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Local properties of Rectilinear Steiner Trees

The Rectilinear Steiner Tree problem

In this Section we consider the problem of constructing a network of
minimum length interconnecting a given set of points in the Euclidean
plane, where each edge of the network is composed of horizontal and
vertical line segments. This problem has applications in chip design, in
particular in the physical design of very-large-scale integration (VLSI)
circuits.

For any two points p and q in the plane, the minimum length of a path
between them composed of horizontal and vertical line segments defines a
norm, known as the `1 norm (or `1 distance). If p = (px , py ) and
q = (qx , qy ) in the plane, their `1 distance is |pq|1 = |px − qx |+ |py − qy |,
that is, the sum of distances in each of the two dimensions. The `1
distance is also called the rectilinear or Manhattan or taxicab distance.
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Local properties of Rectilinear Steiner Trees

The Rectilinear Steiner Tree problem

Rectilinear Steiner tree problem in the plane

Given: A set of points N = {t1, . . . , tn} lying in the plane.
Find: A geometric network T = (V (T ),E (T )), such that N ⊆ V (T ), and
such that |T |1 :=

∑
e∈E(T ) |e|1 is minimised.

A solution to this problem is always a tree, and is referred to as a minimum
rectilinear Steiner tree. As before, the given points in N are denoted
terminals, and the possible points in V (T ) \ N are called Steiner points.

In this Section we always consider a minimum rectilinear Steiner tree as
being embedded in the Euclidean plane using line segments that are
horizontal or vertical only — these are called the legal directions for the
tree. This means that all lengths can be measured using the Euclidean
metric.
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Local properties of Rectilinear Steiner Trees

Some basic definitions

Consider a minimum rectilinear Steiner tree T = (V (T ),E (T )) for a given
terminal set N. The node set V (T ) contains all elements of N and some
additional Steiner points. We can assume (by Theorem 30, for example)
that all Steiner points have degree 3 or 4. A Steiner point of degree 3 is
called a T-point, and a Steiner point of degree 4 is called a cross.
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Local properties of Rectilinear Steiner Trees

Some basic definitions - full components

As before, a rectilinear Steiner tree in which every terminal has degree 1 is
called a full rectilinear Steiner tree. Every rectilinear Steiner tree is a union
of full components meeting only at terminals. Such a tree is said to be
fulsome if it has the maximum possible number of full components
amongst all rectilinear Steiner trees with the same length.
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Local properties of Rectilinear Steiner Trees

Some basic definitions - edges

The edge set E (T ) consists of edges that connect pairs of nodes u and v
by shortest rectilinear paths. The edge (u, v) is a straight edge if uv is
either a horizontal or a vertical line segment; otherwise, (u, v) is a bent
edge. A bent edge can be assumed to consist of a horizontal line segment
and a vertical line segment that meet at a corner point. For any bent edge
(u, v) there are two possible minimum length embeddings that contain a
single corner point. We describe the process of moving from one of these
embeddings to the other as a flip.
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Local properties of Rectilinear Steiner Trees

Some basic definitions - complete corner

A line of segments is a sequence of one or more adjacent, collinear
segments with no terminal nodes sharing two adjacent segments (however,
the endpoints of the line may be terminals).

Definitions: Complete line, complete corner

A complete line is a line of segments of maximal length; it is not properly
contained in any other line of segments. Any corner point c is an endpoint
of two complete lines, one in each of the two perpendicular directions
given by the incident segments. Let t and t ′ be the other endpoints of the
complete lines incident to c . The pair of complete lines (ct, ct ′) is called a
complete corner located at c ; ct and ct ′ are the legs of the complete
corner.

An example of a complete corner is (c3t4, c3t7) in the figure on Slide 5.
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Local properties of Rectilinear Steiner Trees

Properties of Steiner points

Lemma 35

Let s be a Steiner point in a minimum rectilinear Steiner tree T . Then the
following properties are true:

The edges incident to s cannot overlap with each other for any
embedding of the edges.

If s is a cross, then all edges incident to s are straight edges.

If s is a T-point, then at most one edge incident to s is a bent edge.

For any straight edge (s, u) incident to s there exists another straight
edge (s, v) incident to s and perpendicular to (s, u).

The proof of this lemma is left as an exercise (see the Problem Sheet).
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Local properties of Rectilinear Steiner Trees

Properties of Steiner points

Lemma 36: Rectilinear Sliding
lemma

Let e = (s1, s2) be a straight edge
connecting two Steiner points s1
and s2 in a minimum rectilinear
Steiner tree T . Let e1 = (s1, v1) be
the next edge incident to s1
travelling counter-clockwise from e,
and let e2 = (s2, v2) be the next
edge incident to s2 travelling
clockwise from e. Suppose e1 and
e2 are straight edges, perpendicular
to e, and located on the same side
of the line through e. Then T is
not fulsome.

This result is a direct corollary of
Lemma 33, the Sliding Lemma.
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Local properties of Rectilinear Steiner Trees

Properties of Steiner points

There are three useful and straightforward consequences of the previous
two lemmas.

Lemma 37: A cross has only terminals as neighbours

Let s be a cross in a fulsome minimum rectilinear Steiner tree T . Then
the neighbours of s are terminals.

Proof: The four edges incident to s must be straight edges (by
Lemma 35). Assume that one of the neighbours of s, denoted by u, is a
Steiner point. By Lemma 35, Steiner point u has an incident straight edge
(u, x) that is perpendicular to (s, u). Now, edge (s, u) fulfils the
conditions of Lemma 36, contradicting the fulsomeness of T . QED
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Local properties of Rectilinear Steiner Trees

Properties of Steiner points

Lemma 38: A T-point ends in a terminal

Let s be a T-point in a fulsome minimum rectilinear Steiner tree T , and
let u, v and w be the three neighbouring nodes of s. Suppose the edges
(s, v) and (s,w) are collinear and straight edges. Then (s, u) is a straight
edge and u is a terminal.

Proof: First we observe that (s, u) must be a straight edge. Assume that
u is a Steiner point. Then we can use the same arguments as in the proof
of Lemma 37 to show that T is not fulsome. QED

Lemma 39: A complete corner ends in terminals

Let c be a corner point for a bent edge in a fulsome minimum rectilinear
Steiner tree T , and let (ct, ct ′) be the complete corner located at c . Then
t and t ′ are both terminals of T .

The proof of Lemma 39 is an exercise on the Problem sheet.
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Canonical forms for Rectilinear Steiner Trees

Canonical forms for full components

In general there may be infinitely many minimum rectilinear Steiner trees
for a given set of terminals. It is therefore important from an algorithmic
point of view to devise canonical forms for such trees that can be
constructed efficiently. In this section we show that full and fulsome
minimum rectilinear Steiner trees can be assumed to have a simple
canonical form called the Hwang form.
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Canonical forms for Rectilinear Steiner Trees

Direction sets

Definitions: Maximal Steiner configuration, direction set

For any Steiner configuration of degree 3 there is an associated set of legal
directions, namely the legal directions used by all edges in the star (where
directions are considered as oriented outward from the centre). A Steiner
configuration S is said to be maximal if there exists no other Steiner
configuration (for any set of terminals) that uses a strict superset of the
legal directions used by S. We define a direction set to be a set of legal
directions used by a maximal Steiner configuration, listed in
counter-clockwise order around the centre.

For the rectilinear metric, a Steiner point of degree 3 has at most one
incident bent edge (Lemma 35). Therefore, a direction set has four
directions: two red directions corresponding to the (possibly) bent edge,
one green and one blue direction.
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Canonical forms for Rectilinear Steiner Trees

Direction sets

PRI

SEC

s

The two red directions are labelled the exclusively primary and exclusively
secondary direction, respectively, in counter-clockwise order around the
Steiner point; the blue and green edges can be considered to be both
primary and secondary.
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Canonical forms for Rectilinear Steiner Trees

Properties of a full component

Let T be a full and fulsome minimum rectilinear Steiner tree. From the
theory of fixed orientation Steiner trees (not covered in this course) we
have the following results:

1 T uses a single direction set.

2 There exists a minimum rectilinear Steiner tree with the same
terminals and topology as T that has at most one bent edge.

Definition: Caterpillar tree

Define a caterpillar tree to be a tree that has a central path P such that
every node in the tree is either on P or is connected directly to P.

In other words, T is a caterpillar tree if and only if the subtree induced by
the Steiner points of T is a path. Note that being a caterpillar is a
property of the topology of the Steiner tree.

Marcus Brazil Geometric Steiner Trees 2015 16 / 36



Canonical forms for Rectilinear Steiner Trees

Rectilinear full components are caterpillar trees

Lemma 40

Let T be a full and fulsome minimum rectilinear Steiner tree spanning at
least 3 terminals. Then the topology of T is a caterpillar tree where the
central path is formed by all the Steiner points in T .

The key to the proof is to show that each Steiner point s in T is adjacent
to at least one terminal. The only case that poses any difficulty is when s
has an incident bent edge.

sv

u t

sv

u t

c c
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Canonical forms for Rectilinear Steiner Trees

Clean subtrees of a full component.

Definition: Clean subtrees

A subtree of rectilinear Steiner tree is a primary subtree (or secondary
subtree), if all edges are primary (respectively, secondary) edges. A subtree
that is either primary or secondary is denoted a clean subtree.

The importance of this definition comes from the following lemma.

Lemma 41: Subtrees consisting of straight edges only are clean

Let T be a full and fulsome minimum rectilinear Steiner tree. Consider
any subtree T ′ of T that consists of straight edges only. Then T ′ is a
clean subtree.
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Canonical forms for Rectilinear Steiner Trees

Proof of Lemma 41

Assume that T ′ is not clean; that is, there exist both a primary red edge
and a secondary red edge in T ′. Then there must exist a pair of
neighbouring Steiner points s1 and s2 in T ′, such that s1 has an incident
primary red edge and s2 has an incident secondary red edge. It follows that
exactly one of these red edges is collinear with (s1, s2); hence, either s1 or
s2 is a T-point where the non-collinear incident edge does not end in a
terminal.
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By Lemma 38, this gives a contradiction. QED
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Canonical forms for Rectilinear Steiner Trees

Canonical forms

It follows that for any given terminal set there exists a fulsome minimum
rectilinear Steiner tree T such that any full component T ′ of T is either
composed only of straight edges, and hence is clean, or contains a single
bent edge eφ such that T ′ − eφ consists of two subtrees, T1 and T2, each
of which is clean. Each of these subtrees has one of the following forms,
depending on whether it is primary or secondary.

Furthermore, it is not difficult to show that we can assume one of the
subtrees of T ′ − eφ, say T1, is primary and the other is secondary.
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Canonical forms for Rectilinear Steiner Trees

The Hwang Form

To show that this implies the Hwang form, we require the following.

Claim

One of the subtrees T1 and T2 spans at most 2 terminals.

The claim follows by contradiction, using Lemma 41.
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Canonical forms for Rectilinear Steiner Trees

The Hwang Form

Theorem 42

There exists a minimum rectilinear Steiner tree for any terminal set such
that every full component has the so-called Hwang form. In this form,
every full component spanning k terminals consists of a complete corner
with terminal endpoints referred to as the root t1 and the tip tk . The leg
containing the root is called the long leg and the leg containing the tip is
called the short leg of the complete corner. There are two main types (i)
and (ii) (and two degenerate cases):

Type (i) has k − 2 alternating segments incident to the long leg and
no segment incident to the short leg.

Type (ii) has k − 3 alternating segments incident to the long leg and
one segment incident to the short leg.

Marcus Brazil Geometric Steiner Trees 2015 22 / 36



Canonical forms for Rectilinear Steiner Trees

The Hwang Form

Examples of the main types of the Hwang form.
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Examples of the degenerate types.
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Canonical forms for Rectilinear Steiner Trees

Corner-flipped Hwang forms

A non-degenerate full rectilinear Steiner tree T in Hwang form can be
transformed into a corner-flipped version of itself. The corner-flipped
version is obtained through a series of flips and slides.

In the corner-flipped version the direction of the long leg from the corner
point becomes the opposite to what it is in the original tree (east versus
west or north versus south). This observation implies that we only need to
consider two rather than four directions of the long leg when enumerating
Hwang form trees.

This is a useful observation when developing a GeoSteiner algorithm for
the Rectilinear Steiner tree problem.
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Canonical forms for Rectilinear Steiner Trees

Corner-flipped Hwang forms

Type (i) odd Type (ii) even

Type (i) even

Type (ii) odd

Type (ii) even

Type (i) even

Type (ii) odd

Type (i) odd
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Empty regions and the GeoSteiner algorithm

Empty regions

In this section we first study some necessary geometric conditions that
must be satisfied by minimum rectilinear Steiner trees for a given terminal
set N, independently of the topology of the tree. The conditions presented
here are so-called empty region properties.

Recall that an empty region is a region in the plane that can be shown to
be free of Steiner points and/or terminals if certain conditions are fulfilled.
All the empty regions can be efficiently computed without having to first
compute the complete minimum rectilinear Steiner tree, and they are
therefore useful as efficient pruning conditions for eliminating non-feasible
full components. As such they form an important part of the GeoSteiner
algorithm.

Empty regions are also useful from a theoretical viewpoint for helping
bound the number of candidate full components.
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Empty regions and the GeoSteiner algorithm

The lune property

Recall from Part 2 that a lune L(u, v) is defined as the set of points that
are strictly within distance |uv |1 of both u and v (where distance here is
given by the rectilinear metric). Geometrically, a lune for edge (u, v) is the
intersection of the interiors of the two `1 circles with radius |uv |1 centred
at u and v , respectively.

u v u

v

If (u, v) is an edge in a minimum rectilinear Steiner tree, then L(u, v) does
not contain any points of the tree that do not lie on (u, v) (by Lemma 8).
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Empty regions and the GeoSteiner algorithm

The disjoint lunes property

Consider a full component T in a minimum rectilinear Steiner tree. Not
only are the lunes empty; they are also pairwise geometrically disjoint:

Lemma 43: Disjoint lunes property

Let T be a full and fulsome minimum rectilinear Steiner tree with Hwang
form. For any pair of distinct segments uv and ws in T , we have
L(u, v) ∩ L(w , z) = ∅.

Proof: Consider any pair of distinct edges from T . If one of the edges is
part of the backbone of T , then the corresponding lunes are clearly
disjoint. If the two edges are not on the same side of the backbone, then
they are also disjoint.
The only remaining case is when the edges are on the same side of the
backbone. Let si ti and sj tj be a pair of such incident segments; we assume
without loss of generality that si ti and sj tj are both vertical segments and
that |si ti | ≥ |sj tj |.
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Empty regions and the GeoSteiner algorithm

The disjoint lunes property

ti

si sj

tj

p

Suppose that
L(si , ti )∩L(sj , tj) 6= ∅. let p be the
point on the horizontal line through
ti on the same side of si ti as tj
such that |tip| = |ti si |. Since the
lunes overlap, it follows that tj is in
the interior of triangle 4si tip, from
which a contradiction to minimality
follows. QED

The above proof implies that incident segments on the same side of the
backbone of a Hwang form full component cannot be too close to each
other; ie, if si ti and sj tj are two incident segments, then
|si sj | ≥ min(|si ti |, |sj tj |).
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Empty regions and the GeoSteiner algorithm

The empty rectangle property

Consider two perpendicular
segments uw and wv meeting at a
node w . Let R(u, v) be the interior
of the axis-aligned rectangle with
sides uw and wv .

lu

vw

R(u, v)

Lemma 44: Empty Rectangle property

If uw and wv are perpendicular segments in a minimum rectilinear Steiner
tree T , then R(u, v) contains no point of T .

Assume on the contrary that T contains a point p ∈ R(u, v). Let l be the
line through w which bisects the perpendicular angle. The proof involves
showing that there is a contradiction to minimality if p lies above, below
or on l .
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Empty regions and the GeoSteiner algorithm

GeoSteiner Algorithm

We conclude this section with a high-level discussion of the GeoSteiner
algorithm for the rectilinear metric.

Recall that the main idea of the GeoSteiner approach is to enumerate full
components — or full Steiner trees (FSTs) — and then choose a subset of
the generated FSTs to form a minimum rectilinear Steiner tree. The first
phase is called FST generation and the second FST concatenation.

Compared to other metrics, FST generation for the rectilinear problem
appears to be particularly fast in practice, due to the existence of the
Hwang form for full components. As noted in Part 2, the FST
concatenation phase of the algorithm is independent of the underlying
metric, so is identical to that discussed in the last section of Part 2.

Hence, here we only need to consider the FST generation algorithm.
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Empty regions and the GeoSteiner algorithm

FST generation algorithm

Consider a Hwang form FST T in a minimum rectilinear Steiner tree,
where T spans k terminals t1, t2, . . . , tk . T consists of a complete corner
(or backbone) given by a root t1 and a tip tk ; all other terminals spanned
by T are connected directly to the backbone with straight line segments,
and at most one is connected to the short leg.

Let c be the corner point of the single bent edge pq of T ; if T has no
bent edge, then let c be the midpoint of the straight edge pq incident to
the tip tk of T . Recall the definition of branches and branch trees from
Part 2. If we cut edge pq at c , we obtain two branch trees having straight
edges only: one with its root at p and the other with its root at q.

In the construction below, it suffices to consider the generation of
individual branch trees rather than branches. For a branch of size greater
than 1 with a given root and a given direction for the long leg we will see
that under the construction scheme below the branch has a uniquely
determined branch tree.
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Empty regions and the GeoSteiner algorithm

FST generation algorithm – combining branch trees

Branch trees of size 1 consist of a single terminal having a stem leaving in
one of the legal directions. The Hwang form for rectilinear FSTs implies
that we only need to consider combinations where one of the branch trees
has size 1. Any full component T can be obtained by starting with a
branch tree B1 consisting of the root of T with a stem in the direction of
the long leg. Then each of the terminals — in alternating fashion along the
long leg — is iteratively added by combining the current branch tree with
a size 1 branch tree that spans the added terminal. This results in a series
of increasingly larger branch trees B1,B2, . . . as shown on the next slide.

A type (i) full component is obtained by combining a branch tree Bi with
a size 1 branch tree that spans the tip of the full component; finally, a
type (ii) full component can be obtained by attaching a terminal to the
short leg of the constructed type (i) full component.
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Empty regions and the GeoSteiner algorithm

FST generation algorithm – combining branch trees

B1

B2

Combining B1 with a size 1 branch tree Combining B2 with a size 1 branch tree

B3

Combining B3 with a size 1 branch tree

B4

Combining B4 with a size 1 branch tree

Type (i) full component Type (ii) full component
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Empty regions and the GeoSteiner algorithm

FST generation algorithm

The simplified construction of branch trees for the rectilinear Steiner tree
problem makes it possible to design a particularly efficient version of the
general FST generation algorithm (from Part 2, slide 20).

Instead of enumerating branch trees by increasing size, the main loop
of the rectilinear FST generation algorithm iterates through all
terminals t ∈ N. For a given terminal t, all feasible FSTs that have t
as their root (in the Hwang form) are constructed. Each possible
direction of the long leg is tried in turn; however, due to the existence
of corner-flipped topologies only two perpendicular directions need to
be tried (say, north and east).

Branches and FSTs are pruned using the empty region properties and
the BSD bound (which is defined as in the Euclidean case).

A short list of FST terminal candidates for each FST root t can be
constructed (using these pruning properties) as a preprocessing step.
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Empty regions and the GeoSteiner algorithm

FST generation algorithm – performance

For most randomly generated instances, the preprocessing phase (running
time about O(n log n)) dominates the total running time – the running
time of the FST generation algorithm is close to being linear in n. This
can be explained by the fact that very few terminals (less than 6 terminals
for randomly generated problem instances with 10000 terminals) are added
to the short list of terminals considered for a given root and direction.

A well-tuned implementation of this algorithm generates the FSTs for a
randomly generated 1000-terminal instance in less than 0.1 second; for
10000 terminals the running time is less than 2 seconds, and more than
half of the time is used for preprocessing. The number of FSTs surviving
all tests is approximately 4n.

The bottleneck of the GeoSteiner algorithm for the rectilinear Steiner tree
problem is therefore the concatenation of FSTs.
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