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Abstract
The ability to map clay minerals on vertical geological surfaces is important from perspectives 
of stratigraphic mapping and safety. Clay minerals were mapped from hyperspectral imagery 
using Automated Feature Extraction and their areal coverage estimated on a complex 
geological surface (a mine pit) by automatically registering hyperspectral to LiDAR data. 
The area of the mine pit covered by each identified mineral was under- or over-estimated 
by as much as a factor of 2 when derived from the hyperspectral imagery alone compared 
to imagery co-registered to LiDAR data. Hyperspectral imagery enabled the identification 
of clay layers on a mine face as a means of separating geological units of similar visual or 
spectral characteristics.
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Introduction
There have been many studies which have used hyperspectral imagery acquired from 
aircraft to map clay minerals [e.g. Crósta et al., 1998; Lagacherie et al., 2008]. Clays and 
other phyllosilicates exhibit diagnostic absorptions between 2000 - 2500 nm caused by 
metal ions bound to hydroxyl. The location of these features depends upon several factors 
predominantly the type of metal cation involved. Features near 2200 nm are associated with 
Al-rich minerals and absorptions between 2290-2310 nm, 2330-2340 nm and 2350-2370 nm 
related to minerals rich in Fe3+, Mg or Fe2+, respectively. These diagnostic absorptions cause 
different minerals to have different spectral curve shapes between 2000-2500 nm. Although 
the majority of hyperspectral imagery has to date been collected from airborne platforms, 
there has been an increasing trend for imagery to be collected from field based platforms to 
map minerals as they are distributed on vertical outcrops of geology [Murphy et al., 2012; 
Kurz et al., 2013; Murphy and Monteiro, 2013]. Various sensor and environmental effects 
make the calibration and analysis of these data more challenging [reviewed by Kurz et al., 
2013], so methods used to extract information from hyperspectral data must be resistant to 
these effects.
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The ability to recognise clays in outcrops of vertical geology is important for geological 
mapping and safety perspectives. Thin bands of shale are sometimes used as marker 
horizons to distinguish different geological units which exhibit similar visual or spectral 
characteristics. Shales with large amounts of clay also represent lines of stratigraphical 
weakness along which landslides can occur [Hutchinson, 1961; Cornforth, 2005; Hancox, 
2008]. Smectite group clays in particular can undergo large changes in volume though 
swelling which can cause localised instability and ground heave [Gill et al., 1996; Goetz 
et al., 2001]. Many techniques have been developed to classify minerals on the basis of 
their entire spectral curve in the ShortWave InfraRed (SWIR) where diagnostic absorption 
features of many minerals are located. However, several parameters of absorption features 
such as their wavelength position and depth can yield important information about aspects 
of the physical-chemical composition of minerals [Martínez-Alonso et al., 2002; Bishop 
et al., 2008]. To determine the identity and abundance of minerals on the mine wall we 
automatically identify the strongest absorption feature in each spectrum using Automated 
Feature Extraction (AFE). AFE has been used in previous studies to detect and parameterise 
absorption features without the need for a spectral library [Kruse, 1988; Murphy, 1995; 
Murphy et al., 2014]. AFE enables clay and other minerals to be identified and quantified 
without a priori knowledge of the surface or study area in question. AFE parameterises 
the deepest absorption feature in each spectrum in terms of its wavelength position (as 
an indicator of mineral type), depth (as an indicator of mineral abundance) and width 
(providing, in combination with wave length position, information on mineral type).
Translating two dimensional images representing mineral absorption within a three 
dimensional space into meaningful georeferenced maps is challenging, particularly for 
areas such as mine pits which have a complex surface geometries [Hartley and Zisserman, 
2004]. The usefulness of information on the distribution of minerals in such environments 
is severely constrained if they are not integrated with appropriate geometric information. 
For example, pixels in a hyperspectral image acquired from the bottom of a mine pit may 
comprise a continuum of spatial resolutions i.e. they describe different areas on the surface 
depending on how close the surface is to the sensor. In the case of an open-pit mine, distances 
from sensor to target can vary from a few metres to hundreds of metres. Calculating the true 
surface areas occupied by the different mineral categories mapped from the hyperspectral 
imagery can only be done by combining (i.e. co-registering) the data with some form of 
geometric information, such as that obtained by LiDAR. Previous studies have registered 
these different types of data manually using reference targets within imagery [Zhang and 
Pless, 2004; Buckley et al., 2013]. Whilst this has been shown to be effective, it is not a 
feasible approach where data are to be acquired on a routine, operational basis to provide 
information on mineralogy, for example, as part of large-scale operational mining operations. 
Therefore to generate 2.5D maps (i.e. 3D maps of mineralogy at the surface of the mine 
pit) we apply an automatic registration method to register maps of mineralogy derived from 
hyperspectral imagery to LiDAR data [Taylor et al., 2013]. From these registered data we 
quantify the area of the mine pit which is occupied by each category of mineral.
Rocks of different chemical or mineral composition may have reflectance spectra which 
are very similar. This can be caused by the rocks being comprised of minerals which do not 
exhibit discrete spectral signatures - for example silica. However, in the context of vertical 
mine faces, variability in incident light also occurs causing spatial variability in reflectance 
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which may exceed that caused by the intrinsic compositional makeup of the rocks. In such 
cases it is not possible to uniquely separate and map units of rock on mine faces. Field 
geologists, using traditional mapping techniques, often use clay layers as marker horizons 
to separate rock units of similar visual or spectral appearance. The potential therefore exists 
for this to also be done automatically using hyperspectral imagery.
The objectives of this paper are therefore twofold. First, detect and quantify clay minerals 
over a large section of the mine pit and estimate their areal coverage (Objective 1). To do 
this, mineral maps derived by AFE are automatically registered with LiDAR data of the 
mine pit. Second, demonstrate the application of hyperspectral imagery to identify clay 
layers with the objective of delimiting geological units on an individual mine face which 
otherwise could not be distinguished using their spectral qualities alone (Objective 2). To 
address these problems we use hyperspectral and LiDAR data acquired from an open-pit 
iron-ore mine in the Pilbara, Western Australia.

Materials and methods
Study area and rock samples
The study area is located in an open-pit iron-ore mining operation in the Pilbara, Western 
Australia (Fig. 1a). Hyperspectral images were acquired from a single mine pit within 
the operation. For Objective 2, 5 replicate rock samples were acquired from different 
geological units and from the clay layers which delineate them (Fig. 1b). Quantitative X-
Ray Diffraction (XRD) analyses of the samples were done to provide information about the 
weight percent of the dominant minerals within each sample. Samples were powdered in 
a ring mill and micronized for five minutes. XRD patterns were obtained using a Bruker-
AXS D8 Advance Diffractometer with cobalt radiation. Crystalline phases were identified 
by using a search/match algorithm (DIFFRAC.EVA 2.1; Bruker-AXS, Germany). Relevant 
crystal structures extracted for refinement were obtained from the Inorganic Crystal 
Structure Database (ICSD 2012/1). The crystalline phases were determined on an absolute 
scale using Rietveld quantitative phase refinement, using the Bruker-AXS TOPAS v4.2 
software package. Quantification of clay minerals from powdered samples can be prone to 
errors caused by a lack of sensitivity. Interpretation of XRD analyses used for ground truth 
should therefore be done with caution.

Hyperspectral imagery
Imagery was acquired from vertical section of the entire pit (Objective 1; Fig. 1a) and from a 
small section of an individual mine face (Objective 2; Fig. 1b). Hyperspectral imagery (970 
– 2500 nm) was acquired using an AISA HAWK hyperspectral imager (Specim, Finland). 
The sensor records 320 spatial pixels (across track). The along track dimension is built up 
by rotating the sensor on a motorized scanning platform. The number of spectral bands 
recorded was 256, each having a nominal width (full-width-half-maximum) of ~6.32 nm. 
High temperatures (> 55º C) and wind-blown goethitic dust in the mine pit required that 
the sensor was enclosed in an insulated box and kept cool by passing cooled, desiccated air 
over it. Calibration panels with different reflectances (80 % Teflon, 15 %, 30 %, 60 % and 
99 % Spectralon) were placed in the field of view of the sensor. Data were acquired under 
clear-sky conditions with the sun directly illuminating the mine wall.
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Figure 1 - Study area. (a) Location of the hyperspectral scan lines for Objectives 1 and 2 within 
the mine pit (inset: location of the Pilbara region within Australia); (b) A single hyperspectral 
image band (2000 nm) showing detailed mapping made in the field of the different geological 
units 1-4: banded iron formation (BIF; 1), mixed BIF and low grade hematite (2), low grade 
hematite (3) and high grade hematite (4). The mapped locations of the clay layers delineating the 
geological units are indicated (S1-S3). The location of the quadrats from where rock samples were 
acquired are indicated by the white rectangles (A-D).

The dark current signal was removed by subtraction from each spatial line of data at 
each band. Imagery was calibrated using the empirical line method [Smith and Milton, 
1999]. The longest sensor-target distance was > 700 m, thus path radiance may have had 
a small impact on spectra. The empirical line method was therefore used to minimise the 
impact of path radiance in preference to the flat field approach which would remove only 
multiplicative effects. Calibration was done using the 80 % Teflon and 15 % Spectralon 
panels. Both panels had been spectrally characterised in the laboratory and their reflectance 
factors calculated. Pixels over the calibration panels were separately extracted and averaged 
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for each spectral band. The relationship (slope and intercept) between the panel reflectance 
and averaged pixel (i.e. DN values) was determined for each band. The slope and intercept 
was then used to convert DN to reflectance using a simple linear model:

Reflectance band DN band aband bbandi i i i= + [ ]* 1

where:
DN is the digital number of the ith spectral band;
a = slope of the regression equation;
b = intercept of the regression equation.

Automated feature extraction
The image was filtered using a polynomial smoothing filter with a width of 8-bands 
[Savitzky and Golay, 1964]. All absorption features were placed on the same reference 
plane by normalising the reflectance. Normalised reflectance was obtained by dividing 
the reflectance at each wavelength by the reflectance of the spectral continuum at that 
wavelength [Clark and Roush, 1984]. Automated feature extraction was then used to 
identify the strongest (i.e. deepest) absorption feature in the normalised spectra between 
2041 and 2380 nm and parameterise it in terms of its wavelength position, depth and width. 
Wavelengths were constrained to this range to avoid increasing amounts of noise towards 
shorter or longer wavelengths caused by atmospheric water absorption and decreasing solar 
irradiance. Two thresholds were used. First, a feature is ‘found’ only if the hull-quotient 
value of the absorption feature minimum is less than 0.95. Preliminary work determined that 
this removed spurious absorptions caused by increasing noise towards longer wavelengths 
from consideration. Second, a brightness threshold was set to remove from consideration 
all spectra which had an average brightness of less than 0.08 (i.e. 8 % reflectance). Spectra 
with a brightness of less than this threshold had a very low signal-to-noise ratio resulting in 
AFE ‘finding’ spurious absorption features. Depth was calculated as 1 minus the normalised 
reflectance at the band centre. This is arithmetically equivalent to the method proposed by 
Clark and Roush [1984]. Width was calculated by determining the normalised reflectance 
at half of the depth of the feature. The corresponding wavelengths at this reflectance were 
calculated by interpolation and feature width determined by subtracting the long- from 
the short-wavelength. Wavelength position, depth and width for each pixel spectrum were 
described quantitatively in separate grey-scale images.

LiDAR data
For Objective 1, LiDAR scans of the mine pit were acquired to generate 3D point clouds 
of the scene. The laser scanner (Riegl LMS-Z620) was placed in close proximity to the 
hyperspectral sensor. The LiDAR scans comprised two scans made from the same position. 
The first scan covered 180 degrees and contained 4.5 million points. The second scan 
covered an additional 90 degrees and contained 2.5 million points. The scans covered a 
range from approximately 3 m to 700 m from the sensor. The average angular resolution of 
the sensor was 0.04 degrees.
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Registration of AFE parameters with LiDAR data
For Objective 1, the AFE parameter images derived from the hyperspectral images 
were automatically registered to the point cloud from the LiDAR using the method of 
Taylor et al. [2013]. The method automatically determined the location and orientation 
of the camera relative to the LiDAR, as well as the intrinsic parameters of the camera 
using a single band from the hyperspectral data cube. In this case the 970 nm band was 
used as this was the closest to the frequency used by the LiDAR and allowed for the 
greatest correlation between the image intensities and the LiDAR’s intensity of return. 
To align the sensor outputs, a camera model was created that projects the LiDAR data 
onto the hyperspectral image. The quality of the alignment between the LiDAR and the 
hyperspectral image was evaluated by using a gradient orientation measure that compared 
the relative alignment of gradients. The unknown parameters of the camera model - in 
this case the location, orientation, focal length, principle point and radial distortion - were 
found using particle swarm optimisation, which maximised the gradient measure. The 
method used to align the sensors differed slightly from that presented in Taylor et 
al. [2013], in two key areas. Firstly the gradient for the LiDAR points was found by 
projecting the LiDAR points onto a sphere. These points were then interpolated to form 
an image which had a Sobel operator run on it to find the gradients. Secondly, lens 
distortion was included as a parameter of the optimisation. In the y direction the lens 
distortion was modeled as ydistorted = d1y

2 + d2y
4, where y is the y position in normalised 

image coordinates and d1 and d2 are the distortion parameters to be estimated. As the 
hyperspectral camera was a line scanner that rotates to form an image, distortions in the 
lens have no effect on the x axis of the image. The search space for the optimiser was 
formed around a rough guess as to the alignment from the location of the camera tripod 
in the LiDAR scan and observing the sensor outputs. The search space was set to have 
a range of 10 degrees for roll, pitch and yaw and 1 metre in the x, y and z dimensions. 
The focal length had a range of 100 pixels, the principle point a range of 40 pixels and 
the distortion parameters, d1 and d2 a range of 1. The source code used to do this can be 
found in Taylor et al. [2013].
An estimate of how reliable this calibration process was also generated. This was done 
by bootstrapping the LiDAR data before registering it with the camera data. Using the 
bootstrapping process the registration was performed 20 times with the results used to 
estimate the variance of the estimated camera parameters.
The area of the mine pit covered by each of the minerals mapped by AFE was calculated 
in two separate ways. First a simple estimate of the area was made from the 2D mineral 
map (wavelength position) from imagery prior to its registration with the LiDAR data 
(image area). Second, area was calculated from imagery of wavelength position after it 
was registered with the LiDAR scan (face surface area). To calculate the area from the 
point cloud, the space each point covers was calculated by assuming it was a square 
whose sides are the length of the median distance to the four closest neighbours. Small 
changes in the cameras position could have a large impact on the location of classified 
minerals. To account for this, the estimated variance in the camera parameters previously 
calculated was used to calculate a variance in the classified area using a Monte-Carlo 
sampling approach.
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Results
Objective 1 - quantifying areal coverage of clay minerals in the mine pit
The accuracy of the registration between the LiDAR and camera was evaluated. As no 
ground truth exists for this dataset this was done by hand matching 10 distinctive points in 
the image with their corresponding point in the LiDAR scan (Fig. 2). Two measures of the 
accuracy of the points were made. The first is a simple pixelwise error made by measuring 
the distance between the corresponding points when the LiDAR points are projected 
onto the image. The second is the estimated ‘real world’ error (in metres) to which this 
corresponds. This was formed by dividing this pixel error by the camera focal length and 
multiplying by the distance to the LiDAR point. For the registration used we found a mean 
pixel error of 2.92 pixels and a mean distance error of 0.48 m. As the mine pit of interest 
was approximately 120 to 700 m from the camera and around 700 m wide this level of error 
in the registration was deemed to be acceptable.

Figure 2 - Hand matched points (red crosses) used to evaluate the accuracy of the LiDAR camera 
registration.

Separate images quantifying the wavelength position of the deepest absorption feature 
and its depth were generated using AFE. On the basis of wavelength position, 7 minerals 
were identified (Fig. 3). The illite-smectites were identified by their main absorption at 
2208 nm in combination with a weak absorption at 2235 nm. Ferruginous (Fe) smectite 
was identified by absorptions at 2288 nm and 2233 nm related to both Fe and Al in 
octahedral sites [Bishop et al., 2008]. Nontronite was identified by a single feature at 
2282-2288 nm caused by Fe-OH and Kaolinite by the characteristic Al-OH absorption 
doublet at 2196 nm or 2202 nm [Crowley and Vergo, 1988]. Chlorite was identified by a 
broad absorption centred on 2319 nm. Talc had several sharp features between 2041 and 
2380 nm but the strongest was at 2306 nm. Images of wavelength position, depth and 
width are shown in Figure 4. The wavelength parameter image shows distinct, narrow 
layers formed by several clay minerals including kaolinite but also much thicker (tens 
of metres) layers of nontronite were evident (Fig. 4a). Chlorite was present in discrete 
areas of the mine wall, mainly at the bottom of the synclinal fold. Large spatial variations 
in the abundance of clay minerals, indicated by the depth parameter image, were found 
across the mine wall (Fig. 4b). The strongest absorptions were found for the minerals 
Talc, Nontronite and Kaolinite and the weakest for Illite-smectite and Fe-smectite. The 
width of absorption features varied from about 35 nm for illite-smectite and nontronite to 
135 nm for chlorite (Fig. 4c).
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Figure 3 – Single image pixel spectra of minerals 
identified from the wavelength parameter 
image. Arrows indicate the centre of the deepest 
absorption in each spectrum.

Using the parameters from the projection of the hyperspectral image onto the LiDAR data, 
2.5D maps of mineral distribution were created from the wavelength parameter image (Fig. 
4a). From the 2D images (e.g., Fig. 4a) it is difficult to determine perspective in relation 
to the overall geometry of the mine pit. However, the 2.5D image clearly showed that the 
greatest spatial variation in the types of clay minerals occurred towards the base of the 
mine pit in a region of complex synclinal folding (Fig. 5). The LiDAR data allowed the 
real area of each classified mineral to be accurately estimated. The two estimates of area 
derived from the image data (image area and face surface area) were compared (Tab. 1, Fig. 
6), and showed the estimates of area calculated from the 2D mineral maps were under- or 
over-estimated by as much as a factor of 2. Note that the changes in percent area classified 
as 2197 nm (kaolinite) and 2319 nm (chlorite) were particularly large. This is due to their 
distance from the hyperspectral imager. Kaolinite was mainly present in areas near the top 
of the mine pit, several hundred metres distant from the imager, causing them to appear 
far smaller in the image area estimates in comparison to the face surface estimates. The 
opposite effect occurs for chlorite which is closer to the sensor, towards the base of the 
synclinal fold.
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Table 1 - Area classified as each mineral type, in terms of wavelength position. Standard 
deviation (SD) is shown for the Face Surface.

Wavelength 
Position

Image Area 
(Pixels)

Face Surface 
Area (m2)

Image 
Area (%)

Face Surface 
Area (%)

Face Surface 
SD (%)

Unclassified 466110 73461 72.3 67.0 1.0

2197 54913 16351 8.5 14.9 0.8

2202 29753 5867 4.6 5.4 0.3

2220 6192 1251 1.0 1.1 0.3

2233 18134 3007 2.8 2.7 0.2

2288 39405 6318 6.1 5.8 0.4

2306 17331 2329 2.7 2.1 0.2

2319 12642 1053 2.0 1.0 0.1

Total 644480 109637 100 100  

Figure 4 - AFE parameter images (Objective 1): (a) wavelength position; (b) depth; (c) width 
(nm). Identities of minerals associated with the different wavelength positions are shown in a): 
kaolinite; illite-smectite (I-S); ferruginous smectite (Fe-S); nontronite (Nont.); Talc; Chlorite.
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Figure 5 - Coloured point cloud of clay minerals for the large-scale mapping: wavelength 
position registered to the LiDAR data (Objective 1). Locations mapped by LiDAR but not the 
hyperspectral sensor are shown as black. Locations imaged by the hyperspectral sensor but 
where no absorption was found are shown in greyscale. Identities of minerals associated with 
the different wavelength positions are indicated in the colour key: kaolinite; illite-smectite (I-
S); ferruginous smectite (Fe-S); nontronite (Nont.); Talc; Chlorite.

Figure 6 - Percent of the area classified as a given mineral 
for the 2D image plane (Image area) and fused with the 
LiDAR data (Face surface area). Mineral identities are 
shown below wavelengths on the horizontal axis: kaolinite; 
illite-smectite (I-S); ferruginous smectite (Fe-S); nontronite 
(Nont.). The error bars show the standard deviation or error 
in the projections of the hyperspectral image and LiDAR.
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Objective 2 - Using clay layers to delineate geological units
Spectra from quadrats A (BIF), B (low grade hematite) and D (high grade hematite) have 
a similar curve shape and have large amounts of variability in reflectance, making these 
geological units difficult or impossible to distinguish based on their spectral characteristics 
alone (Fig. 7). The similarity in spectral curve shape occurs even though the relative amounts 
of minerals within the rocks are quite different (Tab. 2). Spatial variability in reflectance 
was largely attributable to spatial variability in incident radiation.

Table 2 - Percent weight of the dominant minerals within each quadrat (see Fig. 1b for 
context) derived from quantitative XRD. Note the presence of kaolinite in Quadrat C 
located over the shale band (S3).

Quadrat A Quadrat B Quadrat C Quadrat D

Mineral Average SD Average SD Average SD Average SD

Goethite 14.30 15.26 2.62 1.79 14.22 13.80 - -

Hematite 28.52 25.21 95.40 2.07 70.48 26.15 97.40 0.55

Kaolinite - - - - 11.40 17.28 - -

Quartz 53.88 24.76 - - 0.82 1.83 - -

Four distinct geological units were identified on the mine face using a combination of the 
field mapping and the results from the X-ray diffraction analyses (Fig. 8a). These were 
un-mineralised Banded Iron Formation (BIF; Unit 1), low-grade hematite mixed with BIF 
(Unit 2), and higher-grade hematite (Units 3 and 4). AFE identified the 3 clay layers that 
were mapped in the field (S1, S2 and S3). AFE correctly identified Al-OH absorptions 
associated with these clay layers. The wavelength parameter image shows that the majority 
of absorption features were located at 2196 and 2202, associated with kaolinite and 
kaolinite-smectite (Fig. 8b). A few scattered pixels had absorption features at 2208 nm, 
suggestive of illite-smectite. The designation of kaolinite-smectite and kaolinite-illite was 
based entirely on their wavelength positions; these mixed-layer clays were not, however, 
identified in any of the XRD analyses. This may be due to the poor sensitivity of the XRD 
analyses from powdered samples. These assignations should therefore be treated with 
caution. In any event, all absorptions found by AFE in this image are associated with Al-
OH and correspond to the correct location of the clay layers mapped in the field.
The wavelength positions of features in S1 (2202 nm) were, on average, different to those 
in S2 (2208 nm). Two narrower clay layers, not mapped in the field, were identified by 
AFE at the extreme left of the image. The clay absorptions mapped by AFE did not form 
contiguous linear features on the mine face. S1 and S2, in particular, had discontinuities 
in clay absorption along their length. This was, however, entirely consistent with field 
observations. The discontinuities in the clay layers indicate that the abundance of clays 
in these areas was small and that the absorptions were too weak to be included in the 
depth threshold used by AFE to identify coherent absorptions. The depth parameter image 
showed that clay layers S2 and S3 had deeper absorptions than did S1, indicating a greater 
abundance of the clays in these layers (Fig. 8c). Absorption feature width did not provide 
any useful information and is not therefore shown.
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Figure 7 - Mean (± SD, grey area) spectra from pixels within each of the quadrats from which rock 
samples were acquired (n = 700; see Figure 1b and Table 2): (a) Quadrat A; (b) Quadrat B; (c) 
Quadrat C; (d) Quadrat D. The common feature to all spectra is the long-wave slope of the ferric 
iron (Fe3+) crystal field absorption centred at ~ 900 nm (i.e. located to shorter wavelengths than 
those detected by the imaging sensor used in this study) is indicated in (a). The Al-OH absorption 
feature associated with some clay minerals (kaolinite in this case) is shown in (c), together with 
the location of extraneous absorption features caused by atmospheric water and carbon dioxide. 
Note the spectral similarity and the large within-quadrat variability of spectral reflectance (SD) 
from different geological units (graphs a, b and d).



523

European Journal of Remote Sensing - 2015, 48: 511-526

Figure 8 - Clay layers identified on a mine face by AFE (Objective 2): (a) Greyscale image with 
superim-posed clay layers mapped from field observations (S1, S2 and S3) delineating units 1, 2, 3 
and 4; (b) Wavelength parameter image; (c) depth parameter image. Scale is shown in a.

Discussion and conclusions
The advantage of AFE over other spectral analyses methods (e.g. the spectral angle 
mapper) is that it can be applied to any data acquired at SWIR wavelengths (2000 - 2500 
nm) without the use of a spectral library or a priori knowledge of the particular scene in 
question. By quantifying the depth of absorption features it also enables estimates of the 
relative abundance of absorbing minerals to be made. It must, however, be recognised that 
AFE can have the disadvantage of ‘underusing’ the data by classifying minerals on the 
basis of wavelength position rather than the shape of the entire spectral curve. In this study 
we used three AFE parameters to describe the deepest absorption feature in each spectrum: 
wavelength position, depth and width. If the amount of spectral noise in the data is small 
then features of secondary or tertiary strength could be parameterised. Other parameters 
may also be quantified using AFE e.g. asymmetry and slope between the shoulders of the 
absorption.
Our choice of a mine pit with complex surface geometry provided a difficult test of the 
methods used to map minerals and to quantify their areal coverage for two reasons. First, 
the highly variable topography of the surface caused large variations in the amount of 
incident light which can affect spectral signatures in complex ways, potentially limiting our 
ability to extract relevant information from them. Second, the mine pit was large resulting 
in a continuum of different distances from the hyperspectral sensor to the target. Despite 
these difficulties, AFE in combination with co-registered LiDAR data enabled 2.5D maps 
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of mineralogy to be constructed for large sections on the mine pit providing detailed 
information on the identity and abundance of clay minerals. The automatic method used to 
register the hyperspectral and LiDAR data enabled accurate estimates of the area covered 
by each mineral to be determined. This factor, combined with the high spatial resolution 
of hyperspectral and LiDAR data and their contiguous nature provide a powerful approach 
to the quantitative mapping of large areas using data acquired from field-based platforms. 
The results from Objective 1 clearly show that meaningful quantitative information can be 
extracted from these data and highlight the errors which can result from simply estimating 
area of minerals from 2D maps.
In Objective 2 we used hyperspectral data to map clay layers on a mine face as a way of 
distinguishing geological zones which are of similar visual or spectral appearance. The three 
major clay layers identified from field mapping were all identified using AFE. This opens 
up the possibility for contextual classification of geological units based on the location of 
these clay layers in the stratigraphy. The ability to combine, automatically, products derived 
from hyperspectral imagery with LiDAR data greatly improves the scope of applications 
for its use, as observed by Kurz et al. [2011]. For example, combining information on clay 
minerals with information on aspects of geometry (e.g. slope, aspect) enables pertinent, 
spatially referenced information to be incorporated into models of slope stability. Work 
is currently underway to determine the best ways in which information from the various 
absorption feature parameters can be combined into meaningful thematic maps.
The development of hyperspectral imaging systems for use in the field has opened up new 
possibilities for its use in quantitative mapping of minerals on natural and artificial vertical 
geological surfaces.
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