

Maximum Flow

Introduction
Maximum flow is a subtopic in mathematical optimization, which uses math to select the
best(most efficient) sets of elements in all the alternatives. These types of problems are
usually given in a map, which contains several nodes, edges connecting each nodes, a flow
value denoting to the limit for number of things that can go through this edge at once
(weight), a starting node(source) and a destination node(sink). Then the problems asks for
the maximum amount of a quantity that can be sent to the destination without exceeding the
limit of each edge. A more human relatable example would be this:

 “​A company owns a factory located in city X, where products are manufactured. These products
need to be transported to the distribution center in city Y. You are given the one-way roads that
connect pairs of cities in the country, and the maximum number of trucks that can drive along
each road. What is the maximum number of trucks that the company can send to the distribution
center?”

This type of problem is easy if there are only a few nodes. Once the amount of nodes get
larger , the problem becomes insolvable by humans, which means computers have to come
in place.
Thankfully, MATLAB makes it all easy. It provides a function for solving these types of
problems called “​graphmaxflow​”. We will be looking at this function in this tutorial.

The syntax of this function is [​MaxFlow, FlowMatrix, Min­Cut] = graphmaxflow(Map,
Starting Node, Destination Node).

Definitions
Definitions of Outputs

● FlowMatrix: a sparse matrix that records all the edges that go through and the flow
value of those edges.

● MaxFlow: the sum of all the flow values from the chosen edges.
● Min-Cut: a vector which includes the nodes connected to the starting node after

calculating the minimum cut. If there is more than one solution to the minimum cut
problem, the cut will be a matrix.

Necessary Inputs

● Map is a sparse matrix including all the edges, their directions and flow values. The
declaration is slightly different than that of the normal matrix. When creating a
sparse matrix, you must use the ​sparse​() function. It can be used in a lot of places
and in a lot of different formats. For the use of map, the format is:
map = sparse([First row, the starting node of the edge],
[Second row, the ending node of the edge], [Third row, the flow
value of the edge], number of nodes, number of nodes)
Because it is a matrix, the length of each row must be the same. The length of each
row is the number of edges in the map.

(Note: ​ A cut is a set of edges. If these edges are removed from the map, there would
not be any possible route to go from the starting node to the destination node. A
minimum cut is the cut with the smallest sum of flow values out of all the possible
cut. This is not the focus of this tutorial, so we will not go deeper into this.)

For example:
map = sparse([1, 3, 2, 6, 2, 4, 5], [3, 5, 1, 4, 4, 5, 1], [21, 3, 6, 23, 4, 13, 9], 6, 6)
which will generate 7 edges and 6 nodes with the following information:

Edge Starting node Ending node Flow value

Edge 1 1 3 21

Edge 2 3 5 3

Edge 3 2 1 6

Edge 4 6 4 23

Edge 5 2 4 4

Edge 6 4 5 13

Edge 7 5 1 9

The map will look like this:

Note that each edge has a direction. This means going from node 1 to node 6 is
impossible; however, going from node 6 to node 1 is possible, with edges 4, 6 and 7.
Keep in mind that the map declaration is poorly written because the edges are not in
order. It is best to organize them in order so it is easy to understand. A better
organized version of the map would be:

map = sparse([1, 2, 2, 3, 4, 5, 6], ...
 [3, 1, 4, 5, 5, 1, 5], ...
 [21, 6, 4, 3, 13, 9, 23], 6, 6)
(Note: Those “..."’s at the end of each line mean that the next line of the code is part of
the command. If they were not added, matlab would think those were three different
commands and therefore show an error.)

● Starting Node: This input only requires a single number. This number will indicate
which node is the starting node. For example, with the same map, if the input is 6,
then the starting node will be Node 6.

● Ending Node: This input only requires a single number, indicating which node is the
destination node. For example, with the same map, if the input is 1, then the
destination node will be Node 1.

Name-Value Pairs

Setting Value

‘Capacity’ A column matrix sets the customized capacities of all the edges.
The number of rows of this matrix must match that of the map.
The order of edges are used to determine which value in this
matrix goes to which edge. A better organized map will make
the process of matching a lot easier.

‘Method’ The algorithm used to find the minimum spanning trees (MST).
The possible inputs are:
‘Edmonds' - Edmonds and Karp algorithm. ​Time complexity is
O(N*E^2).
'Goldberg’ - the default algorithm. ​Goldberg algorithm. Time
complexity is O(N^2*sqrt(E)).
Note: N and E are the number of nodes and edges

A Sample Problem

This problem is found online. See the link below.
http://www.me.utexas.edu/~jensen/models/network/net11.html

The maximum flow problem is again structured on a network. Here the arc capacities, or
upper bounds, that are relevant parameters.
The problem is to find the maximum flow possible from some given source node to a given
sink node.​ A network model is in Fig. 17. All arc costs are zero, but the cost on the arc leaving
the sink is set to -1. Since the goal of the optimization is to minimize cost, the maximum flow
possible is delivered to the sink node.

First we have to set up the network, or map. To do that, we have to find the starting

node, ending node and the flow value of every edge. This table contains all the edges and
their information in an organized way:

Edge Starting Node Ending Node Flow Value

Edge 1 1 2 15

Edge 2 1 3 10

Edge 3 1 4 12

Edge 4 2 5 5

Edge 5 2 6 5

Edge 6 2 7 5

Edge 7 3 5 6

Edge 8 3 6 6

Edge 9 3 7 6

Edge 10 4 5 12

Edge 11 5 8 10

Edge 12 6 8 15

Edge 13 7 8 15

http://www.me.utexas.edu/~jensen/models/network/net11.html

Using those information, we can set up the map:

map = sparse([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7], ...
 [2, 3, 4, 5, 6, 7, 5, 6, 7,5,8, 8, 8], ...
[15, 10, 12, 5, 5, 5, 6, 6, 6,12, 10, 15, 15], 8,8)

To check if the map is correct, you can graph it out using the following command:
view(biograph(map, [], 'ShowWeights','on'))
(Note:
biograph is a command to create a biograph object.
view is a function that opens a window and draw the biograph object.
map is the map that you want to draw.
[] is an array for nodes’ IDs. It is left blank because we only want simple numbers for

nodes’ IDs in this case.
‘ShowWeights’ and ‘on’ are a name-value pair. It is used to set the visibility of flow

values of each edge. The only inputs are ‘on’ and ‘off’.
Visit ​http://www.mathworks.com/help/bioinfo/ref/biograph.html​ for more

information)
Entering​ view(biograph(map,[],'ShowWeights','on'))​, you will get an

output that looks something like what is displayed below:

http://www.mathworks.com/help/bioinfo/ref/biograph.html

The above matches the graph that is provided.

The source (starting node) in the problem is Node 1, and the sink (ending node) is
Node 8. When we plug these numbers into our function:

[maxFlow, maxFlowMap, minCut] = graphmaxflow(map, 1, 8)
We get:
maxFlow =
 30

maxFlowMap =
 (1,2) 10.0000
 (1,3) 10.0000
 (1,4) 10.0000
 (4,5) 10.0000
 (2,6) 5.0000
 (3,6) 6.0000
 (2,7) 5.0000
 (3,7) 4.0000
 (5,8) 10.0000
 (6,8) 11.0000
 (7,8) 9.0000

minCut =
 1 1 0 1 1 0 0 0

The answer given by the sample problem website is 30, which is exactly the same as

ours.

To show the solution visually, draw the map again, but this time, change map to
maxFlowMap.

view(biograph(maxFlowMap,[],'EdgeTextColor', [1,0,0],
'ShowWeights','on'))

Comparing to the answer they give:

Despite the difference in graphing styles, they are exactly the same.

