
Modelling and Solving
the Senior Transportation Problem

Chang Liu, Dionne M. Aleman, and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{cliu,aleman,jcb}@mie.utoronto.ca

Abstract. This paper defines a novel transportation problem, the Se-
nior Transportation Problem (STP), which is inspired by the elderly
door-to-door transportation services provided by non-profit organiza-
tions. Building on the vehicle routing literature, we develop solution
approaches including mixed integer programming (MIP), constraint pro-
gramming (CP), two logic-based Benders decompositions (LBBD), and
a construction heuristic. Empirical analyses on both randomly generated
datasets and large real-life datasets are performed. CP achieved the best
results, solving to optimality 89% of our real-life instances of up to 270
vehicles with 385 requests in under 600 seconds. The best LBBD model
can only solve 17% of those instances to optimality. Further investigation
of this somewhat surprising result indicates that, compared to the LBBD
approaches, the pure CP model is able to find better solutions faster and
then is able to use the bounds from these sub-optimal solutions to reduce
the search space slightly more effectively than the decomposition models.

1 Introduction

As the world population ages, there is an increasing demand for transit options
for elderly people who have difficulties accessing the regular public transit sys-
tem but yet do not have disabilities that qualify them for specialized transit
services. As a consequence, there are non-profit organizations that provide such
“senior transportation” services in many communities. However, the resources
for these services are often limited and many elders are put on waiting lists.
Furthermore, due to lack of expertise and decision support tools, the schedules
assigned to the drivers are often sub-optimal as many vehicles do not operate at
full capacity. Therefore, finding optimal schedules is crucial for organizations to
meet increasing demands.

The Senior Transportation Problem (STP) is a static optimization problem in
which a fixed fleet of heterogeneous vehicles from multiple depots must satisfy
as many door-to-door transportation requests as possible within a fixed time
horizon. Due to the limited resources, not all requests can be met within the given
time and, therefore, the problem is to select a subset of requests such that the
total weight of all served requests is maximized. As some of the drivers operate on



a volunteer basis, the problem includes characteristics such as multiple depots,
heterogeneous vehicles, and time windows on both locations and vehicles.

Our primary contributions are to formally define the STP and to provide so-
lution techniques for the STP. Four exact methods based on mixed integer pro-
gramming (MIP), constraint programming (CP), and two logic-based Benders
decomposition (LBBD) models plus a construction heuristic are developed. We
define and present detailed experimental results and analyses for each approach.
On real-world data from a non-profit organization, CP performs substantially
better than the other approaches, solving over 89% of the problems to optimality.

2 Problem Definition

Let G = (V,A) be a directed complete graph with vertex set V = D ∪ N ,
where D represents the depot vertices and N represents the client vertices. Each
vertex i ∈ V is associated with a time window [Ei, Li] and a service duration Si

corresponding to the time to be spent at location i. Each arc (i, j) ∈ A has a
non-negative routing time Ti,j satisfying the triangular inequality.

Let K = {1, ..., |K|} represent the set of vehicles. Each vehicle k ∈ K is
associated with a starting and ending depot ik+ , ik− ∈ D where the vehicle must
start and end, respectively. Multiple vehicles can share a depot but relocation of
vehicles between depots is not allowed. Each vehicle also specifies its availability
via time windows: [Eik+ , Lik+ ] and [Eik− , Lik− ]. If the vehicle is used, it must
leave its starting depot during the first interval, perform all pickup and delivery
requests assigned to it, and arrive at its ending depot during the second interval.
Furthermore, vehicles differ in capacity, with each vehicle k ∈ K associated with
a maximum capacity Ck.

Let R = {1, ..., |R|} represent the set of requests. Each request r is paired
with a positive weight, Wr, denoting its importance. The total weight of served
requests is the basis of the objective function. A request r ∈ R has an associated
pickup location i+ ∈ N and a delivery location i− ∈ N . In addition, each client
is restricted to a maximum ride time, F , on any vehicle. The time horizon is
denoted by Z. The load size is positive for a pickup location vertex and negative
for a delivery vertex, Qi = −Q|R|+i,∀i ∈ R+.

A route for vehicle k is a sequence of vertices, [ik+ , ..., ik− ] and a request is
served when it is part of a route. The set of routes must satisfy the following
constraints:

1. The pickup and delivery vertices of any request must be on the same route;
2. The pickup vertex must precede the delivery vertex;
3. A vertex is visited by at most one vehicle;
4. The load of a vehicle k cannot exceed its maximum capacity Ck at any point;
5. A route must start and end within the vehicle’s availability window;
6. No sub-tours are allowed in any route;
7. The ride time of a client cannot exceed the maximum ride time F ;
8. All pickups and deliveries must be served within their time windows.



3 Related Work

There are three levels of decisions in the STP: the selection of requests, the
assignment of vehicles to requests, and the routing of vehicles. Each decision
problem is a well-studied problem on its own.

The selectivity and routing aspects of STP can be viewed as a Team Ori-
enteering Problem (TOP) [10]. Alternatively, the routing and assignment of
requests can be seen as a Pickup and Delivery Problem with Time Windows
(PDPTW) [5,6] or a Dial-a-Ride Problem (DARP) [2]. In addition to minimiz-
ing total travel cost in the classical DARP, Cordeau et al. [2] noted that there
can be other objectives, such as maximizing the number of fulfilled demands
or overall quality of service, but did not provide any formulation or references.
The PDPTW has been solved to optimality for loosely constrained instances of
sizes up to 100 requests [9] while the DARP has only been solved to optimality
for problems with 24 requests [2]. The most common solution approaches are
heuristic.

The combination of the three decisions has only been looked at by two groups.
Baklagis et al. [1] proposed a branch-and-price framework to tackle this problem
and Qiu et al. [7] investigated a graph search and a maximum set packing formu-
lation specially tailored for homogeneous fleets. These works however are missing
three components that are critical to the STP: multiple depots, maximum ride
times for clients, and heterogeneous fleets.

4 Models for the Senior Transportation Problem

We present four exact methods (MIP, CP, and two LBBD approaches) and one
heuristic to solve the STP. Both LBBD approaches employ a CP sub-problem
while they use MIP and CP for the master problem, respectively.

4.1 Mixed Integer Programming

In Figure 1, we present a MIP formulation adapted from the PDPTW formu-
lation of Ropke & Cordeau [9]. The formulation uses three variables: a binary
variable xk,i,j and two continuous variables uk,i and vk,i. xk,i,j = 1 if vehicle k
visits location j immediately after visiting location i and 0 otherwise. uk,i indi-
cates the time when vehicle k leaves location i ∈ V. It is non-negative and less
than or equal to the maximum time horizon Z. Variables vk,i indicate the load
of vehicle k after visiting location i ∈ V. They are non-negative and less than or
equal to the vehicle capacity Ck.

The objective function (1) maximizes the sum of the weights of served re-
quests. Constraints (2) and (3) ensure that each vehicle leaves from its starting
depot and ends at its ending depot. Constraint (4) allows for the selectivity of
requests. Constant flow is enforced with Constraint (5). Constraint (6) specifies
that the pickup and delivery locations of a request must be visited by the same
vehicle. In Constraint (7), the travel time and service time of visited locations
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Fig. 1: MIP model for the Senior Transportation Problem.

are enforced. Constraints (8) and (9) make sure that each location that is visited
must be visited within its time window. Constraint (10) imposes that pickup lo-
cations must precede delivery locations. Constraint (11) enforces that each ride
does not exceed the maximum ride time. Constraint (12) keeps track of the load
of each vehicle after visiting the location.

4.2 Constraint Programming

The CP formulation (Figure 2) employs optional interval variables [4] that are
linked using cumulative functions and sequence expressions. Each location i ∈ N
is an optional interval variable xi that is bounded by its time windows and the
length of its service time. We assume that each vehicle visits its depot locations
regardless of whether it is assigned requests or not. The presence of xi in the
final solution implies that the location is visited by a vehicle. Auxiliary interval
variables Xi,k and X̄k,i are transpositions of each other (i.e., Xi,k = X̄k,i), and
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Fig. 2: CP model for the Senior Transportation Problem.

link the xi variables to vehicles through the use of the Alternative constraint.
The presence of Xi,k and X̄k,i indicates that location i is visited by vehicle k.
Cumulative functions vk,i are expressions that model the load of vehicle k after
visiting location i. Finally, each route is modelled by a sequence variable uk
whose value is a permutation of locations visited by vehicle k.

The objective function (16) maximizes the total weight of fulfilled requests.
The Alternative constraint in Constraint (17) indicates that if a variable (xi) is
present, then exactly one variable in the set of variables Xi (a vector of variables
Xi,k) can be present, ensuring that at most one vehicle can visit location i.
In Constraint (18), the Before constraint ensures that each pickup location is
visited before its corresponding delivery location. Constraint (19) enforces that
if the pickup location is served by vehicle k, then its associated delivery location
must also be served by the same vehicle k. The difference between the end time of
a delivery location variable and the start time of the respective pickup location
variable must be less than the maximum ride time and is enforced through
Constraint (20). In Constraint (21), the cumul function vk,i is defined such that
for each vehicle k, the variable changes by the load size of location i, Qi, at
the start of the location variable of vehicle k (X̄k,i) where the size is positive
for a pickup and negative for a delivery. Constraint (22) enforces that the sum
of the load variables does not exceed the capacity of the vehicle. Constraints
(23) and (24) indicate that each route must start at its associated start depot
and end at its associated end depot. The CP model uses the NoOverlap global
constraint (25) to prevent sub-tours on each route; it specifies that all present
interval variables on the sequence variable uk must not overlap in operation times
while considering the transition time between all locations defined through the
transition distance matrix T .



max
∑
r∈R

∑
k∈K

(Wr × ϕk,r) (26)

s.t.
∑
k∈K

yk,i ≤ 1 ∀i ∈ N (27)

ζr = Si
r+

+ Ti
r+
,j

r−
+ Si

r−
∀r ∈ R (28)

Qr × ϕk,r ≤ Pk ∀k ∈ K, r ∈ R (29)

(Ei
r+

+ ζr)× ϕk,r ≤ Li
k− ∀k ∈ K, r ∈ R (30)

(Ei
k+ + ζr)× ϕk,r ≤ Li

r−
∀k ∈ K, r ∈ R (31)∑

i∈N

(yk,i × Ti + Si) + Ti
k+ + Si

k+

≤ Li
k− − Eik+ ∀k ∈ K (32)

yk,r = yk,r+|R| = ϕk,r ∀k ∈ K, r ∈ R (33)

yk,i, ϕk,r ∈ {0, 1} ∀k ∈ K, i ∈ N , r ∈ R (34)

Benders Cuts

Fig. 3: A MIP model for the LBBD Master Problem of the STP.

4.3 Logic-based Benders Decompositions

For the LBBD approaches [3], we decompose the STP into a relaxed master
problem and a number of sub-problems. The master problem finds the optimal
relaxed assignment of requests to vehicles. Each sub-problem is, then, an opti-
mization problem to find the optimal route given the assigned requests. If the
optimal route for each sub-problem satisfies all requests assigned to it, then the
global optimal solution has been found, otherwise, a Benders cut is produced.
The LBBD models find a feasible global solution at every iteration since the
route found in each sub-problem is feasible when the master objective value is
ignored. We present one MIP and one CP formulation of the master problem
and a single CP model for the sub-problem.

MIP Master Problem The master problem assigns each request into a vehicle
using integer decision variables ϕk,r which equal 1 if request r is assigned to
vehicle k and 0 otherwise, and yk,i which equal 1 if location i is visited by
vehicle k and 0 otherwise. Instead of modelling the exact travel distance between
consecutive locations, we compute the minimum travel time from each location
i to any other, denoted with Ti. The sum of minimum travel time of all locations
assigned to a vehicle must be less than or equal to the time availability of the
vehicle. All other routing constraints are ignored in the master problem.

Figure 3 presents the model. The objective function (26) maximizes the total
weight of all the requests served. Constraint (27) ensures all locations are visited
at most once. The approximate length of a request, ζr is modelled in Constraint
(28) and Constraints (29)-(31) remove all infeasible requests from a specific
vehicle. The relaxed total travel time for a vehicle is restricted to the time
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Fig. 4: A CP model for the LBBD Master Problem of the STP.

availability of the vehicle through Constraint (32). The relationship between the
yk,i and ϕk,r variables is established in Constraint (33) which also specifies that
a corresponding pickup and delivery must be served by the same vehicle.

CP Master Problem The CP formulation presented in Figure 4 uses signif-
icantly fewer of variables than the full STP model in Figure 2. Since we are
relaxing all the temporal constraints in the master problem, there is no need
for sequence variables. In this CP formulation of the LBBD master problem, we
only employ interval variables xi and Xi,k as defined in Section 4.2.

The objective and a number of constraints remain the same as in the full STP
model (Figure 2). Since sequences are relaxed, no sequence variables are modelled
but Constraints (35)-(37) ensure that each vehicle visits its starting depot and
ending depot first and last, respectively. Finally, the distance relaxation is the
same as in the MIP master problem represented by Constraint (38).

CP Sub-problem After the master problem allocates the requests, a sub-
problem is created for each vehicle with at least two assigned requests.1 Each sub-
problem is a single vehicle STP maximizing the total weight of served requests of
those assigned by the master problem. If the sub-problem is able to schedule all
the requests given to it, then the vehicle has a feasible assignment. Otherwise,
the requests assigned to the vehicle are not feasible and the solution of the sub-
problem is the optimal assignment for a proper subset of the assigned requests.
The objective value of the sub-problem is then used in a Benders cut. With
optimization sub-problems, at each iteration of the LBBD, the algorithm finds
a globally feasible solution.

Let k∗ represent the vehicle and R∗ the subset of requests assigned to k∗ by
the master problem. The CP formulation of the sub-problem uses three decision
variables. For each location i ∈ V∗, the optional interval variable xi represents
the time interval in which location i is served and is not present if it is not

1 The master problem guarantees a solution for a vehicle with only one request.
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Fig. 5: A CP model for the LBBD Sub-problem of the STP.

visited. This variable is bounded by the time window of the specific location.
Cumulative functions yi represent the load of the vehicle after visiting location
i. Finally, a sequence variable u represents the sequence of visits of the vehicle.

Figure 5 presents the CP model for the subproblems. The objective function
(39) maximizes the sum of weights of served requests. Constraint (40) makes sure
that the pickup location is visited before the delivery location. The maximum
ride time is enforced through Constraint (41). Constraints (42) and (43) keep
track of the load of the vehicle after visiting each location and make sure that
the load does not exceed the capacity of the vehicle at any location. Constraints
(44) and (45) force the start and end of the sequence to be at the starting and
ending depot, respectively. Finally, Constraint (46) takes into account the travel
distances between locations for the sequence and eliminates sub-tours.

Benders Cut If a sub-problem schedules all the requests assigned to it, then
it is feasible. Otherwise, an optimality cut is returned to the master problem.
The cut specifies that, given the subset of requests R∗ to vehicle k∗ in iteration
h, denoted by Jh,k, the objective value cannot be larger than the sub-problem’s
optimal value denoted by z∗. This cut is modelled in a MIP formulation as in
Inequality (47) and in a CP formulation as in Inequality (48).

∑
r∈Jh,k

(ϕk,r ×Wr) ≤ z∗ ∀k ∈ K, h ∈ {1, ...,H − 1} (47)

∑
r∈Jh,k

(
PresenceOf(Xir+ ,k ×Wr)

)
≤ z∗ ∀k ∈ K, h ∈ {1, ...,H − 1} (48)

4.4 A Construction Heuristic

We designed a simple heuristic for the STP. It is used both as a basis of com-
parison with and as a warm-start solution for the exact techniques.



Since the objective function is to maximize the weight of served requests, it is
reasonable to first schedule the requests that have the highest ratio of weight to
length (i.e., Wr/ζr with ζr as defined in Constraint (28)). Furthermore, vehicles
are sorted in ascending order of the size of their interval of availability so that
requests are spread out amongst all vehicles and not concentrated on a single
vehicle with a large time window. The algorithm schedules the highest weight
ratio request to the first vehicle that can perform the request. If no currently
available vehicle can satisfy a request, then the request is not scheduled. The
algorithm is outlined in Algorithm 1.

Algorithm 1: Construction Heuristic for the STP

Data: Set of requests R and set of vehicles K
Result: A set of scheduled routes

1 Sort R based on descending order of Wr
ζr

;

2 Sort K based on ascending time window size;
3 for all requests r in R do
4 for all vehicles v in K do
5 if r can be served by v then
6 assign r to v and set start time of r as earliest start time on r that

is after the earliest pickup time of r;
7 split v into 2 vehicle pieces, v1 and v2;
8 set start and end locations and start and end times for v1 and v2;
9 insert v1 and v2 into K based on the new time window sizes;

10 break;

11 end

12 end

13 end
14 Regroup all pieces of the same vehicle to make scheduled routes;

5 Experimental Results

In this section, we discuss the datasets used in our experiments and present the
performance of the five approaches proposed above, including using the con-
struction heuristic to provide a starting solution for the exact techniques. All
approaches are coded using IBM’s CPLEX Studio 12.7 in C++. The exper-
iments are run on a computer with Intel Xeon E3-1226 v3 @ 3.30GHz, 16G
RAM using a single thread and a 600 second runtime limit. The CP Optimizer
solver is set to use its default search.

5.1 Datasets

We generated 75 random datasets and extracted 280 problem instances from
real world data provided by a partnering organization. In the generated problem



Table 1: Bounds on problem characteristics for generated datasets.

Characteristic Lower Bound Upper Bound

Vehicle
number of vehicles 2 20
capacity 2 6
start and end depot service time 2 16

Request

number of requests 6 50
size 1 3
weight 1 5
pickup and delivery location service time 2 16
travel time 1 60

Time
Windows

small 80 180
normal 180 360
big 600 900

instances, we varied the number of requests and vehicles, and the sizes of the
time window (TW) of each request and vehicle. We also experimented with three
different time window sizes: big, normal and small. All other characteristics are
generated randomly following normal distributions. Table 1 outlines the lower
and upper bounds of each characteristic.

From the historical records of our partnering organization, we extracted
72,883 requests and 54,494 vehicle records over 280 operating days from Jan-
uary 2015 to January 2016. A total of 280 datasets were created. On average,
there are 260 requests per day and the maximum number of requests per day is
554. There are on average 187 vehicles available each day.

5.2 Results

Table 2 summarizes the results of all approaches on the generated datasets.
CP solved all 75 (100%) instances to optimality in an average of 1.02 seconds,
MIP/CP LBBD solved 71 (95%) instances with an average runtime of 21.78
seconds, CP/CP LBBD solved 49 (65%) instances with an average runtime of
110.14 seconds, and MIP solved 35 (48%) instances with an average of 90.00 sec-
onds. The heuristic was able to find, but of course not prove, the optimal solution
for 45 (60%) of the instances. In terms of relative solution quality compared to
the optimal solutions, CP is again the best performer with the heuristic finding,
on average, better solutions than both the MIP and CP/CP LBBD models.

Each of the four exact methods were then run with the heuristic solution as
a warm start. Both MIP and CP/CP LBBD have a substantial improvement
with the heuristic start. However, the only additional instances that they were
able to solve to optimality were those for which the heuristic found an optimal
solution. The heuristic start only improves MIP/CP LBBD a little while it has
very minimal effects on CP. CP/CP LBBD exhibits lower solution quality than
the heuristic, even when warm-started. Recall that the relaxed master problem
often has better (but globally infeasible) solutions and so the warm start solution
is replaced by a better master problem incumbent before the subproblems are
solved.



Table 2: Number of instances solved to optimality, average runtime, and average
optimality gap for generated datasets. The ‘*’ indicates the heuristic found but
did not prove optimal solutions.

Approach
# Instances
Solved to
Optimality

% Solved to
Optimality

Average
Runtime

Average
Optimality

Gap

Heuristic 45∗ 60.00%∗ 0.01 4.13%

MIP 35 46.67% 90.00 30.68%
MIP H 52 69.33% 22.36 1.80%

CP 75 100.00% 1.02 0.00%
CP H 75 100.00% 2.38 0.00%

MIP/CP LBBD 71 94.67% 21.78 0.15%
MIP/CP LBBD H 73 97.33% 2.54 0.09%

CP/CP LBBD 49 65.33% 110.14 18.95%
CP/CP LBBD H 61 81.33% 42.58 10.85%

Table 3: Number of instances solved to optimality, average runtime, and average
optimality gap for real world datasets.

Approach
# Instances
Solved to
Optimality

% Solved to
Optimality

Average
Runtime

Average
Optimality

Gap

CP 250 89.29% 126.74 3.03%
MIP/CP LBBD 47 16.79% 331.31 18.38%

Given the good performance of CP and MIP/CP LBBD, we apply them to
the real world datasets. As shown in Table 3, out of 280 instances, 250 instances
are solved to optimality with an average of 126.74 seconds using the pure CP
model while the MIP/CP LBBD could only solve 47 instances in 331.31 seconds.

The evolution of runtime of the CP model as the problem sizes of the real
instances increase is shown in Figure 6. It can be observed that there is an
approximately linear increase in runtime up to about 400 nodes (with some
outliers) but with larger problems, the runtime substantially increases.

We also ran CP with an 8-hour time limit. An additional 21 instances were
solved to optimality but nine instances are still open. Thus Table 4 reports the
solution quality relative to the best known solution for the real world datasets.
The overall mean optimality gap for CP is 5.25% and 11.84% for MIP/CP LBBD.

Table 4: Average optimality gap summary for CP and MIP/CP LBBD on
CHATS instances.

Instances CP avg gap MIP/CP LBBD avg gap

All 280 instances 5.25% 11.84%
233 instances not solved by MIP/CP LBBD 6.31% 14.23%
30 instances not solved by CP 49.02% 18.38%
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6 Analysis

The strong results for CP compared to the LBBD approaches differ from much
of the literature. Here, we explore three, non-mutually exclusive, hypotheses.

1. The default search of CP Optimizer is particularly suited to our problems.
2. The first feasible solutions found by the CP model are better and found more

quickly than those found by the LBBD approaches.
3. Good solutions result in strong back-propagation from the lower-bound on

the objective function, creating greater impact of search space reduction [8].

6.1 CP and Depth First Search

CP Optimizer’s default search employs a combination of Large Neighbourhood
Search (LNS) and Failure-directed Search (FDS) [11]. To observe its impact, we
ran CP on the generated dataset using depth-first search (DFS). All instances
were solved to optimality by DFS with an increase in the average runtime from
1.016 seconds to 1.873 seconds, a decrease in the average optimality gap of the
first feasible solution from 29.14% to 24.14%, and an increase on the mean time
to find the first solution from 0.163 seconds to 0.207 seconds.

The difference when using DFS appears marginal, perhaps due to using a sin-
gle thread in all experiments. However, it does not appear that we can attribute
the strong performance of our CP model, relative to the LBBD approaches, to
the sophisticated default search of CP Optimizer.

6.2 First Solution Quality and Time

We recorded the time to find the first feasible solution and its quality for the
CP model and both LBBD approaches on the generated dataset. The objective
value, z′, is compared to the known optimal solution, z∗ via the optimality gap
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Fig. 7: First solution quality of MIP/CP LBBD compared to CP.
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Fig. 8: First solution quality of MIP/CP LBBD compared to CP.

computed as (z∗ − z′)/z∗. Figures 7 and 8, respectively, compare the MIP/CP
LBBD approach and the CP/CP LBBD approach to the CP model.

For the LBBD approaches, the first feasible solution is often the actual op-
timal solution and therefore is usually better than the CP model. However, the
time to find these solutions for the LBBD approaches is much longer.

To further analyze the effect of the first solution, we used the first solution
found in CP as a starting solution for the better performing LBBD approach,
MIP/CP LBBD. We then let the algorithm run and report the change of run-
time with and without the warm start. The warm start solution consists of an
assignment of requests to vehicles which is a solution to the master problem of
the MIP/CP LBBD but it does not contain any temporal information. For this
experiment, the runtime does not include the time to compute the warm start
solution. The results are shown in Figure 9.

For big time windows, some instances are solved more quickly with the warm
start solution. However, on average, the run-times with or without the warm-
start are the same. As with the CP/CP LBBD H results in Table 2, in many
cases, the warm start solution provided by the CP model is not as good as the
first master problem solution and thus is discarded.
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Fig. 9: Runtime difference of pure
MIP/CP LBBD minus MIP/CP LBBD
with CP starting solution.
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Fig. 10: Runtime difference of pure CP
minus CP with MIP/CP LBBD start-
ing solution.

We conducted the inverse experiment, inserting the MIP/CP LBBD first
solution into the CP model as a warm start with the results shown in Figure
10. In most cases, given the assignment of the warm start solution, the CP
model performs slightly slower. Examination of the vehicle assignments of the
first solutions showed that MIP/CP LBBD’s assignment often clusters requests
onto few vehicles. When CP is warm-started with such solutions, it needs to
backtrack and reassign many requests to different vehicles in order improve the
solution and/or prove optimality.

6.3 Search Space Reduction

The next set of experiments measures the impact of search space reduction of
artificial lower bounds. If we denote the set of possible values that a variable xi
can take as Dxi

, then the logarithm of the size of the search space log(|P |) is
computed as in Equation (49) [8].

log(|P |) = log(|Dxi |) + ...+ log(|Dxn |) (49)

For interval variables, the domain size is simply the size of the interval minus
the duration of the variable, or |Dxi

| = Li − Ei − Si + 1. For optional interval
variables, there is an additional boolean value to represent the presence of the
variable, thus the domain size is multiplied by 2. We focus on the CP/CP LBBD
model so as to not conflate the comparison with fundamentally different problem
solving bases (e.g., back-propagation is less important for MIP solving).

From the known optimal solutions, we compute five different lower bounds
for each dataset that are 100%, 80%, 60%, 40%, and 20% of the optimal solution.
Note that since we are maximizing, a lower bound on the objective function still
results in a feasible solution. We then add this lower bound as a constraint on the
objective function for both the CP model and the CP/CP LBBD approach. The
search space is calculated before and after propagation of the root node. Table
5 presents how many instances show search space reduction and the average
percentage reduction over those instance which showed non-zero reduction, given
the different lower bounds for both CP and CP/CP LBBD.



Table 5: Number of instances (out of 25 in each row) that show a reduction in
search space and the average percentage reduction after applying the artificial
lower bound. The average only includes instances with non-zero reduction.

TW Type

Lower Bound Percentage

100% 80% 60% 40% 20%

CP

small 8 (9.53%) 3 (23.56%) 2 (34.55%) 0 (-) 0 (-)
normal 3 (1.50%) 1 (0.30%) 0 (-) 0 (-) 0 (-)
big 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

CP/CP LBBD

small 1 (5.61%) 1 (5.61%) 0 (-) 0 (-) 0 (-)
normal 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
big 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

There are several instances that show a search space reduction for CP, after
applying a lower bound, indicating back-propagation. Only one instance demon-
strated search space reduction for the CP/CP LBBD showing a poor propagation
of the first solution quality to the entire search space.

The average percentage reduction should be interpreted carefully. Since we
are taking the mean the over instances with non-zero reduction, it may increase
even when the lower bound decreases due to fewer problems showing any reduc-
tion (i.e., a smaller denominator).

7 Conclusion

Inspired by a real-world problem, we define the Senior Transportation Problem
(STP), a problem encountered by organizations responsible for providing elder
transportation. We show that it is a challenging combination of Pickup-and-
Delivery with Time Windows, the Dial-a-Ride Problem, and the Team Orien-
teering Problem. In this paper, a formal problem definition for the STP was
proposed, illustrating multiple constraints in real life problems.

Five different approaches using mixed integer programming, constraint pro-
gramming, logic-based Benders decomposition, and a construction heuristic are
developed to solve the STP. Each method is tested on 75 instances from a gener-
ated dataset and 280 real-world instances from our industrial partner. Constraint
programming proves to be the best performing approach on both problem sets
in terms of the number of instances solved to proven optimality, faster runtime,
and solution quality. An LBBD approach combining mixed integer programming
and constraint programming achieves the second best performance, though sub-
stantially worse than the pure constraint programming model. Our subsequent
analysis lends support to the hypotheses that the strong performance of the CP
model stems from the ability to quickly find feasible solutions and then to use
the bounds on those solutions to reduce the search space.

While our conclusion is that the current CP model is superior, we plan to
try to improve the logic-based Benders models in order to further challenge the
pure CP approach and, more importantly, develop at a deeper understanding of
the problem characteristics that favor CP or decomposition approaches.
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