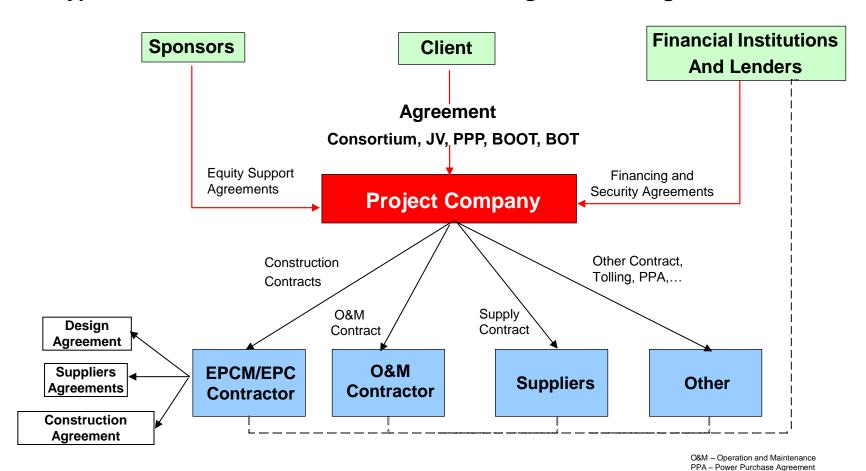
Project Delivery and CAPEX Challenges in the Construction Market With EPC v. EPCM Risks and Rewards

George E. Baram
P.Eng, M.Sc., PMP, CCE
Sr. Project Manager, Senior Consultant

2nd Middle East Conference, Metal Events
Dubai - February 2008



Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors'
 Perspective EPCm v. EPC
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

Contractual Arrangements and Project Model

A Typical General Contractual Structure Involving an EPC/M Agreement

JV – Joint Venture Agreement BOT – Build Operate Transfer BOOT – Build Own Operate Transfer

Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

EPCM Contracting

- EPCM = Engineering, Procurement, Construction Management
 - Contractor manages for the principal (Owner) the overall design and project delivery on a fee basis
 - Risks remains with the project Owner
- Alternatively known as:
 - Cost Plus Fees Contract
 - Cost Plus Fees with Incentives (better arrangement for the Owner)
 - Unit Price
 - Combination of the above

PROJECT DELIVERY AND CAPEX CHALLENGES IN THE CONSTRUCTION MARKET – DEFINITIONS AND COMMON UNDERSTANDING - **EPCM v. EPC**

The EPCM Process

Initiation

Bidding

Execution

Owner/Consultant

- 1- Decision to realize a project
- 2- Produce project requirements
- 3- Prepare RFP/Bid and detail performance requirements

Owner/Consultant EPCm Contractor

- **4- Bid Process**
- 5- Select qualified contractors (EPCm Contractors)
- 6- Technical and Commercial Reviews
- 7- Award

FEL 1
Conceptual

FEL 2

Pre-

Feasibility

FEL 3

Feasibility

FEL 4
Execution

Possibly as One EPCM Contractor

EPCm Design Consultant

- 8- Prepare detail design
- 9- Prepare specifications
- 10- Reviews, approvals and IFC

EPCm Contractor

- 8- Involve in design
- 9- Involve in specifications
- 10- Involve in approvals and IFC
- 11- Construct the facility
- 12- Test and start-up

PROJECT DELIVERY AND CAPEX CHALLENGES IN THE CONSTRUCTION MARKET – DEFINITIONS AND COMMON UNDERSTANDING - **EPCM v. EPC**

EPC Contracting

- **EPC** = Engineering, Procurement, Construction
 - Contractor takes on the overall design and project delivery on a fixed price basis including risks – Therefore; Single Point Responsibility
- Alternatively known as:
 - Turnkey Contract
 - Design Build Contract
 - Supply and Install Contract
 - Lump Sum Contract (Fixed Price or Stipulated price Contract)
 - "Hard" Money Contracts

PROJECT DELIVERY AND CAPEX CHALLENGES IN THE CONSTRUCTION MARKET -DEFINITIONS AND COMMON UNDERSTANDING - **EPCM v. EPC**

The EPC Process

FEL 1 Owner **Initiation** Conceptual 1- Decision to realize a project FEL 2 2- Produce project requirements Pre-3- Prepare RFP/Bid and detail **Feasibility** performance requirements FEL 3 **Feasibility EPC Contractor FEED** Bidding **4- Bid Process** 5- Select qualified contractors FEL 4 (EPC Contractors) **Execution** 6- Technical and Commercial Reviews 7- Award **EPC Contractor** Execution 8- Prepare detail design 9- Prepare specifications 10- Reviews, approvals and IFC

11- Construct the facility

12- Test and start-up

Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, Resources, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

Contractual Obligations Risk From Pre-Award Arrangement – Risk Evaluation Phase

Technical – proven technology?
Commercial - The need, the market and the competition
Capital Cost Estimate and Contingency
Schedule - The feasibility of the schedule
Political, Country and Location
Permitting Risk – Environmental local issues
Client technical knowledge, flexibility and communication skills
Financial – Credit availability Risk
Insurance and Bonds
Special Considerations:
☐ Limits of Liabilities: Technical Guarantees, Indirect and Consequential damages, Liquidated damages, Performance Bonds
☐ Letter of Credit and Guarantee
☐ Bonding: Bank Guarantees and Surety Bonds
☐ Cash flows: Positive Cash flow, by Currency including interest charges
☐ Taxation: Corporate, Local and Expatriate
☐ Dispute resolution and Arbitration: Governing Law, Local v. International Law
□ Partnership: Subs and locals

PROJECT DELIVERY AND CAPEX CHALLENGES IN THE CONSTRUCTION MARKET – THE CHALLENGES IN TODAY'S MARKET

Contractual and Legal Challenges – Post Award Phase

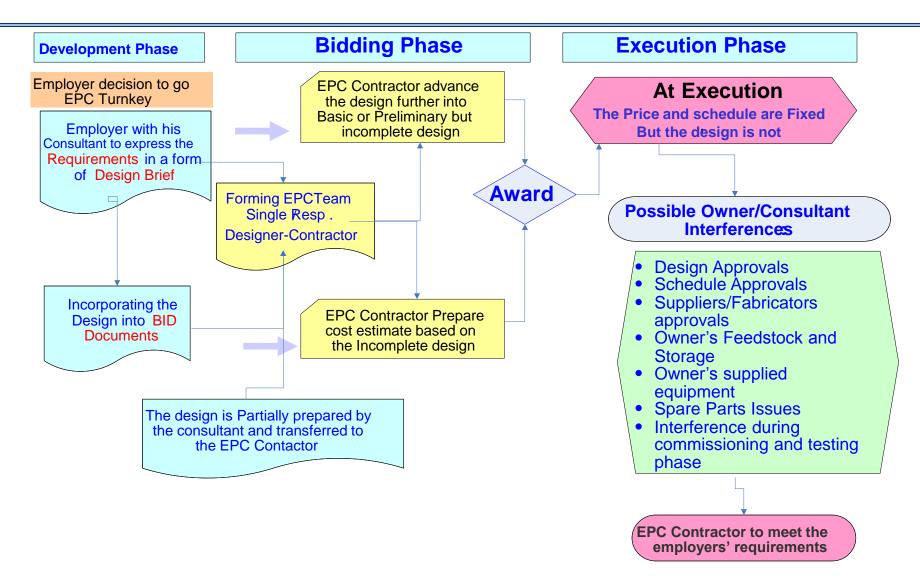
Need Common Understanding of the Most Important Contractual "Risk Shifting Clauses"

LOI, NTP, Start Date
Site Access and Availability
Site Conditions and Soil Test Investigation
Notices
Liquidated Damages
Differing Site Conditions
Changes and Variations
Time Extension and Delays
Schedule Requirements, Interface and Coordination with Others
Submittals and Approvals
Payments
Force Majeure
Inspection
Suspension of Work
Termination
Dispute Resolution

EPCM versus EPC

Contractual Clauses in Everyday Language:

Responsibility for Design and Construction	
Cost and Schedule Risk	
Knowledge of the Total Scope, Cost & Timing	
Control of Scope Changes	
Ability to Obtain Guarantees	
Guarantee in Performance and Workmanship	
Management Oversight/Improve Risk Management	
Overall Delivery Period	
Ability for "Fast Tracking" Construction	
Delivering Contractually Obligated, High Quality Project	
Possibilities for Innovation	
Procurement Process	
Conflicts and Disputes	



Responsibility for Design and Construction

	Owner	Contractor
EPCm	Risk remains with Owner Coordination and deliverables of E P and C is managed by the EPCm contractor.	Less control with Less Risk Requires considerable project management and Project Controls. Especially if the Owner's team lack experience and resources
EPC	Some loss in control especially Quality May require hiring design professional (rep) for Inspection	Single Point Resp. High Risk taking with better Control May require close PM and close cost/time control. Exposure to Cost overrun and delays?

Responsibility for Design and Construction - What is the Catch?

Risk Transfer – Cost, time shift to contractor

	Owner	Contractor
EPCm	Cost and time may grow. Requires strong follow up through its own resources or with external consulting firm.	Control with less risk Requires strong coordination with Owner's team in managing Scope, cost and schedule.
EPC	Cost and time is known up- front Even before the start of the detail design. Owner should not be worried about changes and errors or omissions	Possibility of cost/time overrun Especially if design was not finalized during the bid process Contingency Control and Design/Scope Creep

Control of Scope Changes

	Owner	Contractor
EPCm	Risk remains with Owner Changes are common with possibility of Scope or design changes	Responsible for justifying the changes Depending on the nature and cause of the change, contractor may become accountable.
EPC	Risk shifted to contractor No changes are allowed. Requires considerable front end project definitions and scope management to meet client requirements	Higher risk exposure Especially if design was not finalized during the bid process. Last minute addenda or requirements may become too costly

Risk Transfer – Performance Warrantees

	Owner	Contractor
EPCm	Owner's Risk	No Risk. However, EPCm contractor will coordinate and manage work to achieve the Performance required.
EPC	No Risk Risk transferred to EPC Contractor	High risk in meeting performance Fitness for Purpose: Ensure the facility is "Fit" for its intended purpose

Ability to Obtain Guarantees (Contractor)

	Owner	Contractor
EPCm	N/A	Easy and quick process
EPC	N/A	Difficult process - May be expensive if Performance is the contractor's resp. - Errors and Omissions Insurance

Management Oversight and Improve Risk Analysis

	Owner	Contractor
EPCm	Oversight required to ensure objectives Requires strong steering and involvement in decision making and mitigation measures.	Coordination with Owner' team Limited options in handling risk in coordination with Owner. Deciding on risk methods, tools and techniques, priorities and response
EPC	Oversight Shifted to Contractor Less project personnel and steering. Less administration Less contracts to manage	Higher risk exposure Freedom in Risk Mitigations. Require close monitoring and cost / schedule/scope control Also periodic oversight

Conflicts and Disputes?

	Owner	Contractor
EPCm	Dealing with more than one party Owner's get into direct involvement in dispute, settlement and litigation	Proper Control Involves with Owner, in dealing with prime and sub-contractors. Including, arbitration and litigations.
EPC	Dealing with one party – Minimize Dispute	Higher risk exposure Dealing with different parties Require proper subcontracts management and controls. Including design responsibility

Survey identifying top 10 Lessons learned in Construction Contracting *

	Challenge	Lessons	Solution
1	Documentation	Provide common understanding of relationships, Keep honest people honest, used in future, Helps to avoid law suits,	Logs, meetings notes, photos, letters,
2	Tried and Tested Contracts	Misunderstanding will be avoided. Familiarity with all conditions will ensure more comfort with project.	Use standard contact
3	Arbitration Clause	Less time and money will be expended. Arbitrator have a better understanding of construction	Ensure that an independent arbitrator is used.
4	Payment Clause	Ensure timely and correct payment. Allows you to know your liquidated damages costs	Read the payment clause. Negotiate changes
5	Deal with Reputable Firms	Avoid potential problems in slow or nonpayment; lawsuits; delays and poor quality	Research past performance Ask suppliers and others.
6	Review of The Contact	Ensure that the agreement is complete. Know what you are agreeing to.	Read the contract. Review the drawings and specs. Visit the site.
7	Change Orders	Ensure that there is a document trail. Ensure that there is an agreement on payment and time changes	Determine who has the authority to issue and approve changes. Calculate the impact (time / cost)
8	Familiar Work	Knowledge of how the job goes together. More competitive. Higher potential for profit. Supervision and resources are available. Less risk	For Larger jobs: make small incremental increases.
9	Relationships	Attract ethical and professional customers. Give the benefit of the doubt. Have a friend to turn to.	Be fair and honest. Realize everybody has a mission. Be active in professional organization.
10	Ethical Conduct	Repeat and negotiated work is more often obtained. Better treatment by all parties. A person sleeps better at night.	Walk in the potential victim's shoes. Do not become associated with unethical
AACE Ir	nternational – Journal of Cost Engineeri	ng – May 1996)	firm.

Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

Other Challenges - Technical

- Technology
- Patent and Ownership
- Availability of Technical Skills
- Local Content and Training (Technical Skills)
- Market and Competition Challenges

Other Challenges - Environmental and Regulation

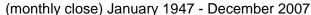
- Current Demands
 - Greenhouse Emissions: SO₂, HF, NO_x, CO₂, etc
- Future Demands
 - Global Warming and Higher Standards, Alternative Energy
- Permit Requirements and Compliance
- Cost and Schedule Impact of the above

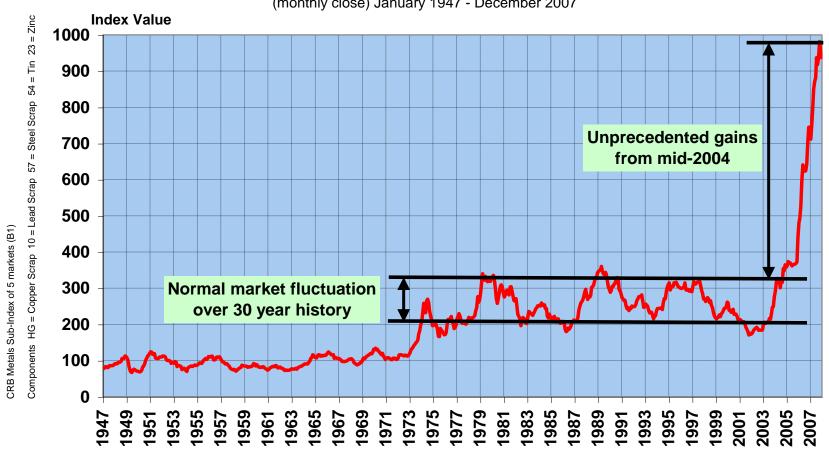
Other Challenges - Resources

- Skilled Labor Availability
 - Quality of Skilled Labor
 - Quantity of Skilled Labor (Construction)
- Raw Material Supplies
- Limited Specialized Suppliers and Fabricators
- Limited Specialized Contractors
- Contractor's Risk Appetite

Other Challenges - Market and Competition

- Competing Projects for Similar Resources Oil and Gas, LNG, Power and Residential
- Market Conditions and Price Competitiveness
- China and India Effects Consuming Resources and
- Driving Raw Material Prices Higher
- Limited number of Skilled Professionals
- Fuel Diversity and Pricing
- Transportation and Delivery


Therefore; **ESCALATION**


Presentation Content

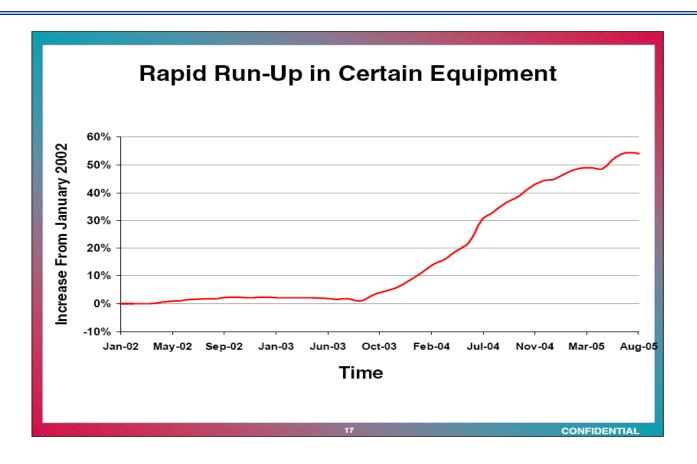
- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

The Increase in Commodity Prices Since 2003 is One of the Most Significant in the Past 50 Years

CRB Metals Sub-Index (1967=100)

Source: CRB

The Impact of Bulk Materials Escalation for a Typical Project on Project Pricing Can be Calculated From a Representative Index of Commodity Prices


Price Increase Ratios for Selected Commodities *

	2003 to 2006 Price Increase Ratio	Weighting	Weighted Index
Concrete	1.28	10%	0.13
Structural Steel	1.64	20%	0.33
Copper	4.61	5%	0.23
Titanium	7.50	5%	0.38
HR Plate	2.13	35%	0.75
Other Bulks	1.30	25%	0.33
Total		100%	2.13

Factor A: Bulk Materials Growth Ratio = 2.13

^{* (}Hatch presentation Capital Cost Estimate 2007)

Independent Project Analysis (IPA) Estimates Increases of Over 50% in Project Related Equipment Costs Between 2003 and 2006

Factor B: Equipment Pricing Growth Ratio = 1.54

Hatch Experience on Cost and Delivery Times on Typical Equipment Items Verifies These Findings

Price Escalation for Selected Equipment Items *

Equipment Item	2004 Pricing	2006 Pricing	Escalation
Titanium Ball Valves	\$8,385,477	\$12,041,015	144%
Agitators	\$3,623,891	\$4,802,615	133%
FRP Tanks	\$8,700	\$15,000	172%
Pump	\$6,500	\$8,450	130%
Thickener Mechanism	\$1,746,000	\$2,367,365	136%
Autoclave Feed Pump	\$613,000	\$759,507	124%
Autoclave Agitators (Titanium)	\$335,900	\$714,198	213%
	Average	150%	

Current Delays for selected commodities

Equipment Item	Current Delays	
Stacker Reclaimers	6 months	
Portable Control Rooms	3 months	
Ball Mills	6 months	
Jaw Crushers	5 months	
Pressure Vessels	8 months	

^{* (}Hatch presentation Capital Cost Estimate 2007)

Labour Rates Have Also Escalated Dramatically, With Contractors Demanding Higher Prices and Providing Lower Levels of Responsibility and Accountability...

Example of Escalation in Labour Rates *

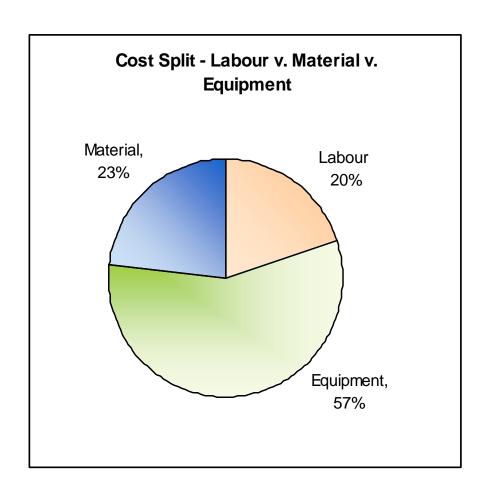
Typical Australian Hourly Labour Rates	2	2003	2006		Escalation
Base Rate (AUD)	\$	55.30	\$	67.39	122%
All In Rate (AUD)	\$	99.65	\$	163.34	164%

All in Rate includes Additional Mobilisation, Site Establishment, Site Indirect Labour, Small Tools & Consumables, Site Amenities, Construction Plant, Accommodation, Weather & IR, Overhead and Profit & Risk. No change in labour productivity has been assumed.

Factor C: Labour Rates Growth Ratio = 1.64

^{* (}Hatch presentation Capital Cost Estimate 2007)

Typical Two Potline Aluminum Smelter with Power Plant – Direct Cost by Area


Direct Cost Breakdown *

Ref.		Area	Total US\$	
04	7%	Site Preparation and Infrastructure Facilities	210,000,000	Smelter and Power Plant
31	7%	Subtation	190,000,000	General Specifications:
32	36%	Reduction	1,050,000,000	
33	7%	Gas Collection and GTCs	215,000,000	
34	2%	Potline Services	60,000,000	Occupated New Bord with Facilities
35	10%	Cast House	290,000,000	Complete New Port with Facilities Carbon Anode Plant
36	6%	Green Anode	175,000,000	2 Potlines with approx. 720,000 tpa
37	5%	Anode Baking	160,000,000	4 Gas Treatement Centers with SO2
38	8 5% Anode Assembly,Rod Shop & Service Plant		145,000,000	Cast House with Ingot and Billets Options
60	60 2% General Services, Incl. Plant Wide Buildings		70,000,000	
70	70 3% Power - Networks, Yard		90,000,000	
80	5%	Raw Materials Handling and Storage	140,000,000	
90	4%	Port Facilities	125,000,000	
	100%	Total Smelter Direct Costs:	2,920,720,000	Power Plant with 1,250 MW
		Power Plant	900,000,000	
		Total Smelter + P. Plant Direct Costs:	3,820,720,000	

^{*} Based on 6 smelters estimated and actual costs during early stages of studies and execution phases. Accuracy of estimate ranges from 10% to 20%, escalation excluded.

Typical Two Potline Aluminum Smelter with Power Plant – Direct Cost Breakdown

Direct Cost Breakdown

The Effect of 2003 to 2006 Cost Escalation in Labour, Bulk Materials, Equipment Pricing and Foreign Exchange is Seen Below

To understand the overall project cost, we start with a typical project cost structure *:

Smelter and Power Plant

Cost Area	Average Cost Component	Based on 100%	Escalation Factors ABC		Impact of Escalation
Equipment	57%	40%	В	1.54	62%
Bulk Material	23%	16%	Α	2.13	35%
Labor	20%	14%	С	1.64	23%
Total Direct	100%	70%			119%
General Indirects Incl EPCM	15%	11%		1.2	13%
Other Indirects	8%	6%		1.2	7%
Owner's	9%	6%		1.22	8%
Contingency	10%	7%			7%
Total Indirects	42%	30%			34%
Grand Total	142%	100%			154%

This increase represents cost changes only, for the 2003 to 2006 period.

It does not include:

Scope variations or creep

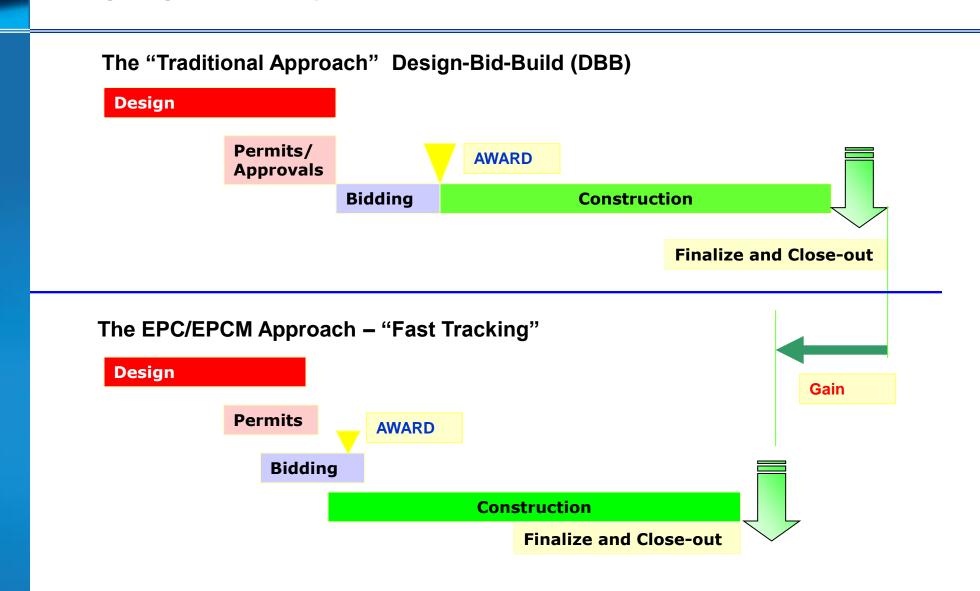
Direct labour productivity loss

Costs associated with schedule delays

Although ratios vary by geography and project type, the above represents a typical ratio of equipment, bulk material and labour cost components

^{*} Although ratios vary by geography and project type, the above represents a typical ratio of equipment, bulk material and labour cost components

Cost Challenges


Cost Escalation for Major Equipment Items

Contract/PO or Major Equipment	Capacity and Specs.	Traditional Type	% Increase
Supply or Turnkey Packages			
Transformers and Rectifiers	10 for 2 lines	Turnkey	39%
Paste Plant	2 x 35 tph	Turnkey	32%
Gas Treatement Centers (GTC - Reduction)	2 x 2 GTCs	Turnkey	69%
Baking Furnace	2 Anode BF	Turnkey	40%
Pot Tending Machines	22 PTMs	Turnkey	19%
GIS Switchgear	HV + 4x 220kv	Turnkey	38%
Anode Rodding Shop		Turnkey	48%
Fume Treatement Center (Carbon Area)	2 FTC	Turnkey	40%
Supply Superstructure	for 2 lines	Supply	18%
Fabricate Superstructure	for 2 lines	Fabricate	21%
Supply Busbars	for 2 lines	Supply	23%
Fabricate Busbars	for 2 lines	Fabricate	32%
Potlining material including cathode blocks & cathode bars		Supply	70%
Construction or Installation Contracts			
Concrete - Reduction Area	2 Lines	Install	22%
Concrete Piling Install/Erect Busbars	12,000 Piles for 2 lines	Install Supply	200/
Structural Steel - Reduction/Potline Area	2 lines	Install	29% 23%

Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

Targeting Shorter Project Duration?

Schedule Challenges

Schedule Increases for Major Equipment Items

Contract/PO or Major Equipment	Capacity and Specs.	Traditional Type	Traditional	Current (2006 and Forward)
Supply or Turnkey Packages				
Transformers and Rectifiers - Supply/Install	10 for 2 lines	Turnkey	27	34
Paste Plant - Supply/Install	2 x 35 tph	Turnkey	21	25
Gas Treatement Centers (GTC/Reduction) - Supply/Install	2 x 2 GTCs	Turnkey	23	27
Baking Furnace - Supply/Install	2 Anode BF	Turnkey	23	27
Pot Tending Machines - Supply/Install	22 PTMs	Turnkey	26	32
Gas Insulated Switchgear GIS/ 220 kv - Supply/Install		Turnkey	21	24
Anode Rodding Shop - Supply/Install		Turnkey	18	20
Fume Treatement Center (Carbon) - Supply/Install	2 FTC	Turnkey	16	20
Supply and Fabricate Potshells	for 2 lines	Supply	20	26
Supply and Fabricate Busbars	for 2 lines	Supply	15	18
Construction or Installation Contracts				
Concrete - Reduction/Potline Area	2 Lines	Install	18	22
Concrete Piling	12,000 Piles	Install	10	12
Structural Steel - Reduction/Potline Area	2 lines	Install	16	20

On average, a 5-month longer delivery period is experienced, which may project a similar extension to the total project delivery period

Presentation Content

- Definitions and Common Understanding
 - Project Delivery Methods in Construction Owners and Contractors' Perspective
- The Challenges in Today's Market
 - Contractual Challenges Risk Issues & Concerns
 - Other Challenges: Technical, ESIA, Resources, Market
- The Impact
 - On CAPEX
 - On Schedule and Execution Plan
- Conclusion

Conclusion - Which Project Delivery Method?

Today's contractual arrangements and "Risk Shifting Clauses" drafted in contracts require proper balance and considerable sharing of responsibility between the Owner and the Contractor

Questions to be Answered:

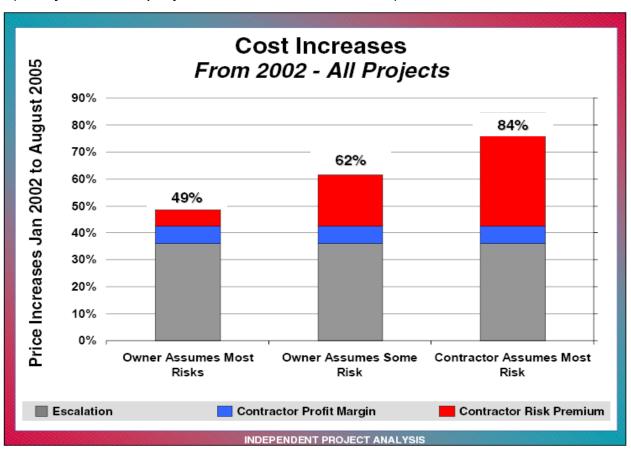
- What is the level of the design definition?
- How mature and demanding are the contractual arrangements?
- How is the Division Of Responsibility (DOR) addressed?
- How is the Approval Process addressed?
- How much risk can the Contractor take?

Conclusion - Which Project Delivery Method?

Main Contractual Challenges differentiating the EPCm and EPC Contracts

Guarantees in "Performance" of the plant or Facility Shared Responsibility Arrangement - Contractor v. Client Shared Responsibility Arrangement - Designer v. Builder Payments Arrangements and Guaranteed Maximum Price Project Schedule and Guaranteed Delivery Date

Conclusion - Most Difficult Challenges and Opportunities


	Challenge related to:	Most Difficult issues	Result %
1	Pre-Design Phase	Need to Spend more time in pre-design	88 %
2	Design Phase	Lack of Coordination and collaboration among team members Review of the Technical design Details	71 % 67 %
3	Procurement Phase	Pre-Qualification of the Bidders Past performance data not provided on finished projects	77 % 69%
4	Construction Phase	Team, People and Performance (Lack of clarity in the definition key roles (Communication Matrix) Getting the right team and people – Leadership Issues	65 % 45%
5	Post-Construction Phase	Start-Up/Turnover process – Commissioning As-Built drawings for operations Whole facility testing procedures	70% 60% 49%
	OIVIAA / 1 IVII 11IIIU AIIIIUGI OWIICIS OI	JI VEVS	

Conclusion - EPCM Versus EPC : The Main Issues

	EPCM Con	EP(Contr		
	Design-Bid-Build	EPCM	Design-Build	Turnkey
Shared resp. Arrangements	Between Designer a	Between Owner and Contractor and/or between Designer and Builder		
Payment	L. Sum	L. Sum Fees		L. Sum
Methods	Cost + fees Unit Price	Unit Price	Cost + Fees Unit price	(LSTK)
Guarantees in Performance of Facility	Contactor or Negotiation			Contractor
Risk (General) Cost Schedule Changes/Scope	Medium	Low	High	V. High

Conclusion - Relationship Between Cost & Risk

IPA research suggests similar project cost escalations have been seen worldwide (Analysis of 118 projects, from \$260m to \$3.3b)

Source: The Cost of Project Risks, Merrow & Ratliff, IPA 2005

Conclusion – Final Thoughts

- The lack of skilled and specialized resources have an impact on cost, schedule and on quality on the long term. Compromise is a must
- Given today's market conditions, reasonableness in assessing time delivery of major projects is required
- Price escalation on major elements are still on the rise due to the world wide market demand for raw material and fabricated equipment
- Double digits rise on some major items is still a considerable factor