX

Min Max Min Max Min Max Min Max

6 18 12 18 12 18 12 36

36 Mbps.

4.3.3 Coupled Compartments

Experiment Description

A cluster of adjacent compartments on an interior deck of the ship were used to analyze the coupling

between adjacent and near-adjacent compartments, similar to the coupled reverberation chamber.

The primary objective of this scenario was to measure RF leakage through ship bulkheads and de-

termine the effect of closing watertight doors on signal integrity. Characterizing communications

integrity between compartments is necessary to assess the connectivity of a wireless network that

spans several compartments and/or decks in the ship environment. A cross section of the environ-

ment is shown in Figure 4.28.

The Transmitter was located in the towed array room, and the two receiver nodes were located

in the NIXIE compartment and the multi-purpose workshop. While the doors and hatches were

watertight, there exist ventilation ducts, piping, and other protrusions which created an effective

aperture for electromagnetic signals to propagate between the compartments. An emergency escape

scuttle was located in the bulkhead between the towed array room and the NIXIE compartment.

This scuttle was closed for the duration of the testing. An exhaust duct with vents connects the

towed array room and the multi-purpose workshop.
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Figure 4.28: Cross section of the coupled compartments test scenario on the Thomas S.
Gates (CG 51).

Results

The results in the coupled compartments show two distinct behaviors emerging from differences in

physical layout. As shown in Figure 4.28, the Transmitter is separated from Receiver 1 by two

bulkheads and a hallway. The primary pathway for the signal is through this hallway when the

doors are open, but it must propagate through apertures in the bulkheads (such as the ventilation

ducts) when they are closed. However, the Transmitter is separated from Receiver 2 by a single

bulkhead. When the doors are open, there is a single long pathway for the signal to propagate to

the receiver via the hallway.

The capacity for the channel between the Transmitter and Receiver 1 (Figure 4.29) improves for

SISO communications when the doors are closed. Since the path loss from the channel is normalized,

this improvement indicates the channel has a flatter response (less frequency selectivity). This

is consistent with a decrease in multi-path signals arriving at Receiver 1 and an increase in the

dominance of the signals arriving via ductwork connecting the two spaces. Since MIMO techniques

mitigate frequency selectivity through antenna diversity, the negligible change in the capacity of

these schemes would indicate that the channel correlation (a major factor in capacity) does not

change in a significant way when the doors are opened or closed.



61

10 15 20 25 30
0

1

2

3

4

5

6

7

Mean Received Signal to Noise Ratio (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

 

 

I.I.D.
Waterfilling (DO)
Waterfilling (DC)
MIMO SM (DO)
MIMO SM (DC)
Alamouti (DO)
Alamouti (DC)
MRC (DO)
MRC (DC)
SISO (DO)
SISO (DC)

Figure 4.29: Coupled compartments. Observed system capacity for Receiver 1 across all
physical layer schemes with doors open and closed.

The capacity for the channel between the Transmitter and Receiver 2 (Figure 4.30) improves for

both SISO and MIMO schemes when the doors are closed. The improvement for SISO indicates that

frequency selectivity decreases, similar to the effect seen at Receiver 1. The improvement for MIMO

indicates that the channel correlation also decreases, in contrast to the effect seen at Receiver 1.

The PPSNR of both receivers is shown in Table 4.7 for open and closed doors. The signal integrity

decreases for Receiver 1 when the doors are closed. Despite the decrease in frequency selectivity, the

attenuation of the signal when the doors are closed still results in an overall decrease in integrity.

PPSNR increases for Receiver 2 when the doors are closed, consistent with the dominant signal

component coming through apertures in the bulkhead and the multi-path signal from the hallway

deconstructively interfering when the doors are open.
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Figure 4.30: Coupled compartments. Observed system capacity for Receiver 1 across all
physical layer schemes with doors open and closed.

Both the minimum and maximum achievable throughput for each scenario are shown in Table 4.8.

All of the physical layers except for SISO have a higher minimum achievable throughput when the

doors are open. For SISO, the maximum achievable throughput is higher than doors open by 6 dB for

doors closed. The other physical layers have the same maximum achievable throughput regardless.

4.4 Conclusion

The results and analysis of two measurement campaigns were presented. The purpose of the cam-

paigns was to assess the performance of wireless communications in highly reverberant environments,

both controlled and live, using the measurement platform and test protocol developed for this work.

The first campaign was in the coupled reverberation chambers of the NSWCDD which provided
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Table 4.7: Coupled compartments. PPSNR (dB) across all receivers and physical layer schemes
for doors open (DO) and doors closed (DC).

RX Location SISO 1x2 MRC Alamouti MIMO-SM
DO DC DO DC DO DC DO DC

1 11.4 11.0 21.5 15.3 18.5 15.0 14.2 8.6
2 15.0 21.1 19.8 22.3 18.2 19.8 12.6 15.5

(DO) = doors opened, (DC) = doors closed

Table 4.8: Coupled compartments. Minimum and Maximum achievable throughput (Mbps)
for doors open and doors closed with SER constrained to 1× 10−3.

Doors SISO MRC Alamouti MIMO-SM

Min Max Min Max Min Max Min Max

Open 12 12 18 18 18 18 24 24

Closed 12 18 12 18 12 18 12 24

(DO) = doors opened, (DC) = doors closed

a controllable test environment. The loading of the chambers was varied to match the loading of

below deck spaces on a naval vessel. The multipath in reverberant environments is often thought

to be challenging for wireless communications [1, 9, 10]. The performance of the LOS Receiver was

consistent with this notion as lower loading did result in a degradation of PPSNR and throughput.

Surprisingly, the reverse was true for the NLOS Receiver as it had improved performance for lower

loading. Two physical layer transmission schemes were compared in which the receiver diversity

scheme produced substantial gains in PPSNR. The gains were increased for lower loading likely due

to the decreased correlation of the received signals. Cavity coupling was also investigated where the

effective aperture size between the two connected cavities was varied. The largest effective aperture

proved to be the best for both receivers. The LOS Receiver benefited from reduced multipath while

the NLOS benefited from the higher signal power.

The second campaign was in the below deck spaces of a naval vessel. Several scenarios on board

the vessel were selected to represent the locations which would likely benefit for the inclusion of a

Wireless Local Area Network (WLAN). Across all of the scenarios, improvements in PPSNR, capac-

ity, and throughput were demonstrated by leveraging receiver diversity schemes. In the passageway

and coupled compartment scenarios, it was shown that communication was possible with hatches

closed as signals were still able to propagate between coupled cavities through the effective aper-
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ture formed by electromagnetic leakage. Link specific effects were observed in several cases which

emphasizes the unintuitive nature of these environments and the necessity for experimentation.

The two measurement campaigns were designed to have as many experimental controls as pos-

sible. Wireless nodes, antennas, gain calibration, and testing protocol were all constant across both

campaigns. Furthermore, the coupled reverberation chambers were configured to emulate the rever-

berance of the below deck spaces of a naval vessel. Yet, there were are a few key differences in the

experiments which dictate caution when comparing the results. The physical geometry and node

topologies are not consistent between the reverberation chamber and the below deck spaces as well

as among the individual below decks scenarios. As a consequence, path loss cannot be considered

on a per-link basis which precludes the direct comparison of PPSNR and throughput. Even so,

it is still possible to compare the change in PPSNR (and resulting trends) when varying node or

environmental parameters. The system capacity can be compared as well since the normalization of

the metric removes the effect of path loss.

In the coupled reverberation chambers, the receivers exhibit a range in PPSNR of approximately

13 dB. The configurations encompassed across that range include LOS and NLOS propagation paths,

low to high loading, and low to high coupling. This range is similar to the range of configurations

tested throughout the different scenarios and receivers in the below decks campaign. It is reassuring

to note that the range in PPSNR for the below decks campaign is approximately 14 dB. Incidentally,

the PPSNR range is ˜10-23dB for the coupled reverberation chambers campaign and ˜9-23 dB in

the below decks campaign. As it has been stated, the actual values of the PPSNR cannot be

directly compared, but the similarity is ranges does provide validation towards the selected loading

configurations and the use of the coupled reverberation chambers as an emulated test environment.

The improvement in PPSNR by using MRC over SISO is similar throughout both campaigns.

In the coupled reverberation chambers, the PPSNR increase from using MRC is between 3-5 dB

for all configurations. In the below deck spaces, the PPSNR increase for MRC is between 2-5 dB

with the exception of Receiver 1 in the coupled compartments scenario with the doors open where

the PPSNR improves by 10 dB. Since the range of loading was the same in both campaigns, both
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environments have a similar amount of multipath which is a driving factor in The system capacity

curves are also closely aligned between the two campaigns for the SISO and MRC links.

Overall, the results of the two campaigns closely coincided. From these encouraging results, it

appears that the coupled reverberation chambers serve well to emulate actual reverberant environ-

ments.

Additionally, it was discussed how the trends exhibited in reverberant environments apply to

non-reverberant environments. The multipath interference that impacts LOS links heavily in re-

verberant environments would still impact LOS links in non-reverberant environments, but not to

the same extent. NLOS links vary greatly within reverberant environments since they are specific

to the physical geometry and topology. NLOS links in non-reverberant environments will also have

link specific effects, though the performance gap will be less than the range exhibited by links in

reverberant environments. Finally, the high levels of electromagnetic leakage in non-reverberant

environments severely diminish the impact of coupling.
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Chapter 5: Empirical Evaluation of Reconfigurable Antennas

5.1 Introduction

Portions of this work were published in the proceedings of the 2014 IEEE Antennas and Propagation

Symposium [45], the proceedings of the 2014 American Society of Naval Engineers Electric Machines

Technology Symposium [39], and the IEEE Antennas and Wireless Propagation Letters [72].

Reconfigurable antennas have been proposed for mitigating the multipath interference in highly

multipath environments [40]. However, only little work has been done on the communications

performance of electrically reconfigurable antennas in such extreme multipath environments. For

example, the studies in [40, 41] attempt to observe performance gains of employing reconfigurable

antennas in terms of mitigating multipath interference, but do so only through simulated results. The

studies in [42, 43, 44] obtain communication performance measures using software-defined radios,

but the experiments were conducted in typical lab or office environments.

This study seeks to measure the communications performance benefits of using electronically

reconfigurable antennas in a highly multipath environment. A pre-existing reconfigurable antenna

was chosen for use in this experiment – a Reconfigurable Leaky Wave Antenna (RLWA) developed

by Piazza and the Drexel Wireless Systems Laboratory [36, 46, 47, 48]). For testing, a Wireless Local

Area Network (WLAN) was constructed in the coupled reverberation chambers of the Naval Surface

Warfare Center Dahlgren Division (NSWCDD). The WLAN used Software Defined Radios (SDRs)

and the Reconfigurable Leaky Wave Antenna (RLWA) described in [48].

Error Vector Magnitude (EVM), Post Processing Signal-to-Noise-Ratio (PPSNR), and system

capacity were obtained from wireless measurements taken in the coupled reverberation chambers

under low loading. The reconfigurable antennas were found to improve signal integrity over Com-

mercial, Off-The-Shelf (COTS) omnidirectional antennas for a Single Input Single Output (SISO)

system, and by a lesser amount when employing Maximal Ratio Combining (MRC). Similar trends

were observed for system capacity estimates. These findings indicate that reconfigurable antennas
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Figure 5.1: Cross section view of the main chamber and ante chamber in the coupled rever-
beration chambers at the NSWCDD.

may be well suited for use with a stationary network infrastructure to facilitate the design and

mobility of receivers in high multipath environments.

5.2 Experimental Setup

In total, three wireless nodes were deployed, one transmitter and two receivers. The Transmitter

and Receiver 1 were located in the main chamber. Receiver 1 had a Line Of Sight (LOS) to the

Transmitter. Receiver 2 was positioned in the ante chamber behind the separating door such that it

did not have LOS into the main chamber. All nodes were elevated off the ground by non-absorbing,

Styrofoam blocks.

One of the objectives of this effort was to compare a reconfigurable antenna to a COTS antenna.

The selected COTS antenna was a standard, dual-band (2.4/5.8 GHz) omnidirectional antenna

(model HG2458RD-SM, manufactured by L-com). The reconfigurable antenna used was a RLWA

designed by Piazza, et al. [36, 46, 47, 48]. It is a two-port antenna comprised of a series of 12

DC-bias networks. The gain pattern of each port can be altered dynamically via the voltage fed to
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Figure 5.2: Selected radiation patterns of the reconfigurable leaky wave antenna.

the DC-bias networks.

Five distinct radiation pattern configurations were selected for the reconfigurable antenna, shown

in Figure 5.2. The number of configurations was chosen based on the work done by Grau in [73],

where it was demonstrated that the ergodic capacity of reconfigurable antennas has a diminishing

return for more than five configurations.

The MATLAB-based measurement platform described in Chapter 3 was across all experiments.

In total, 1,600 trials were performed total for each experiment.

5.3 Experimental Results

While five configurations of the reconfigurable antenna were tested, the optimally performing con-

figuration was selected for evaluation in order to simplify analysis and represent an upper bound on

the best-case scenario performance for the antenna. The optimal configuration is selected based on
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Figure 5.3: Coupled reverberation chambers. PPSNR for both receivers, both antennas, and
both physical layer schemes.

the minimal EVM as determined on a per-transmission basis. It is assumed that specific implemen-

tations of the selected reconfigurable antenna will determine which of the configuration options are

optimal.

PPSNR for all receivers, antenna types, and physical layer schemes is shown in Figure 5.3. The

empirical CDF of the EVM are shown for Receiver 1 and Receiver 2 in Figs. 5.4 and 5.5, respectively.

The most readily apparent observation is that reconfigurable SISO outperforms omnidirectional

SISO by 4.9 dB in PPSNR for Receiver 1. This improvement is explained by the distribution of the

corresponding EVM in Figure 5.4. The omnidirectional SISO EVM shows a heavy tail. 18% of the

EVMs are greater than 0.1 and 7% are greater than 0.5. In contrast, only 5% of the reconfigurable

SISO EVMs are greater than 0.1% and a negligible amount are greater than 0.5. Since Receiver 1

has LOS to the transmitter, the heavy EVM tail for omnidirectional SISO is likely the result of
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Figure 5.4: Coupled reverberation chambers. CDF of the EVM for Receiver 1 across both
antennas and both physical layer schemes.

destructive multipath interference. The reconfigurable antenna does not succumb to this level of

interference as choosing the optimal configuration minimizes it.

These trends differ for Receiver 2, where the PPSNR of both reconfigurable and omnidirectional

SISO are nearly the same. This observation is reasonable since the received components must enter

through the doorway aperture to reach Receiver 2. Due to the highly reverberant nature of the

main chamber, nearly the same quantity of energy is coupled into the ante chamber regardless of the

transmit antenna pattern or type. Since both antennas are transmitting at the same power level and

coupling into the ante chamber through the same aperture, it should be expected that both have

similar performance. Figure 5.5 confirms the hypothesis as both antennas follow the same EVM

distribution.

The tail of the omnidirectional EVM distribution is not as heavy for Receiver 2 as it was for
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Figure 5.5: Coupled reverberation chambers. CDF of the EVM for Receiver 2 across both
antennas and both physical layer schemes.

Receiver 1 due to less severe multipath in the ante chamber despite the lower energy levels and lack

of a LOS component. In fact, the PP-SNR of omnidirectional SISO improves 2 dB from Receiver 1

to Receiver 2.

For MRC, the reconfigurable antenna provides only minor advantage over the omnidirectional

antenna. It is not surprising that the reconfigurable antenna has greater performance in this regard.

MRC implements receiver antenna diversity, which provides a greater improvement than altering

the radiation pattern of a single transmit antenna. Both reconfigurable and omnidirectional MRC

outperform their SISO counterparts in terms of PP-SNR and EVM. MRC is expected to always

outperform SISO since it uses the weighted combination of two SISO signals.

The channel capacities for Receiver 1 and Receiver 2 are shown in Figs. 5.6 and 5.7, respectively.

Reconfigurable SISO has greater than a 16% increase over omnidirectional SISO, further strength-
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Figure 5.6: Coupled reverberation chambers. Observed system capacity for Receiver 1 across
both physical layer schemes.

ening the recommendation to use a reconfigurable antenna in such scenarios. The reconfigurable

antenna also has a small edge over the omnidirectional for all other cases, with improvements ranging

from 0.9% to 11.9%.

5.4 Conclusions

The performance of a reconfigurable antenna was compared to a COTS omnidirectional antenna in

the highly reverberant environment of coupled reverberation chambers. A series of experiments were

conducted using a software defined, IEEE 802.11g OFDM test suite built with MATLAB and the

WARP FPGA. Both SISO and MRC physical layer schemes were evaluated for a LOS and non-LOS

receiver.

The reconfigurable antenna outperformed the omnidirectional antenna by 4.9 dB in PPSNR for



73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5  10  15  20  25  30

C
ap

ac
ity

 (
bi

ts
/H

z)

Mean Received Signal to Noise Ratio (dB)

Reconfigurable MRC
Omnidirectional MRC
Reconfigurable SISO
Omnidirectional SISO

Figure 5.7: Coupled reverberation chambers. Observed system capacity for Receiver 2 across
both physical layer schemes.

the LOS SISO receiver. The omnidirectional antenna performance was hampered by the effects of

destructive multipath interference which the reconfigurable antenna was able to mitigate by dynam-

ically altering the radiation pattern to minimize the destructive interference. The reconfigurable

antenna also showed an improved capacity over the omnidirectional by 16.2%. As expected, the

improvement was considerably more modest for MRC.

While the receiver diversity of MRC largely obviates the primary benefits of the reconfigurable

antenna, these benefits may be realized solely by changing the antenna on the transmitter without

any hardware modifications to the receiver. This feature is highly attractive for implementation in

access points and network infrastructure. The ability of the reconfigurable antenna to dynamically

alter its antenna patterns makes it particularly well suited for communicating with mobile receivers

and sensors. Even if a receiver does incorporate additional diversity schemes (such as MRC), the
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reconfigurable antenna still slightly outperforms the omnidirectional antenna. Performance never

suffered as a result of using the reconfigurable antenna at the transmitter, and was much improved

in some cases. Therefore, a reconfigurable antenna would be beneficial for use with access points

and other stationary network infrastructure to facilitate the design and mobility of receivers.
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Chapter 6: Conclusion

Interest in deploying Wireless LANs (WLANs) in highly reverberant environments, such as industrial

facilities, naval vessels, aircraft, and spacecraft, is growing as a way to augment and, in some cases,

fully replace existing, wired communications infrastructure. There are a plethora of benefits that

can be realized by migrating to WLANs in these environments. Outside of the traditional benefits,

WLANs also provide unique advantages because of the installation, maintenance, and redundancy

factors compared to wired infrastructure. It has traditionally been thought that implementation of

wireless networks in highly reverberant environments is challenging because of rich electromagnetic

scattering that can result in multipath interference. The primary objective of this effort was to quan-

tify the performance of wireless communications in reverberant spaces and assess the feasibility of

Wireless Local Area Network (WLAN) deployment. It was also sought to correlate the performance

of wireless communications to the electromagnetic properties of the environment. Work focused on

experimental evaluation due to the complex physical geometries and signal propagation which are

difficult and cumbersome to analyze through modeling and simulation.

The primary contributions of this work are:

1. An experimental methodology was developed for evaluating the performance of wireless com-

munications including a measurement platform and testing protocol for Software Defined Ra-

dios (SDRs).

2. A measurement campaign was performed in the coupled reverberation chambers of the Naval

Surface Warfare Center Dahlgren Division (NSWCDD) at the Naval Support Facility Dahlgren

(NSFD) where the performance of wireless communications was assessed with respect to node

and environmental parameters.

3. A measurement campaign was performed in the below-deck spaces of a naval vessel on the

Thomas S. Gates. (CG 51) at the Naval Inactive Ship Maintenance Facility (NISMF) in
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Philadelphia, PA, where the performance of wireless communications was assessed with respect

to node and environmental parameters.

4. Empirical evaluation of a pre-existing Reconfigurable Leaky Wave Antenna (RLWA) was per-

formed in the coupled reverberation chambers of the NSWCDD to evaluate its ability improve

wireless communications performance in a highly reverberant environment.

It was necessary to characterize the electromagnetic properties of reverberant environments be-

fore assessing the performing wireless communications in them. A series of metrics that serve in

this capacity were presented. The level of reverberance (loading) in below deck spaces, which was

measured in previous studies, was used to configure the coupled reverberation chambers. The im-

pulse response and the calculated electromagnetic properties for the configured states of the coupled

reverberation chambers were provided.

A measurement platform was developed for the purpose of field testing both in coupled rever-

beration chambers and a naval vessel. Performing wireless communication experimentation in below

decks spaces can be logistically difficult. Specialized equipment (e.g., signal generators and signal

analyzers) tailored to collect comprehensive channel and link layer measurements is expensive and

incompatible with the constraints of field work and mobile applications. A light-weight, mobile

testing platform was needed that could provide the required measurement fidelity. As no current

Software Defined Radio (SDR) solution satisfied these requirements in addition to being capable of

interfacing with mechanical controls and reconfigurable antennas, a custom solution had to be de-

veloped. For this purpose, a new MATLAB-based, wireless measurement platform using an existing

software-defined radio architecture was developed. It augments IEEE 802.11g Multiple Input Mul-

tiple Output (MIMO) Orthogonal Frequency-Division Multiplexing (OFDM) physical layer schemes

with receiver diversity physical layer schemes such as Maximal Ratio Combining (MRC), Alamouti

Space-Time Block Code (STBC), and Vertical Bell Laboratories Layered Space-Time (VBLAST)

Spatial Multiplexing (SMUX). The platform provides a series of metrics, including system capacity,

Error Vector Magnitude (EVM), Post Processing Signal-to-Noise-Ratio (PPSNR), and throughput

to characterize link and network performance. The software implementation and test protocol of
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the platform were presented.

Using the measurement platform, the effect of electromagnetic reverberance on the performance

of wireless communications was assessed through two measurement campaigns. The first campaign

was conducted in the coupled reverberation chambers of the NSWCDD. The reverberance of the

chambers was configured to emulate the reverberance exhibited in the below-deck spaces of a naval

vessel. The influence of several parameters was considered in relation to the level of reverberance:

signal propagation (Line Of Sight (LOS) vs Non Line of Sight (NLOS)), receiver diversity (Single

Input Single Output (SISO) vs MRC), and cavity coupling (small vs large effective aperture) between

the chambers.

It was expected that communication quality degrades as the loading decreases due to increased

multipath interference. In these experiments, this effect was observed in some cases, but there

were several instances that defied this notion. The complexity of signal propagation in highly

reverberant environments in combination with other environmental and node parameters led to

several unintuitive and novel results. The performance of the LOS Receiver degraded for lower

loading. Surprisingly, the reverse was true for the NLOS Receiver as it had improved performance

for lower loading. Two physical layer transmission schemes were compared in which the receiver

diversity scheme (MRC) produced substantial gains in PPSNR. The gains were increased for lower

loading likely due to the decreased correlation of the received signals. Cavity coupling was also

investigated where the effective aperture size between the two connected cavities was varied. The

largest effective aperture proved to be the best for both receivers. The LOS Receiver benefited from

reduced multipath while the NLOS benefited from the higher signal power.

The second campaign was performed in the below deck spaces of the Thomas S. Gates (CG 51),

a decommissioned Ticonderoga-class U.S. Navy cruiser. Several scenarios were tested including an

engine room, a passageway, and a set of coupled compartments. It was shown that wireless commu-

nications were able to propagate between compartments even with the hatches closed. In some cases,

closing the hatches improved performance. The quality of communications in regards to PPSNR,

system capacity, and throughput benefited from advanced physical layer schemes implementing re-
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ceiver diversity (MRC, Alamouti STBC) and MIMO (VBLAST-SMUX) schemes. An experimental

approach proved useful, because these conclusions are not strictly intuitive. They would also not be

simple to observe through modeling and simulation.

The results from both campaigns were compared to determine the feasibility of emulating the

below deck spaces in the reverberation chambers. The trends in PPSNR and system capacity proved

to be similar across the campaigns and indicate that emulation is possible.

Reconfigurable antennas were investigated as a method to mitigate the multipath interference.

An electrically reconfigurable antenna was compared to a Commercial, Off-The-Shelf (COTS) omni-

directional antenna in the coupled reverberation chambers. The reconfigurable antenna was shown

to outperform the omnidirectional antenna in both PPSNR and system capacity for LOS links and

some other scenarios. This technology is particularly attractive, because unlike the advanced physi-

cal layer schemes, it does not place software or hardware constraints on mobile nodes in the network.

Benefits can be realized by only installing on the stationary network infrastructure.

The implications of this work with respect to non-reverberant environments was presented.

Trends for line-of-sight links would likely extend to non-reverberant environments, except at smaller

scale. High multipath interference in reverberant environments degrades LOS link quality signifi-

cantly. As the level of multipath is considerably less in typical environments, this effect is not nearly

as pronounced. It is difficult to extrapolate the performance of NLOS links in reverberant environ-

ments to those in non-reverberant environments because of the link specific effects observed which

are dependent on the complex signal propagation and physical geometry inherent in reverberant

environments. Receiver diversity proved to be particularly well suited for reverberant environments

due to the low correlation between receive streams. Receiver diversity also offers benefit in non-

reverberant environments, though there is less to be gained than in reverberant environments where

the interference in greater. The effect of coupling in reverberant environments does not apply well

in non-reverberant environments. Non-reverberant environments exhibit high electromagnetic leak-

age, so propagation is not dependent on finding physical openings. It certainly does still help to

higher coupling in non-reverberant environments, but the impact will be less than in reverberant
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environments. LOS links in non-reverberant environments will not likely be affected by coupling as

the level of multipath interference is significantly less.

There are several avenues through which a system designer could leverage this work to assist in

implementation of a WLAN. While EVM, PPSNR, and system capacity can provide great insight

on channel and link performance, it is more useful for a designer to consider throughput and error

rate which are the primary requirements for the flows and applications on the network.

The achievable throughput that was presented serves as the minimum threshold for link per-

formance and can be inform several choices in implementation. For example, consider a WLAN

deployment in the engine room of a naval vessel that must support VoIP. The throughput require-

ment for a VoIP session is quite small, typically less than 100 kbps depending on the codec used

[74]. VoIP sessions quickly degrade with high error rates, so the selected SER constraint is 1×10−5.

The lowest PPSNR measured in the engine room in this work was 10.4 dB, transmitting from the

top deck to the bottom deck. Using this information, the achievable throughput is determined to

be 6 Mbps. Hence, the network will be able to support sixty (60) concurrent VoIP sessions.

In a more general example, a WLAN is being deployed in the engine room of a naval vessel that

has a throughput constraint. If a SER is selected, then the minimum PPSNR can be determined.

The minimum PPSNR will then influence how far nodes are spaced from each other. Conversely,

if the PPSNR is constrained (because of node placements), then the operational Symbol Error

Rate (SER) can be determined. From the perspective of the designer, this is a trade-off between

throughput, SER, and PPSNR. A constraint on any one of them will impact the entire network

design.

The required empirical measure is the PPSNR, so the designer must have some way of determining

the PPSNR for the links in their environment. Fortunately, the exact location of nodes when

measuring is not important due to the dynamic nature of wireless channels. The important factors

are the physical layout and the distance between the nodes. Hence, there is inherent flexibility in the

application of these measurements, and it is not necessary to measure at each location permutation.

For instance, the measurements recorded in this work on the Thomas S. Gates can be used to provide
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operational ranges for ships from the same class. While not the exact same ship, ships from the

same class will have similar layout and construction which are the main factors in determining the

electromagnetic environment.

There are plethora of options available if the designer requires more from the network. In this

effort, receiver diversity schemes and a reconfigurable antenna were explored as methods to increase

the signal quality, and spatial multiplexing was shown to increase throughput. There are multitudes

of other advanced techniques, and each have its own trade-offs in terms of hardware, software, cost,

and complexity. There is no one-size-fits-all solution. The designer must weigh the constraints and

options to determine the appropriate implementation for their network. The work presented in this

document is a resource to do so.

In conclusion, it has been shown that scenarios exist in which increased multipath is favorable

for wireless communications; receiver diversity is well suited for improving signal quality in in the

presence of multipath interference; increased cavity coupling can benefit receivers even when they

are in the same cavity as the transmitter; and reverberation chambers can be used to emulate

actual highly reverberant environments. There are many benefits to using reverberation chambers

as a substitute for highly reverberant environments. Reverberation chambers are controllable for

systematic experimentation, and it is logistically easier to test in a reverberation chamber than in

the field.

Through this effort, numerous benefits and trade-offs of implementing WLANs in highly re-

verberant environments have been demonstrated. Wireless communication is possible with simple

point to point links, but there are many possibilities to incorporate advanced hardware and software

schemes to improve link quality and network robustness. Ultimately, leveraging this work, system

designers can tailor their implementation to the needs and constraints of their application.
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