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Properties of Minkowski planes

Minkowski spaces and norms

A Minkowski space is a real vector space V furnished with a norm, by
which we mean a function ‖ · ‖ : V → R such that:

‖x‖ ≤ 0;

‖x‖ = 0 if and only if x = 0 (positive definiteness);

‖λx‖ = |λ|‖x‖ for all λ ∈ R (symmetry);

‖x + y‖ ≥ ‖x‖+ ‖y‖ (triangle inequality).

A two-dimensional Minkowski space is usually called a Minkowski plane. If
X is a Minkowski plane with norm ‖ · ‖ then the subsets
SX := {x : ‖x‖ = 1} and BX := {x : ‖x‖ ≤ 1} are called the unit circle and
unit disc of X , respectively. If x ∈ SX then x is said to be a unit vector.
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Properties of Minkowski planes

Minkowski planes and unit balls

A Minkowski plane X can also be determined by its unit disk, rather than
its norm. A unit disk BX can be any subset of V such that:

BX is bounded;

BX has a non-empty interior;

BX is centrally symmetric;

BX is convex.

For a given unit disk BX the norm can be defined as follows:

‖x‖ := inf{µ : µ > 0,
x

µ
∈ BX}.
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Properties of Minkowski planes

Examples of norms: `p norms

An `p norm (p ≥ 1), ‖ · ‖p, for any vector x = (x , y) is defined as follows:

‖x‖p := (|x |p + |y |p)1/p.

When p = 2 this is the familiar Euclidean norm.

When p = 1 the `p norm is the
rectilinear norm (or Manhattan
norm) and has a polygonal unit
disk:

o

The figure below shows the unit
disk when p = 3/2:
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Properties of Minkowski planes

Examples of norms: gradient constrained norms

For any vector x = (x , y) ∈ R2 let g(x) = y/x denote the gradient of x.
For a given maximum gradient m, the gradient constrained norm ‖ · ‖g
corresponds to the Euclidean length of the shortest path from (0, 0) to
(x , y) with gradient no greater than m.

‖x‖g =

{ √
x2 + y2, if |g(x)| ≤ m;√
1 + m−2|y |, if |g(x)| ≥ m.

It is easily checked that this defines a norm, as it is the maximum of two
norms which are equal exactly when |g(x)| = m. Unit disks for m = 1 and
m = 1/3 (respectively) are shown below.

oB oB
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Steiner trees in Minkowski planes

The Steiner tree problem in a Minkowski plane

In formal terms, the Steiner tree problem for a general norm can be stated
as follows:

Minkowski Steiner tree problem in the plane

Given: A set of points N = {t1, . . . , tn} lying on a Minkowski plane with
unit circle C.
Find: A geometric network T = (V (T ),E (T )), such that N ⊆ V (T ), and
such that

∑
e∈E(T ) ‖e‖ is minimised.

The terminals, minimum Steiner tree, Steiner points and Steiner topology
are all defined as in the Euclidean case.
All non-zero edges in a minimum Steiner tree are geodesics between their
endpoints and hence can be embedded as line segments in the given plane.
However, there may be many other possible embeddings of a minimum
edge, such as a zigzig path, since the Minkowski norm is not necessarily
strictly convex.
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Steiner trees in Minkowski planes

Full and fulsome Steiner trees

As in the Euclidean case, a given Steiner tree can be uniquely decomposed
into full components, or full Steiner trees. This decomposition is not
necessarily unique for a given terminal set. Indeed, the number of full
components may not be unique for a given terminal set.

Definition: Fulsome trees

A Steiner tree T is said to be fulsome if it has the maximum possible
number of full components amongst all Steiner trees with the same length
as T for the given terminal set. Hence, a Steiner tree is full and fulsome if
there is no Steiner tree with the same length on the same set of terminals
with more than one full component.

Restricting our attention to fulsome Steiner trees means that the structure
of each full component is as simple as possible.
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Steiner trees in Minkowski planes

Steiner configurations

Definition: Configurations

A Steiner configuration in a Minkowski plane is defined as a star with
centre s and leaves x1, . . . , xm (with s, x1, . . . , xm all distinct) that is part
of some minimum Steiner tree with Steiner point s. If a star is not
necessarily part of some minimum Steiner tree, then it is simply referred to
as a configuration.

Note that the word “minimum” is redundant in the above definition (see
Problem Sheet 3).

The results in this Part are mainly concerned with local properties of a
Steiner tree in a general Minkowski plane; more specifically, with Steiner
configurations.
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Steiner trees in Minkowski planes

Pointed Steiner configurations

Theorem 22: Pointed Configuration Theorem

Let {sxi : i = 1, . . . ,m} be a configuration about s in a Minkowski plane.
If there is a line L through s such that the interior of each segment sxi is
in the same open half-plane bounded by L, then {sxi} is not a Steiner
configuration.

Proof (sketch): For the case m = 3, there exist collinear points x ′i in the
interior of each sxi , respectively. By the triangle inequality,
‖sx ′1‖+ ‖sx ′3‖ ≥ ‖x ′1x ′3‖, and by positive definiteness, ‖sx ′2‖ > 0. Hence,
replacing the line segments {sx ′i : i = 1, . . . , 3} by x ′1x

′
3 strictly reduces the

length of the configuration (while maintaining connectivity), showing that
{sxi} is not a Steiner configuration.
A similar argument applies if m > 3 (see Problem sheet).
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Steiner points of degree 3

Steiner points of degree 3

The following theorem shows that for many norms all Steiner points in a
minimum Steiner tree have degree 3.:

Theorem 23

If T is a minimum Steiner tree in a smooth Minkowski plane, then every
Steiner point of T has degree 3.

(For the proof, see “G. Lawlor and F. Morgan. Paired calibrations applied
to soap films, immiscible fluids, and surfaces or networks minimizing other
norms. Pacific Journal of Mathematics, 166: 55–83, 1994”.)

Theorem 23 does not hold in general Minkowski planes, where the
boundary of the unit ball may have non-differentiable points. However, as
we will see later, in these cases higher degree Steiner points only occur in
very special circumstances.
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Steiner points of degree 3

The centroid theorem

One of our aims now is to show that for a Steiner configuration in a
smooth Minkowski plane, if we know the direction of one of the edges then
the norm uniquely determines the directions of the other two edges.

Recall that the centroid of a triangle is the point where the three medians
of the triangle intersect. It corresponds to the ‘center of gravity’ of the
triangle. Note that the centroid divides each of the medians in a 2:1 ratio.

Theorem 24: Centroid theorem

Let x1, x2 and x3 be a set of leaves of a Steiner configuration in the
Minkowski plane (with unit circle C) with Steiner point s. Let x ′1, x ′2 and
x ′3 be the points where s + C intersects −→sx1, −→sx2 and −→sx3, respectively.
Then for each i ∈ {1, 2, 3} there exists a line Li which is a supporting line
of z + C at x ′i , such that L1, L2 and L3 form a triangle whose centroid
coincides with s.
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Steiner points of degree 3

The centroid theorem: sketch proof

By the properties of the gradient of the gauge function in the Minkowski
plane, it follows that there exist supporting lines Li of s + C at each xi ,
such that

u1

h1
+

u2

h2
+

u3

h3
= 0 (1)

where each ui is the outward normal vector to the supporting line Li , and
each hi is the (Euclidean) distance from s to Li .

Since a strictly positive linear combination of the vectors ui equals 0, it
follows that L1, L2 and L3 form a triangle around s + C, which we denote
by ∆.
Let L0 be the line through s parallel to L1. For i ∈ {2, 3}, let pi be the
intersection of Li and the line perpendicular to Li through s, and let
yi = Li ∩ L0.
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Steiner points of degree 3

The centroid theorem: sketch proof

s

x′3 x′2

x′1

p3 p2

L3
L2

L1

L0

y3 y2

s + C

Note that hi = |spi |. Equation (1) implies that u2/h2 + u3/h3 is
perpendicular to L0, and hence that

cos(∠p2sy2)

|sp2|
=

cos(∠p3sy3)

|sp3|
(2)

which implies |y2s| = |y3s|.
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Steiner points of degree 3

The centroid theorem: sketch proof

Hence s lies on the median of ∆ through L2 ∩ L3. By symmetric
arguments, s also lies on the other two medians of ∆, and hence coincides
with the centroid of ∆. QED

Definition: Centroid property

Given a Minkowski unit circle C, we say that any set of supporting lines of
C forming a triangle whose centroid is the centre of C satisfies the centroid
property.

Theorem 24 shows that for any degree 3 Steiner configuration at a point s
there exists a set of lines supporting s + C at points determined by the
Steiner configuration that satisfies the centroid property.

A consequence of the centroid property is that in a smooth Minkowski
plane the edges in a full Steiner tree use at most three directions. Before
proving this we first establish 3 lemmas.
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Steiner points of degree 3

Centroid property lemmas: 1

The first lemma follows immediately from the observation that the
centroid of a triangle divides each of its medians in the ratio 2 :1.

Lemma 25

Let L1, L2 and L3 be three supporting lines of the unit circle s + C, and let
L0 be the line that is parallel to L1 and contains s. Let d = d(L1, L0), and
define L to be the line that is parallel to L1 at distance 3d from L1, and at
distance 2d from L0. Let y2 = L2 ∩ L0 and let y3 = L3 ∩ L0. Then
supporting lines L1, L2 and L3 satisfy the centroid property if and only if
(i) L2 ∩ L3 lies on L, and (ii) |sy2| = |sy3|.

sy3 y2

L

L0

L1

L2L3

2d

d
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Steiner points of degree 3

Centroid property lemmas: 2 and 3

In the following lemmas we continue to refer to L0 and L as defined by
Lemma 24.

Lemma 26

Let L1, L2 and L3 be a set of supporting lines of s + C that fulfils the
centroid property, and let L0 be the line that is parallel to L1 and contains
s. Then neither L2 nor L3 supports C at a point that is strictly between L1
and L0.

Lemma 27

Let L1 be a line that supports a unit circle C with centre s, and let L0 be
the line that is parallel to L1 and contains s. If L0 intersects C at a
differentiable point, then there exists exactly one pair of supporting lines
L2 and L3, such that L1, L2 and L3 have the centroid property.
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Steiner points of degree 3

Lemma 27: sketch proof

sy3 y2

L

L0

L1

L2

L3

sy3 y2
L2

L3

z z

(a) (b)

Illustration of proof of Lemma 27. (a) The initial positions of supporting
lines L2 and L3. (b) The final positions of the supporting lines. The
position for which the centroid property holds lies between these two
extremes at the point where |sy2| = |sy3|.
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Steiner points of degree 3

Steiner trees in smooth Minkowski planes

The following corollary is an immediate consequence of Lemma 27.

Corollary 28

In a smooth Minkowski plane the directions of the edges in a degree 3
Steiner configuration are uniquely determined by the direction of any one
edge.

Theorem 29

In a smooth Minkowski plane the edges of a full Steiner tree use at most
three distinct directions.

The proof of Theorem 29 follows easily from Theorem 23 and Corollary
28, by contradiction.
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Steiner points of degree 4 or more

Steiner points of degree ≥ 4

In this section we consider higher degree Steiner points in Minkowski
planes which are not smooth. All of the results in this section are based on
a replacement principle.

This replacement principle operates in one of two ways: either we replace
certain line segments in a minimum tree T by new line segments with the
same length and direction (and hence the same cost), or we replace a set
of line segments by a new set of line segments which by minimality we can
show have the same cost.

Theorem 30

Given a set of terminals N in a Minkowski plane, there exists a minimum
Steiner tree T for N in which every vertex has degree at most 4.
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Steiner points of degree 4 or more

Proof of Theorem 30

Let s be a Steiner point of degree 5 or more. There exists a set of three
adjacent points to s, say x1, x2, x3, such that all three lie in the interior of
a half-plane induced by a line through s.

(a) (b)

x′1

x′2

x′3

s sx0

By the triangle inequality we can reduced the degree of s (by 2) by
introducing a new degree 4 Steiner point x0, without increasing the length
of T .
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Steiner points of degree 4 or more

Opposite pairs of edges at a Steiner point

In light of Theorem 30, we can now restrict our attention to Steiner points
of degree 4.

Definition: Opposite pairs of edges

Let {sxi : i = 1, . . . , 4} be a degree 4 Steiner configuration around s where
the neighbours of s are indexed in counter-clockwise order around s. We
say that such a Steiner configuration consists of two opposite pairs of
edges, {sx1, sx3} and {sx2, sx4}.

Lemma 31

In a degree 4 Steiner configuration in a Minkowski plane one of the
opposite pairs of edges is collinear.

Proof: Let {sxi : i = 1, . . . , 4} be a degree 4 Steiner configuration around
a Steiner point s. We assume that neither of the opposite pairs of edges is
collinear, and obtain a contradiction by the replacement principal.
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Steiner points of degree 4 or more

Proof of Lemma 31

We show non-minimality in two cases, first where there is a meeting angle
of π:

x1x4

x2
x3

sa4 a1

a3 a2
x1x4

x2
x3

a3 a2

and second where each meeting angle is < π:

x1

x4

x2x3

sb4 b1

b3 b2

x1

x4

x2x3
c

b3 b2
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Steiner points of degree 4 or more

Properties of the second opposite pair of edges

Definitions: First and second opposite pairs

Let {sxi : i = 1, . . . , 4} be a degree 4 Steiner configuration around s where
the neighbours of s are indexed in counter-clockwise order around s. One
of the opposite pairs of edges, say {(s, x1), (s, x3)}, must be collinear, by
Lemma 31; we refer to this as the first opposite pair of edges. The other
pair of edges, {(s, x2), (s, x4)}, is called the second opposite pair of edges.

Note that above classification into pairs is not necessarily unique.

Lemma 32

Suppose the second opposite pair of edges {(s, x2), (s, x4)} around a
degree 4 Steiner point s in a Steiner configuation {sxi : i = 1, . . . , 4} is
not collinear. Then there exists a point s ′ in the interior of sx1 or sx3 such
that for every point s0 ∈ ss ′ we have ‖sx2‖ = ‖s0x2‖ and ‖sx4‖ = ‖s0x4‖.

The proof of this lemma is straightforward (see Problem sheet).
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Steiner points of degree 4 or more

Splitting degree 4 Steiner points

A consequence of Lemma 32 is that if the second opposite pair of edges is
not collinear, then we can split the Steiner point s into a pair of adjacent
degree 3 Steiner points:

x2

x3

x4

x1

(a)

x2

x3

x4

x1

(b)

x2

x3

x4

x1

(c)

s

s′
s

s′
s

s′

Definition: Cross

A cross is a degree 4 Steiner point where both the first and second
opposite pairs of edges are collinear.

Thus far we have shown that unless a degree 4 Steiner point is a cross, we
can always split it into two adjacent degree 3 Steiner points.

Marcus Brazil Geometric Steiner Trees 2015 25 / 28



Steiner points of degree 4 or more

The Sliding Lemma

Lemma 33: Sliding lemma

Let e = (s1, s2) be an edge
connecting two Steiner points (s1
and s2) in a fulsome minimum
Steiner tree T . Let e1 = (s1, v1) be
the next edge incident with s1 (in
counter-clockwise order around s1
from e), and let e2 = (s2, v2) be
the next edge incident with s2 (in
clockwise order around s2 from e.
Then θ, the angle at s1 between e
and e1, and φ, the angle at s2
between e and e1, satisfy
θ + φ > π.

v
1

v
2

s
1

s
2

e
3

e
1

e
2

e

q f

The idea is to show that if
θ + φ ≤ π, e can slide as shown
until it meets a terminal,
contradicting fulsomeness.
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Steiner points of degree 4 or more

Degree 4 Steiner points can almost always be split

Theorem 34

In a fulsome minimum Steiner tree, a degree 4 Steiner point s can always
be split into two adjacent degree 3 Steiner points unless it is a cross and is
adjacent to terminals only.

It follows that in a GeoSteiner-type algorithm for constructing a minimum
Steiner tree one can, for the most part, limit the construction of candidate
full Steiner components to full and fulsome minimum Steiner trees where
all Steiner points have degree 3. For many Minkowski norms, including the
rectilinear norm and the gradient constrained norm, there exist efficient
methods for constructing such candidates. (The construction of a cross
with terminals as neighbours can easily be handled separately.)
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Steiner points of degree 4 or more

Proof of Theorem 34

By the comments on slide 25, we only need to consider the case where s is
a cross. Assume that one of the neighbours of s is a Steiner point v with
degree 3. Then, the local perturbation shown splits s into two adjacent
Steiner points without changing the length of the tree.

s

v

a b

s

v

a b

v′

s1

s2
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