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Abstract— This paper formulates a new pipeline for auto-
mated extrinsic calibration of multi-sensor mobile platforms.
The new method can operate on any combination of cameras,
navigation sensors and 3D lidars. Current methods for extrinsic
calibration are either based on special markers and/or che-
querboards, or they require a precise parameters initialisation
for the calibration to converge. These two limitations prevent
them from being fully automatic. The method presented in
this paper removes these restrictions. By combining information
extracted from both, platform’s motion estimates and external
observations, our approach eliminates the need for special
markers and also removes the need for manual initialisation. A
third advantage is that the motion-based automatic initialisation
does not require overlapping field of view between sensors. The
paper also provides a method to estimate the accuracy of the
resulting calibration. We illustrate the generalisation of our
approach and validate its performance by showing results with
two contrasting datasets. The first dataset was collected in a
city with a car platform, and the second one was collected in
a tree-crop farm with a Segway platform.

I. INTRODUCTION

Autonomous and remote control platforms that utilise a
large range of sensors are steadily becoming more common.
Sensing redundancy is a pre-requisite for their robust op-
eration. For the sensor observations to be combined, each
sensors position, orientation and coordinate system must be
known. Automated calibration of multi-modal sensors is a
non trivial problem due to the different type of information
collected by the sensors. This is aggravated by the fact that
in many applications different sensors will have minimum or
zero overlapping field of view. Physically measuring sensor
positions is difficult and impractical due to the sensors’
housing and the high accuracy required to give a precise
alignment, especially in long-range sensing outdoor applica-
tions. For mobile robots, working on topologically variable
environments, as found in agriculture or mining, this can
result in significantly degraded calibration after as little as
a few hours of operation. Therefore, to achieve long-term
autonomy at the service of non-expert users, calibration
parameters have to be determined efficiently and dynamically
updated over the lifetime of the robot.

Traditionally, sensors were manually calibrated by either
placing markers in the scene or by hand labelling control
points in the sensor outputs [1], [2]. Approaches based on
these techniques are impractical as they are slow, labour
intensive and usually require a user with some level of
technical knowledge.

In more recent years, automated methods for calibrating
pairs of sensors have appeared. These include configurations

such as 3D lidar to camera calibration [3], [4], [5], [6],
camera to IMU calibration [7], [8] and odometry based
calibration [9]. While these systems can in theory be effec-
tively used for calibration, they present drawbacks that limit
their application in many practical scenarios. First, they are
generally restricted to a single type of sensor pair, second
their success will depend on the quality of the initialisation
provided by the user, and third, approaches relying exclu-
sively on external sensed data require overlapping fields
of view [10]. In addition, the majority of the methods do
not provide an indication of the accuracy of the resulting
calibration, a key for consistent data fusion and to prevent
failures in the calibration.

In this paper we propose an approach for automated extrin-
sic calibration of any number and combination of cameras,
3D lidar and IMU sensors present on a mobile platform.
Without initialisation, we obtain estimates for the extrinsics
of all the available sensors by combining individual motions
estimates provided by each of them. This part of the process
is based on recent ideas for markerless hand-eye calibration
using structure-from-motion techniques [11], [12]. We will
show that our motion-based approach is complementary to
previous approaches, providing results that can be used
to initialise method relying on external data and therefore
requiring initialisation [3], [4], [5], [6]. We also show how
to obtain an estimate of uncertainty for the calibrations
parameters, so the system can make an informed decision
about which sensors may require further refinement. All of
the source code used to generate these results is publicly
available at [13].

The key contributions of our paper are:
• A motion-based calibration method that utilises all of

the sensors motion and their associated uncertainty.
• The use of a motion-based initialisation to constrain

existing lidar-camera techniques.
• The introduction of a new motion based lidar-camera

metric.
• A calibration method that gives an estimate of the

uncertainty of the resulting system.
• Evaluation in two different environments with two dif-

ferent platforms.

II. RELATED WORK

As mentioned above, previous works have focused on
specific pairs of sensor modalities. Therefore, we present and
analyse the related work according to the sensor modalities
being calibrated.



1) Camera-Camera Calibration: In a recent work pre-
sented in [9], four cameras with non-overlapping fields of
view are calibrated on a vehicle. The method operates by
first using visual odometry in combination with the cars
egomotion provided by odometry to give a course estimate
of the cameras position. This is refined by matching points
observed by multiple cameras as the vehicle makes a series
of tight turns. Bundle adjustment is then performed to refine
the camera position estimates. The main limitation of this
method is that it was specifically designed for vision sensors.

2) Lidar-Camera Calibration: One of the first markerless
calibration approaches was the work presented in [3]. Their
method operates on the principle that depth discontinuities
detected by the lidar will tend to lie on edges in the
image. Depth discontinuities are isolated by measuring the
difference between successive lidar points. An edge image
is produced from the camera. The two outputs are then
combined and a grid search is used to find the parameters
that maximise a cost metric.

Three very similar methods have been independently de-
veloped and presented in [4], [14] and [6]. These methods use
the known intrinsic values of the camera and estimated ex-
trinsic parameters to project the lidar’s scan onto the camera’s
image. The MI value is then taken between the lidar’s inten-
sity of return and the intensity of the corresponding points
in the camera’s image. When the MI value is maximised,
the system is assumed to be perfectly calibrated. The main
differences among these methods are on the optimisations
strategies.

In our most recent work [15], [10] we presented a calibra-
tion method that is based on the alignment of the orientation
of gradients formed from the lidar and camera. The gradient
for each point in the camera and lidar is first found. The lidar
points are then projected onto the cameras image and the dot
product of the gradient of the overlapping points are taken.
This result is then summed and normalised by the strength of
the gradients present in the image. A particle swarm global
optimiser is used to find the parameters that maximise this
metric.

The main drawback of these cost functions is that they are
non-convex and therefore will require initialisation.

A. Motion-based Sensor-Camera Calibration
In [7] the authors presented a method that utilises structure

from motion in combination with a Kalman filter to calibrate
an INS system with a stereo camera rig. More related to our
approach are recent contributions to the hand-eye calibration
for calibrating a camera mounted to a robotic arm. These
techniques have made use of structure from motion ap-
proaches to allow them to operate without requiring markers
or chequerboards [11], [12]. The main difference between
these approaches and our own is that they are limited to
calibrating a single pair of sensors and do not make use of
the sensors uncertainty or the overlapping field of view some
sensors have.

III. OVERVIEW OF METHOD

Throughout this paper the following notation will be used

�

Fig. 1. A diagram of a car with a camera (C), velodyne lidar (V) and
nav sensor (N). The car on the right shows the three sensors positions on
the vehicle. The image on the left shows the transformation these sensors
undergo at timestep k

TA
B : The transformation from sensor A to sensor B.
TA,i
B,j : The transformation from sensor A at timestep i to

sensor B at timestep j
R : A Rotation matrix
t : A translation vector

Figure 1 shows depiction of how each sensors motion
and relative position are related. As the vehicle moves the
transformation between any two sensors A and B can be
recovered by using Equation 1.

TA
B T

B,k−1
B,k = TA,k−1

A,k TA
B (1)

This is the basic equation used in most hand-eye calibra-
tion techniques. Note that it only considers a single pair of
sensors. Our approach takes the fundamental ideas used by
hand eye calibration and place them into an algorithm that
takes into account the relative motion of all sensors present
in a system, is robust to noise and outliers, and provides
estimates for the variance of the resulting transformations.
Then when sensor overlap exists we exploit sensor specific
techniques to further refine the system taking advantage of
all the information the sensors provide.

The steps followed to give the overall sensor transforma-
tion and variance estimates are summarised in Algorithm 1.

IV. METHOD

A. Finding the sensor motion

The approach utilised to calculate the transformations
between consecutive frames depends on the sensor type. In
our pipeline, three different approaches were included to
work with 3D lidar sensors, navigation sensors and image
sensors.



ALGORITHM 1

1. Given n sensor readings from m sensors

2. Convert sensor readings into sensor motion
T i,k−1
i,k . Each transformation has the associated

variance (σi,k−1
i,k )2

3. Set one of the lidar or nav sensors to be the
base sensor B

4. Convert Ri,k−1
i,k to angle axis form Ai,k−1

i,k

For i = 1,...,m
5. Find a coarse estimate for RB

i by using the
Kabsch algorthim to solve
AB,k−1

B,k = Ri
BA

i,k−1
i,k weighting the elements

by
Wk = (max((σi,k−1

i,k )2) +max((σB,k−1
B,k )2))−0.5

6. Label all sensor readings over 3σ from the
solution outliers

end

7. Find estimate for RB
i by minimising

m∑
i=1

m∑
j=i

n∑
k=2

√
RerrTijkσ

2Rerrijk

Rerrijk = (Aj,k−1
j,k −Ri

jA
i,k−1
i,k )

σ2 = (σj,k−1
j,k )2 +Ri

j(σ
i,k−1
i,k )2(Ri

j)
T

using the coarse estimate as an initial guess in the
optimisation.

For i = 1,...,m
8. Find a coarse estimate for tBi by solving
tBi = (Ri,k−1

i,k − I)−1(RB
i t

B,k−1
B,k − ti,k−1

i,k )
and weighting the elements by
Wk = (max((σi,k−1

i,k )2) +max((σB,k−1
B,k )2))−0.5

end

9. Find estimate for tBi by minimising
m∑
i=1

m∑
j=i

n∑
k=2

√
TerrTijkσ

2Terrijk

Terrijk = (Ri,k−1
i,k − I)tji + ti,k−1

i,k −Rj
i t

j,k−1
j,k

using the coarse estimate as an initial guess in the
optimisation.

10. Bootstrap sensor readings and re-estimate RB
i

and tBi to give variance estimate (σB
i )2

11. Find all sensors that have overlapping field of
view

12. Use sensor specific metrics to estimate the
transformation between sensors with overlapping
field of view

13. Combine results to give final RB
i , tBi and

(σB
i )2.

1) 3D lidar sensors: 3D lidar sensors use one or more
laser range finders to generate a 3D map of the surrounding
environment. To calculate the transform from one sensor scan
to the next the iterative closest point (ICP) [16] algorithm is
used. A point to plane variant of ICP is used and the identity
matrix is used for the initial guess as to the transformation.
To estimate the covariance the data is bootstrapped and the
ICP matching is run 100 times. In our implementation to
allow for shorter run times the bootstrapped data was also
subsampled to 5000 points.

2) Navigation sensors: This category includes sensors
that provide motion estimates, such as IMU’s and wheel
odometry. These require little processing to convert their
standard outputs into a transformation between two positions
and the covariance is usually provided as an output in the
data stream.

3) Imaging sensors: This group covers sensors that pro-
duce a 2D image of the world such as RGB and IR cameras.
The set of transforms that describe the movement of the
sensors are calculated, up to scale ambiguity using a standard
structure from motion approach. To get an estimate of the
covariance of this method we take the points the method uses
to estimate the fundamental matrix and bootstrap them 100
times. The resulting sets of points are used to re-estimate
this matrix and the subsequent transformation estimate.

4) Accounting for timing offset: As a typical sensor array
can be formed by a range of sensors running asynchronously,
the times at which readings occur can differ significantly
[17]. To account for this each of the sensor’s transforms are
interpolated at the times when the slowest updating sensor
obtained readings. For the translation linear interpolation is
used and for the rotation Slerp (spherical linear interpola-
tion) is used.

B. Estimating the inter-sensor rotations

Given that all of the sensors are rigidly mounted the
rotation of any two sensors here labelled A and B can be
given by the following Equation

RA
BR

B,k−1
B,k = RA,k−1

A,k RA
B (2)

In our implementation an angle axis representation of the
sensor rotations is used, this simplifies Equation 2 as if
AA,k−1

A,k is our rotation vector then the sensor rotations are
related by

AB,k−1
B,k = RA

BA
A,k−1
A,k (3)

We utilise this equation to generate a coarse estimate for
the system and reject outlier points. This is done as follows.

First, one of the sensors is arbitrarily designated the
base sensor. Next a slightly modified version of the Kabsch
algorithm is used to find the transformation between this
sensor and each other sensor. The Kabsch algorithm is
an approach that calculates the rotation matrix between
two vectors providing the smallest least squared error. The



Kabsch algorithm we used had been modified to give a non-
equal weighting to each sensor reading. The weight assigned
to the readings at each timestep is given by Equation 4

Wk = (max((σA,k−1
A,k )2) +max((σB,k−1

B,k )2))−0.5 (4)

where σ2 is the variance. The taking of the maximum values
makes the variance independent of the rotation and allows it
to be reduced to a single number.

Next an outlier rejection step is applied where all points
that are over three standard deviations away from where the
rotation solution obtained would place them are rejected.
With an initial guess to the solution calculated and the
outliers removed we move onto the next step of the process
where all of the sensor rotations are optimised simultane-
ously.

This stage of the estimation was inspired by how SLAM
approaches combine pose information. However, it differs
slightly as in SLAM each pose is generally only connected
to a few other poses in a sparse graph structure, where
in our application, every scan of every sensor contributes
to the estimation of the systems extrinsic calibration and
therefore the graph is fully connected. This dense structure
of the problem prevents many of the sparse SLAM solutions
from being used. In order to keep our problem tractable we
only directly compare sensor transforms made at the same
timestep.

The initial estimate is used to form a rotation matrix that
gives the rotation between any two of the sensors. Using this
rotation matrix the variance for the sensors is found by 5.
This is used to find the error for the pair of sensors as is
shown in Equation 6.

σ2 = (σB,k−1
B,k )2 +RA

B(σ
A,k−1
A,k )2(RA

B)
T (5)

RotError =
√
RerrTijkσ

2Rerrijk

Rerrijk = (Aj,k−1
j,k −Ri

jA
i,k−1
i,k )

(6)

The error for all of the sensor pairs is combined to form
a single error metric for the system. This error is minimised
using a gradient decent optimiser (in our implementation the
Nelder-Mead Simplex) to find the optimal rotation angles.

C. Estimating the inter-sensor translations

If the system contains only monocular cameras no measure
of absolute scale is present and this prevents the translation
from being calculated. However in any other system, if the
base sensor’s transforms do not have scale ambiguity, once
the rotation matrix is known the translation of the sensors
can be calculated. It is found using a method similar to that
of the rotation. By starting with

tAB = (RB,k−1
B,k − I)−1(RA

Bt
A,k−1
A,k − tB,k−1

B,k ) (7)

The terms can be rearranged and combined with informa-
tion from other timesteps to give the following system of
Equations


RB,k−1

B,k − I
RB,k

B,k+1 − I
RB,k+1

B,k+2 − I
...

 tAB =


RA

Bt
A,k−1
A,k − tB,k−1

B,k

RA
Bt

A,k
A,k+1 − t

B,k
B,k+1

RA
Bt

A,k+1
A,k+2 − t

B,k+1
B,k+2

...

 (8)

The only unknown here is tAB . The translation estimate
depends significantly on the accuracy of the rotation matrix
estimations and is the most sensitive parameter to noise. This
sensitivity comes from the RB,k−1

B,k − I terms that make up
the first matrix. As for our application (ground platforms) in
most instances RB,k−1

B,k ≈ I leading to a matrix that ≈ 0.
Dividing by this matrix reduces the SNR and therefore de-
grades the estimation. Consequently the translation estimates
are generally less accurate than the rotation estimates.

This formulation must be slightly modified to be used with
cameras, as they only provide an estimate of their position
up to a scale ambiguity. To correct for this when a camera
is used the scale at each frame is simultaneously estimated.

A rough estimate for the translation is found by utilising
Equation 8, which provides translation estimates of each
sensor with respect to the base sensor. The elements of this
equation are first weighted by their variance using Equation
4.

Once this has been performed the overall translation is
found by minimising the following error functions

TransError =
√
TerrTijkσ

2Terrijk

Terrijk = (Ri,k−1
i,k − I)tBi + ti,k−1

i,k −RB
i t

B,k−1
B,k

(9)

The final cost function to be optimised is the sum of
Equation 9 over all sensor combinations, as was also done
for the rotations.

D. Calculating the overall Variance

To find the overall variance of the system the sensor
transformations are bootstrapped and the coarse optimisation
re-run 100 times. Bootstrapping is used to estimate the
variance as it naturally takes into account several non-linear
relationships such as the estimated translations dependence
on the rotations accuracy. This method of variance estimation
has the drawback of significantly increasing the runtime of
the inter-sensor estimation stage. However as this time is
significantly less than that used by the motion estimation
step it has negligible effect on the overall runtime.

E. Refining the inter-sensor transformations

One of the key benefits introduced with our approach is
removing the restriction of the initialisation needed for cali-
bration methods based on external observations. Our motion-
based calibration described above is complementary to these
methods. The estimates provided by our approach can be
utilised to initialise non-convex calibration approaches such
as [3], [15], rendering a fully automated calibration pipeline.
We will call this second stage the refinement process.



For cameras and 3D lidar scanners methods such as
Levinson’s [3] or GOM [15] can be utilised for the calibra-
tion refinement. The calculation of the gradients for GOM
is slightly modified in this implementation (calculated by
projecting the lidar onto an image plane) to better handle the
sparse nature of the velodyne lidar point cloud. Given that
the transformation of the velodyne sensors position between
timesteps is known from the motion-base calibration, we
introduce a third method for refinement. This method works
by assuming that the points in the world will appear the same
colour to a camera in two successive frames. It operates by
first projecting the velodyne points onto an image at timestep
k and finding the colour of the points at these positions. The
same scan is then projected into the image taken at timestep
k+1 and the mean difference between the colour of these
points and the previous points is taken. It is assumed that this
value is minimised when the sensors are perfectly calibrated.

All three of the velodyne-camera alignment methods de-
scribed above give highly non-convex functions that are
challenging to optimise. Given the large search space, these
techniques are always constrained to search a small area
around an initial guess. However in our case we have an
estimated variance, rather than a strict region in the search
space. Because of this in our implementation we make use of
the Covariance Matrix Adaptation Evolution Strategy CMA-
ES optimisation technique. This technique randomly samples
the search space using a multivariate normal distribution that
is constantly updated. This optimisation strategy works well
with our approach as the initial normal distribution required
can be set using the variance from the estimation. This means
that the optimiser only has to search a small portion of the
search space and can rapidly converge to the correct solution.
To give an indication of the variance of this method a local
optimiser is used to optimise the values of each scan used
individually starting at the solution the CMA-ES technique
provides.

F. Combining the refined results

The pairwise transformations calculated in the refinement
step will not represent a consistent solution to the transforma-
tion of the sensors. That is, if there are three sensors A, B and
C then TA

B T
B
C 6= TA

C . The camera to camera transformations
also contain scale ambiguity. To correct for this and find a
consistent solution the transformations are combined. This is
done by using the calculated parameters to find a consistent
transformation that has the highest probability of occurring.
We do this by first using the transformations to the base
sensor to generate an initial guess. The probability of this
solution occurring given the transformation and variance of
all the pairwise transforms is calculated and used as a cost
function that is optimised using a Nelder-Mead Simplex
optimisation. As the camera-camera transforms contain scale
ambiguity only the rotation portion of these transforms is
considered.

V. RESULTS

A. Experimental Setup

The method was evaluated using data collected with two
different platforms, in two different type of environments: (i)
the KITTI dataset which consists of a car moving in an urban
environment and (ii) the Australian Centre for Field Robotics
(ACFR’s) sensor vehicle known as “Shrimp” moving in a
farm.

1) KITTI Dataset Car: The KITTI dataset is a well known
publicly available dataset obtained from a sensor vehicle
driving in the city of Karlsruhe in Germany [18]. The sensor
vehicle is equipped with two sets of stereo cameras, a
Velodyne HDL-64E and a GPS/IMU system. This system
was chosen for calibration due to the ease of availability and
the excellent ground truth available due to the recalibration
of its sensors before every drive.

All of the results presented here were tested using drive
27 of the dataset. In this dataset the car drives through
a residential neighbourhood. In this test while the KITTI
Vechicle has an RTK GPS it frequently losses its connection
resulting in jumps in the GPS location. Drive 27 was selected
as it is one of the longest of all the drives provided in the
KITTI dataset giving 4000 consecutive frames of information
to test the calibration method on.

2) ACFR’s Shrimp: Shrimp is a general purpose sensor
vehicle used by the ACFR to gather data for a wide range of
application. Due to this it is equipped with an exceptionally
large array of sensors. For our evaluation we used the
ladybug panospheric camera and velodyne HDL-64E lidar.
The dataset used is a two minute loop driven around a
shed in an almond field. This proves a very challenging
dataset for calibration as both the ICP used in matching
lidar scans and the SURF matching used on the cameras
frequently mismatch points on the almond trees leading to
sensor transform estimates that are significantly noisier than
those obtained with the KITTI dataset.

B. Aligning Two Sensors

The first experiment run was the calibration of the KITTI
car’s lidar and IMU. The results were also compared with
a least squares approach that does not make use of the
readings variance estimates. In the experiment a set of
continuous sensor readings is selected from the dataset at
random and the extrinsic calibration between them found.
This is compared to the known ground truth provided with
the dataset. The number of scans used was varied from 50 to
1000 in increments of 50 and for each number of scans the
experiment was repeated 100 times with the mean reported.

Figure 2 shows the absolute error of the calibration
as well as one standard deviation of the predicted error.
For all readings the calibration significantly improves as
more readings are used for the first few hundred scans
before slowly tapering off. Our method outperforms the least
squared method in the vast majority of cases. In rotation, yaw
and pitch angles were the most accurately estimated. This
was to be expected as the motion of the vehicle is roughly
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Fig. 2. The error in rotation in degrees and translation in metres for varying
numbers of sensor readings. The black line with x’s shows the least squares
result, while the coloured line with o’s gives the result of our approach.
The shaded region gives one standard deviation of our approaches estimated
variance

planner giving very little motion from which roll can be
estimated. For large numbers of scans the method estimated
the roll, pitch and yaw between the sensors to within 0.5
degree of error.

The calibration for the translation was poorer than the
rotation. This is due to the reliance on the rotation calculation
and the sensors tending to give noisier translation estimates.
For translation our method significantly outperformed the
least squared method, this is most likely due to the RTK
GPS frequently losing signal, producing significant variation
in the sensors translation accuracy jumping position during
the dataset.

The accuracy of the predicted variance of the result is
more difficult to assess than that of the calibration. However
all of the errors were within a range of around 1.5 standard
deviations from the actual error. This demonstrates that the
predicted variance provides a consistent indication of the
estimates accuracy.

C. Refining Camera-Velodyne Calibration

The second experiment evaluates the refinement stage by
using the KITTI vehicles velodyne and camera to refine
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Fig. 3. Box plot of the error in rotation in degrees and translation in metres
for the three refinement approaches.

the alignment. In this experiment 500 scans were randomly
selected and used to find an estimate of the calibration
between the velodyne and leftmost camera on the KITTI
vehicle. This result was then refined using a subset of 50
scans and one of the three methods covered in section IV-E.

To demonstrate the importance of an estimation of accu-
racy, an optimisation that does not consider the estimated
variance was undertaken. The search space for this exper-
iment was set as the entire feasible range of values (360◦

range for angles and |X|,|Y |,|Z| < 3m). The experiment
was repeated 50 times and the results are shown in Figures
3 and Table I. Note that to allow the results to be shown
at a reasonable scale, outliers were excluded (7 from the
Levinson method results, 2 from the GOM method results
and none from the colour methods).

From the results shown in Figure 3 it can be seen that all of
the methods generally significantly improve translation error.
The results for the rotation error were more mixed, with the
colour based method giving less accurate yaw estimates than
the initial hand-eye calibration. Overall, the Levinson method
tended to either converge to a highly accurate solution or a
position with a large error. The GOM method was slightly
more reliable though still error prone and the colour based
method while generally the least accurate, always converged



Metric Roll Pitch Yaw X Y Z
Lev 58.2 18.0 14.3 1.97 1.42 3.28
GOM 86.3 43.9 49.5 1.26 0.66 2.93
Colour 3.3 3.6 5.7 1.09 1.41 0.51

TABLE I
MEDIAN ERROR IN ROTATION IN DEGREES AND TRANSLATION IN

METRES FOR THE REFINEMENT WHEN THE OPTIMISER DOES NOT

UTILISE THE STARTING VARIANCE ESTIMATE.

to reasonable solutions. It was due to this reliability that the
colour based solution was used in our full system calibration
test.

Table I shows the results obtained without using the
variance estimate to constrain the search space. In this
experiment all three metrics perform poorly, giving large
errors for all values. This experiment was included to show
the limitations of the metrics and to demonstrate the need to
constrain the search space in order to obtain reliable results.

D. Simultaneous Calibration of Multiple Sensors

To evaluate the effects that simultaneously calibrating all
sensors has on the results an experiment was performed
using Shrimp and aligning its velodyne with the five hor-
izontal cameras of its ladybug camera. The experiment was
first performed using 200 readings to calibrate the sensor
combining all of the readings. In a second experiment the
velodyne was again aligned with the cameras however this
time only the velodyne to camera transform for each camera
was optimised. The mean error in rotation and translation
between every pair of sensors was found and is shown
in Figure 4. As can be seen in the Figure, utilising the
camera-camera transformations substantially improves the
calibration results. This was to be expected as performing a
simultaneous calibration of the sensors provides significantly
more information on the sensor relationships. In translation
the results slightly improve however due to the low number
of scans used and noisy sensor outputs the error in the
translation estimation means it would be of limited use in
calibrating a real system.

E. Full alignment of the KITTI dataset sensors

Finally, results with the full calibration process are shown
for the KITTI dataset. We used 500 scans for the motion
estimation step, and the Colour matching method was used
for refining the velodyne-camera alignment. The experiment
was repeated 50 times and the results are shown in Figure
5.

For these results all of the sensors had a maximum rotation
error of 1.5 degrees with mean errors below 0.5 degrees. For
translation the IMU had the largest errors in position due to
relying purely on the motion stage of the estimation. For the
cameras the error in X and Y was generally around 0.1 m.
The errors in Z tended to be slightly larger due to motion in
this direction being more difficult for the refinement metrics
to observe.

Overall, while the method provides accurate rotation es-
timates, the estimated translation generally has an error that
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Fig. 4. Box plot of the error in rotation in degrees and translation in metres
for combining sensor readings and performing separate optimisations.

can only be reduced by collecting data in more topologically
varied environments, as opposed to typical urban roads.
However, given the asynchronous nature of the sensors and
the distance to most targets, these errors in translation will
generally have little impact on high level perception tasks,
or visualisation such as colouring a lidar point cloud as
shown in Figure 6. Nevertheless, the variance estimated by
our approach permits the user to decide whether a particular
sensor’s calibration needs further refinement.

VI. CONCLUSION

This paper has presented a new approach for calibrating
multi-modal sensor arrays mounted on mobile platforms.
Unlike previous automated methods, the new calibration
approach does not require initial knowledge of the sensor
positions and requires no markers or registration aids to be
placed in the scene. These properties make our approach
suitable for long-term autonomy and non-expert users. In
urban environments, the motion-based module is able to
provide accurate rotation and coarse translation estimates
even when there is no overlap between the sensors. The
method is complementary to previous techniques, so when
sensors overlap exists, the calibration can be further refined
utilising previous calibration methods. In addition, the ap-
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Fig. 5. Box plot of the error in rotation in degrees and translation in metres
for performing the full calibration process.

Fig. 6. A velodyne scan coloured by one of the KITTI cameras.

proach provides an estimate of the variance of the calibration.
The method was validated using scans from two separate
mobile platforms.
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