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A general multirobot 

task planning 

and execution 

architecture for 

a team of robots 

that interact with 

multiple human users 

is implemented in an 

environment where 

such robots provide 

daily assistance 

to residents in a 

retirement home 

setting.

In response to a rapidly aging global population, the design of socially assis-

tive robotic systems for healthcare, specifically for eldercare, has been an ac-

tive area of research for the past decade.1 These systems have been developed to 

assist and support elderly individuals with physical and cognitive impairments, 

as well as aid in the day-to-day manage-
ment of the healthcare environment to alle-
viate the workload pressures of an already 
strained elderly care labor force.

Our research focuses on the development 
and deployment of a general multirobot sys-
tem (MRS) architecture for a team of mo-
bile robots that interact with human users. 
Within this work, the designed multirobot 
task planning and execution (MRTPE) ar-
chitecture is implemented to plan and facil-
itate assistive activities for multiple human 
users in a retirement home environment. At 
the beginning of the day, the team of robots 
must autonomously search for and find us-
ers in the environment, eliciting their avail-
ability and preferences for activities using 
the developed robot person search (RPS) 

system. The MRS then uses the multirobot 
task allocation and scheduling (MRTA) sys-
tem we developed to allocate and schedule 
these assistive activities over the remainder 
of the day. In addition to the integration of 
the novel components we propose herein, 
our architecture utilizes existing technology 
to achieve core autonomous robot functions 
(navigation, localization, and mapping).

Previous work on this application2–4 fo-
cused primarily on implementing and test-
ing single robot architectural components 
in isolation within simulated environments; 
contributions for MRTA didn’t address 
finding users in uncertain environments, 
nor were the approaches implemented in 
a physically deployed MRS. The architec-
ture presented in this article utilizes an RPS 
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procedure to find users in the envi-
ronment, expanding on single robot 
work3 by modeling the search as a 
traveling thief problem solved with 
dynamic programming to generate 
promising user search plans. While 
previous approaches to MRTA prob-
lems have primarily used decentral-
ized auction-based techniques5 or 
centralized mixed-integer program-
ming,6 we make novel use of con-
straint programming (CP) in our 
centralized MRTPE architecture to 
produce high-quality, and often op-
timal, activity schedules. The MRTA 
component of the proposed architec-
ture extends4 and integrates3 other 
work. Here, we test the architec-
ture on a physical MRS and present 
experimental results on several re-
tirement home scenarios with het-
erogeneous robots, concluding that 
the system is able to plan and execute 
assistive activities for multiple users 
within a multiregion environment. As 
a result of our experiments, we be-
lieve the MRTPE architecture repre-
sents a promising general framework 
for alternate applications that in-
volve mobile robots interacting with  
human users.

Problem Definition
Our problem concerns a team of mo-
bile robots that must perform various 
human-robot interactions (HRIs), in 
the form of assistive activities, with 
elderly users in a retirement home. 
The activities must be allocated and 
scheduled over a single 12-hour day 
(7:00 AM to 7:00 PM). The MRS 
must autonomously plan and facili-
tate these activities while adhering 
to problem-specific constraints, in-
cluding user availability and location, 
robot energy consumption, activity 
precedence, and robot-user activity 
synchronization. Prior to the schedul-
ing of activities, users must be queried 
regarding their individual availability 

and locations for the day, as well as 
their preferences for participation in 
various activities (a binary yes or no 
response). Once this information is 
attained, the MRS creates the activity 
allocation and robot schedule for the 
day before executing the plan.

Users
We consider n human users, U :5 {u1, 
u2, …, un}, residing in the retirement 
home. These users share the environ-
ment and participate in several activi-
ties throughout the course of the day. 
Each user has a unique calendar of a 
time intervals where they aren’t avail-
able for interaction, where the total 
set of such calendars is defined by the 
set  :5 {s1, s2, …, sn}, where each 
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for user ui  U identifies their specific 
busy intervals. These busy intervals 
include breakfast (8:00 AM to 9:00 
AM), lunch (12:00 PM to 1:00 PM), 
and dinner (5:00 PM to 6:00PM), 
as well as several other intervals un-
known a priori to be acquired at 
the start of the day. We estimate the 
movement speed of each user ui  U 
as vi

u  in meters/minute, which is uti-
lized to approximate user travel time 
within the environment.

Robots
We consider m heterogeneous mobile 
robots, R:5 {r1, r2, …, rm}, as shown 
in Figure 1a. These robots are respon-
sible for executing the person search 
as well as autonomously allocating, 
scheduling, and facilitating the HRI 
activities. Each robot, rk  R, navi-
gates the environment at a speed of 
vk

r . Robots start and end each day 
at the robot depot, a location that 
houses the recharging station. Energy 
levels for the battery of each robot,  
rk  R, must remain between βk

min 
and βk

max and energy is consumed at 
robot and activity-specific rates.

Environment
The environment is divided into re-
gions that represent rooms in the fa-
cility. A sample test environment we 
utilize for experimentation, both map 
and real-world image, is illustrated in 
Figures 1b and 1c. The set of locations, 
L, consists of the robot depot, games 
room, meals room, leisure rooms, and 
a personal room for each user, respec-
tively. Distances between any two 
rooms, a and b, are defined based on 
the shortest path as d(a,b) in meters. 
Travel times between locations are then 
represented in minutes for each user  

ui  U as 
δ

( )∆ = ∈ ×
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Activities
An activity is either a direct assis-
tive interaction with a user or an in-
stance of robot recharging. They are  
categorized as telepresence sessions 
(Figure 1d), bingo games (Figure 1e), 
bingo game reminders (Figure 1f), 
robot recharges (Figure 1g), and  
information-gathering sessions. Tele-
presence sessions allow users to have 
face-to-face video calls with friends 
or relatives from their personal room. 
There is one mandatory telepresence 
for each user, P:5 {p1, p2, …, pn}, each 
with a length of 30 minutes. Bingo 
game activities are group HRIs in 
which users participate in a game of 
robot-facilitated bingo. Bingo games, 

{ }= …G g g g :   ,  ,  , UB1 2 1
 are optional ac-

tivities, 60 minutes in length, and occur 
in the games room. The MRTA system 
must determine which bingo games 
are played, which users participate in 
each game, and when the games will 
occur. A bingo game reminder is a sin-
gle user HRI where the robot reminds 
the user of his or her participation 
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in an upcoming bingo game. The 
set of bingo reminder activities  
is then defined by M ∪   = = M: ,i

n
i1  

where M m m m :   ,  ,  ,i i i iUB1 2 1{ }= … . A 
reminder is required for each of the 

users who have been assigned to play 
a bingo game. Each reminder activity 
is two minutes in duration and must 
occur prior to its associated bingo 
game. The set of robot recharge 

activities is defined by ∪C   = = C: ,k
m

k1  
where C c c c :   ,  ,  , k k k kUB1 2 2{ }= … . The 
upper bounds, UB1 and UB2, as-
sociated with the activities are re-
quired by our scheduling approach to  
define the fixed set of activities that 
can be scheduled.4 Information-
gathering sessions are HRIs that  
occur at the beginning of each day 
to query users about their availabil-
ity, locations throughout the day, and  
activity preferences.

Multirobot Task Planning 
and Execution Architecture
The proposed MRTPE architecture 
represents a multirobot extension of 
a single-robot system.7 In addition to 
the integration of multiple robot con-
trollers through a master/slave con-
figuration, the proposed system uses 
CP instead of temporal planning for 
MRTA, and integrates RPS, which 
was not done previously. The cen-
tralized design is appropriate for the 
scale of problems being solved, where 
CP is able to produce high-quality, 
often optimal, activity schedules. The 
design allows the MRS to find users, 
schedule tasks, and execute assistive 
activities throughout the day. We de-
sign and implement the architecture 
within the open source Robot Op-
erating System (ROS; www.ros.org) 
framework.

Architecture Design
As illustrated in Figure 2, the ar-
chitecture consists of two levels: 
the centralized server, and the ro-
bot controllers. The former consists 
of the following modules: MRTA, 
global RPS, execution and monitor-
ing (E&M), system world state, and 
system world database. The system 
world state module contains infor-
mation regarding robot states (bat-
tery levels, poses) and environment 
states (region accessibility), while the 

(a)

(c) (d)

(b)

(e)

(f) (g)

Figure 1. Problem definition. Assistive robot fleet, test environment, and activities: 
(a) heterogeneous multirobot system (MRS), (b) environment map, (c) MRS 
environment navigation, (d) facilitating a telepresence, (e) facilitating a group 
bingo game, (f) bingo game reminder, and (g) robot recharge activity.
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system world database module con-
tains information regarding static 
parameters, such as the map. The in-
dividual robot controllers include the 
following modules: activity manager, 
robot world state, robot world data-
base, activity modules (information 
gathering, bingo, and so on), local 
RPS, low-level controllers, actuators, 
and sensors. The activity manager 
forwards commands from the E&M 
module to onboard activity modules; 
an activity module uses onboard sen-
sory information to determine which 
robot behaviors are required to be ex-
ecuted via the low-level controllers 
and actuators. The robot world state 
and database modules contain the 
same information as their centralized 
server equivalents, only exclusively 
for their corresponding robot. At the 
start of each day, the system world 
database updates the robot world da-
tabase with any information required 
to detect and identify users.

Retirement Home Implementation
The global RPS, within the central-
ized server, creates a plan for finding 

and gathering information from all 
retirement home residents between 
7:00 AM and 8:00 AM, prior to 
breakfast, which is then sent to the 
E&M module and executed by a ro-
bot. At 8:00 AM, the MRTA mod-
ule uses the gathered information to 
create an activity schedule for the re-
mainder of the day (8:00 AM to 7:00 
PM), which is also sent to the E&M 
module. Whenever a start time is 
reached for a planned task, the E&M 
module sends the request to the cor-
responding robot’s activity manager, 
which then sends the activity request 
to the appropriate activity module. 
For example, during the information-
gathering period, a request is sent to 
the information-gathering module 
for each region specified in the global 
plan. This module requests the robot 
to navigate to the specified region and 
then upon arrival, requests the lo-
cal RPS to find target users within 
this region. The local RPS reports 
any users it finds to the information- 
gathering module, which then re-
quests schedule and activity prefer-
ences for the day from these users. 

This information is then sent to the 
robot world database module and  
the system world database module.

Robot Person Search
The RPS system is adapted from pre-
vious work3 and directly integrated 
into our architecture. Its unique use 
in our architecture allows a robot to 
obtain activity preferences and avail-
ability from users via HRI interac-
tions. The RPS system allows a robot 
to autonomously search for and find 
users who reside in the retirement 
home and is comprised of two mod-
ules: the global and the local RPS. 
The global RPS is utilized to deter-
mine a plan of regions (rooms) to be 
searched at a high level, while the lo-
cal RPS conducts the search within 
each region.

Global Robot Person Search. This 
module generates a global plan 
that maximizes the number of us-
ers found, given the retirement home 
regions, L, and the search query: 
a list of target users and a speci-
fied time frame. The search query 
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Figure 2. Proposed multirobot task planning and execution (MRTPE) architecture.
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for our problem is to find all the re-
tirement home residents during the 
time period 7:00 AM to 8:00 AM. 
The global plan consists of a subset 
of regions to search with their cor-
responding search times, and the  
order in which to search this subset. 
To determine the global plan, a trav-
eling thief problem is solved using a 
dynamic programming algorithm.3 
This algorithm is given a probabi-
listic location model, generated for 
each user by using activity patterns 
(stored in the world database), a 
set of time-indexed tuples defined as 
user, region, activity, time interval 
that are acquired a priori through an 
observation stage. The generated global 
plan is sent to the E&M module for 
execution by the robot team. The ex-
ecution results in a series of information- 
gathering tasks sent to the robot con-
troller, which in turn results in the  
local RPS module implementing a 
search to find users within a region.

Local Robot Person Search. This mod-
ule receives a request from the activ-
ity module when the robot arrives at 
the specified region, which is divided 
into cells corresponding to the sensor 
range of the robot’s onboard 3D cam-
era. The robot then constructs a tour 
of the cells, determining within each 
cell if it contains a target user. A sil-
houette detection algorithm compares 
contours in a depth image (obtained 
from the 3D camera) to a reference 
silhouette of a person (stored in the 
robot world database). Once a per-
son is detected, the 3D point cloud of 
the environment, generated by the 3D 
camera, is used to acquire his or her 
location. RGB images obtained from 
the robot’s onboard RGB camera are 
then used with the local binary pat-
terns face detection algorithm from 
OpenCV (www.opencv.org) to deter-
mine the person’s orientation with re-
spect to the robot. Finally, the robot 

navigates to face the person for in-
teraction and determines their iden-
tity by applying the OpenCV local 
binary patterns histogram recognizer 
to identify facial features and com-
pare them with the unique facial fea-
tures stored for each user in the robot 
world database.

Multirobot Task Allocation  
and Scheduling
With user availabilities, locations, 
and preferences provided by the RPS, 
we model and solve an MRTA prob-
lem8 using the MRTA module in our 
architecture.

Constraint programming. We model 
the problem as a constraint optimi-
zation problem (COP) defined by the 
tuple X, D, C, F, where X is a set 
of decision variables, D are their as-
sociated domains (possible values in 
a solution), C is a set of hard con-
straints, and F is the problem-specific 
objective function. We solve the COP 
with CP, a model-and-solve paradigm 
similar to integer programming (IP). 
CP is utilized for our architecture as 
it was shown to significantly outper-
form an IP technique for a similar 
problem.4

CP is more general than IP, relax-
ing restrictions of linearity and ex-
pressing richer variable types (for 
example, interval9 and set vari-
ables10) as well as constraints, termed 
global constraints,11 designed to 
capture frequently recurring com-
binatorial substructure. The combi-
natorial explosion of problems that 
CP is commonly used to solve is ad-
dressed through a branch-and-bound 
search algorithm that makes use of 
logical inference to reduce search  
effort. CP has been successfully ap-
plied to a wide range of combinatorial 
optimization problems, notably sched-
uling,12 where it often significantly 
outperforms IP-based approaches.

Problem modeling. Within the CP 
formalism, we use interval decision 
variables9 to model robot and user 
tasks. The domain of possible values 
for an interval variable, var  X, is 
defined by Dvar :5 {



}{[s,e)|s,e  �,  
s # e}. That is, var takes on a value 
that is a convex interval with integer 
start and end points, s and e, respec-
tively, or 



 indicating the variable isn’t 
present in the solution. The latter as-
signment is represented by the expres-
sion Presence(var) evaluating to 1 if 
var  X is present in the solution and 
0 otherwise. Start(var), End(var), and 
Length(var) return the integer start 
time, end time, and length of the in-
terval variable var. In addition to inter-
val variables, we also use cumulative 
function expressions, which are vari-
ables that model cumulative resources 
through the impact of interval variables.

Decision variables. As in previous 
work,4 we define the decision variables 
for our CP formulation as follows:

xij :5 (interval variable) present, with 
a start time value, if user ui  U par-
ticipates in activity j and absent, with 
a value of 



, otherwise.
ykj :5 (interval variable) present, with 
a start time value, if robot rk  R fa-
cilitates activity j and absent, with a 
value of 



, otherwise.
Ek :5 (cumulative function expres-
sion) representing the energy level of 
robot rk  R throughout the schedule.

Objective function. The objective 
function, Equation 1, is to maxi-
mize bingo game user participation 
to boost users’ cognitive and social 
stimulation, while prioritizing sched-
ules with fewer robot recharges:

i
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Problem constraints. The first set of problem constraints, 
Equations 2 and 3, ensure that scheduled activities don’t 
interfere temporally on robot and user schedules. To do 
this, we introduce sets containing all activities potentially 
involving users and robots (including dummy start, � �u r, ,  
and end �� ��u r, , activities for sequencing), respectively, as 

σ{ }= ∪ ∪ ∪T p G M:  i
u

i i i  and M{ }= ∪ ∪ ∪T P G C:  k
r

k :

�x x x x x u UNoOverlap , , , , ,
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The NoOverlap constraint performs inference on inter-
val variables, ensuring they do not interfere temporally if 
they’re present. The next set of constraints ensures that re-
quired telepresence activities are facilitated (Equation 4), 
player bingo participation is contingent on robot facilita-
tion (Equation 5), and that the end of a bingo reminder 
must occur before the start of the associated bingo game 
(Equation 6):

∑ ( )( ) = = ∀ ∈
∈

x y u UPresence Presence 1,    ip

r R

kp ii

k

i
  (4)

∑ ( )( ) ≤ ≤ ∀ ∈ ∈
∈

x y u U j GPresence Presence 1,   ;ij

r R

kj i

k

  (5)

( ) ( )≤ ∀ ∈ ∈x x u U j GEnd Start ,   ;im ij iij
.  (6)

Equation 7 ensures that, if a user participates in a bingo 
game, the corresponding reminder is facilitated. Through 
Equation 8, the formulation ensures activities common to 
both user and robot schedules are synchronized through 
the use of the StartAtStart constraint, which synchronizes 
the start times of the interval variables within its scope:

∑ ( ) ( )= ∀ ∈ ∈
∈

y x u U j GPresence Presence ,   ;
r R

km ij i

k

ij
  (7)

∀ ∈ ∈ ∈ ∩x y u U r R j T TStartAtStart( , ),   ;  ;ij kj i k i
u

k
r.  (8)

To represent the problem’s energy-related components, 
Equations 9 through 11 model each robot’s battery level, 
accounting for variable-length robot recharge tasks, as 
well as unique robot-specific consumption rates for task  
j, ξk

j, and robot navigation, ξ ∆
k  for each robot rk  R.  

StepAtStart, a cumulative function expression, is used to 
model the instantaneous impact of an interval variable on 

robot energy level. The term prej returns the task prior to 
j in a robot’s schedule, and loc(j) represents the location of 
task j:
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The modeled problem is solved using a branch-and- 
infer CP search, resulting in a daily schedule for users and 
robots identifying which activities are allocated to whom 
and when. Strengthening techniques4 to improve schedul-
ing performance are also utilized.

Experiments
To validate the architecture’s utility in a physical MRS, 
we assess three real-world scenarios. The experiments are 
conducted on a multiroom floor of an engineering build-
ing at the university with multiple students representing 
retirement home users. Table 1 presents details of these 
scenarios, and Figure 3 shows a sample discretization of 
a subset of the facility regions (a total of 12 personal and 
general-purpose rooms, with some overlapping regions). 
For example, Scenario 2 involves 7 human users and 3 
assistive mobile robots in an environment containing 12 
total locations (personal rooms and general regions). For 
this particular scenario, two bingo games and two re-
charge tasks are supplied as UB1 and UB2 to the CP for-
mulation, respectively.

We investigate the performance of the implemented ar-
chitecture using computational runtime and success rates 

Table 1. Real-world test scenario parameters.

Parameter Scenario 1 Scenario 2 Scenario 3

Users (|U|) 3 7 10

Robots (|R|) 2 3 3

Total regions (|L|) 8 12 15

Available bingo 
(|UB1|)

1 2 2

Available recharge 
(|UB2|) 1 2 3
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for system execution (such as naviga-
tion command success rate). We de-
sign our experimentation to verify the 
architecture through the integration 
of various modules. First, we validate 
the ability of the global RPS module, 

integrated with the local RPS module, 
to find and identify available users in 
the environment. Table 2 presents the 
results. Second, we validate the ca-
pability of the MRTA module, inte-
grated with the local RPS module, to 
create consistent, high-quality activity 
schedules, find users, and initiate the 
associated activities. Table 3 presents 
these results.

The first part of the experiments 
consider the period of time from 7:00 
AM to 8:00 AM, where the global 
RPS finds users and elicits their avail-
ability. Referring to Table 2, we can 
see that the runtime of the global 
RPS planner is consistent across all 
scenario sizes and takes a negligible 
amount of time. Plan execution, how-
ever, takes significant duration and 
increases as the size of the scenario 
grows larger: global RPS for the larg-
est instance considered took just un-
der 36 minutes, which is within the 

one-hour window allotted. The suc-
cess rates for navigation, head scan-
ning (the process of searching a 
specific region cell), and silhouette 
detection during execution range 
from 84.6 to 100 percent across the 
scenarios. The relatively inferior per-
formance in Scenario 1 was caused  
by a poorly mapped area of the facil-
ity that resulted in the need for exter-
nal assistance. This was remedied in 
future scenarios by re-mapping the  
facility. User identification has the low-
est success rate of all; users standing 
too close to walls/corners of regions 
weren’t consistently identified properly. 
This is an area we plan to improve on 
in future work.

The second component of experi-
mentation centers on the creation of 
consistent activity schedules with the 
MRTA module, and their success-
ful initiation with users found in the 
facility, as illustrated in Table 3. To 
aid experimentation, elapsed time be-
tween scheduled activities is artifi-
cially sped up. It’s clear that, as the 
scenario gets larger (and the number 
of activities increases), CP requires 
additional time to find and prove the 
plan’s optimality, with runtimes (and 
branching) increasing by roughly an 
order of magnitude from one sce-
nario to the next. Once a schedule is 
produced, tasks are communicated 
to the remainder of the architecture 
as their start times occur, leading to 
another instance of local RPS in the 
user’s region. Navigation, silhou-
ette detection, and user identifica-
tion bear very similar success rates 
to those in Table 2. Task communi-
cation and initiation maintain strong 
success rates due to their relatively 
simple implementation. Overall, the 
performance statistics presented in 
Tables 2 and 3 support the architec-
ture’s ability to find users and plan 
various activities in the multiregion 
environment.

Figure 3. Discretization of regions within 
the experimental facility.

Table 2. Global and local RPS experimental results.

Performance metric Scenario 1 Scenario 2 Scenario 3

Planner runtime (s) 0.43 0.45 0.43

Plan execution (min and s) 17:35 24:21 35:42

Region cells searched 13 28 42

External assists required 2 2 1

Navigation (%) 84.6 (11/13) 92.9 (26/28) 97.6 (41/42)

Head scan (%) 84.6 (11/13) 100.0 (28/28) 97.6 (41/42)

Silhouette detection (%) 84.6 (11/13) 92.9 (26/28) 97.6 (41/42)

User identification (%) 66.7 (2/3) 62.5 (5/8) 54.5 (6/11)

Table 3. MRTA system and local RPS experimental results.

Performance metric Scenario 1 Scenario 2 Scenario 3

Activities (bingo; recharge) 7 (1; 0) 23 (2; 1) 31 (2; 1)

Scheduler runtime (s) 0.01 0.82 7.66

Search tree branches 10 19,168 220,998

Feasible solutions found 1 13 18

Final solution status Optimal Optimal Optimal

Task communication (%) 100.0 (7/7) 100.0 (23/23) 100.0 (31/31)

Navigation (%) 100.0 (7/7) 95.6 (22/23) 90.3 (28/31)

Silhouette detection (%) 85.7 (6/7) 95.0 (19/20) 96.4 (27/28)

User identification (%) 57.1 (4/7) 60.0 (12/20) 60.7 (17/28)

Task initiation (%) 100.0 (7/7) 100.0 (23/23) 100.0 (31/31)
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As part of future work for this 
ongoing project, we intend 

to explore techniques for plan re-
pair and re-planning in efforts to ad-
dress scenarios with greater levels of  
embedded uncertainty. 
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