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Abstract

Zachary Jeremy Taylor Doctor of Philosophy
The University of Sydney October 2015

Automatic Markerless Calibration
of Multi-Modal Sensor Arrays

This thesis presents a novel system for calibrating the extrinsic parameters of an array
of cameras, 3D lidars and GPS/INS sensors without the requirement for any markers
or other calibration aids.

To achieve this, a new multi-modal metric, the gradient orientation measure is first
presented. This metric operates by minimising the misalignment of gradients between
the outputs of two candidate sensors and is able to handle the inherent differences in
how sensors of different modalities perceive the world.

This metric is successfully demonstrated on a range of calibration problems, however
to calibrate the systems in a reliable manner the metric requires an initial estimate
to the solution and a constrained search space. These constraints are required as
repeated and similar structure in the environment in combination with the limited
field of view of the sensors result in the metric’s cost function being non-convex. This
non-convexity is an issue that affects all appearance-based markerless methods.

To overcome these limitations a second cue to the sensors’ alignment is taken, the
motion of the system. By estimating the motion that each individual sensor observes,
an estimate of the extrinsic calibration of the sensors can be obtained. In this thesis
standard techniques for this motion-based calibration (often referred to as hand-eye
calibration) are extended by incorporating estimates of the accuracy of each sensor’s
readings. This allows the development of a probabilistic approach that calibrates
all sensors simultaneously. The approach also facilities the estimation of the uncer-
tainty in the final calibration. Finally, this motion-based approach is combined with
appearance-based information to build a novel calibration framework. This frame-
work does not require initialisation and can take advantage of all available alignment
information to provide an accurate and robust calibration for the system.
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be rotation about the X axis, pitch about the Y axis and yaw about the Z axis. The
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ground vehicle we take Z to be in the direction normal to the ground plane, X to be
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Any transformation or rotation conventions not specified in this thesis conform to the
conventions given by the Matlab 2015 Aerospace Toolbox [45].
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Glossary

Throughout this thesis we will look at both registration and calibration problems.
We view these as two related yet distinct problems and define them as follows:

Registration The mapping of data from one sensor to the data from another sensor.
The goal of registration is to map the data and may make use of techniques
such as affine transforms or local warping whose parameters would only be valid
for the scan they were used on.

Calibration The calculation of the parameters that define the sensor, for example
in a camera, the 3D location of the Charge-Coupled Device (CCD) and the
parameters of the lens. The goal of calibration is to model the sensors such
that any data they receive can be mapped onto the data of any other sensor.

Alignment A more general term that encompasses both registration and calibration.



Chapter 1

Introduction

Sensor calibration is a vital step in the operation of a wide range of sensor systems. An
accurate calibration is especially important when multiple sensors of different modal-
ities are utilised. This importance is because in the multi-modal case, each sensor
only provides part of the required information about an area of interest. Without
calibration, the system would be unable to combine the information given by each

sensor and would have a far less informative representation of the surroundings.

This thesis is concerned with the calibration of multi-modal sensors in a robust and
automatic manner without the requirement for any special markers or other calibra-
tion aids being present in the scene. To this end the thesis examines different cues
that provide information about the calibration parameters of the sensors. The result
of this research has led to the development of methods via which calibration can be
performed in the field by non-expert users, while placing minimal constraints on the

configuration of the sensors being calibrated.

1.1 Motivation

Due to advances in technology the price, size and power requirements of a large range

of sensors have begun to rapidly decrease. When this is combined with the steady
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improvements in the capability of the sensors, it is now becoming common for multiple
sensors of different modalities to be used for intelligent perception tasks. These tasks
can range from mobile robotics, where navigation sensors are combined with cameras
and lidars to allow the exploration of an environment, to fields such as geology, where
high-resolution range sensors are combined with hyper-spectral cameras to analyse
the mineral content in rock faces. As an example of the benefits that fusing multiple
sensor modalities can give, consider the raw sensor data shown in Figure 1.1 compared

to the fused representation given in Figure 1.2.

In all of these fields, before these different sensor modalities can be combined in a
meaningful way, the data must be aligned so that a point in one sensor’s frame of
reference can be projected into another sensor’s. These sensors are typically manually
calibrated by either placing markers in the scene or by hand labelling control points
in the sensor outputs [19, 70, 96, 103]. These types of methods have significant
limitations. They suffer from being time consuming and labour intensive; the method
used is generally only applicable to a single pair of sensor types, it requires the sensors
utilised to have an overlapping field of view, and requires a user with a significant level
of technical knowledge of the sensor operations. Furthermore, in some circumstances

these manual methods may give results that contain significant error [35].

Traditionally, while the sensors were only utilised on expensive experimental robots
that operated in constrained environments and were maintained by a team of experts,
manual calibration methods were a viable strategy for aligning a system’s sensors.
While tedious, the calibration was not onerous for the staff and could conceivably
last the lifetime of the robot. However, as these systems begin to be utilised by end
users in unconstrained environments, such as farms and mine sites, due to factors such
as rough motion, collisions, repairs or modifications, recalibration of the sensors may
be required on a semi-regular basis. This calibration may also need to be performed by
people with only a basic understanding of the sensor’s operating principals. Another
consideration is that, due to the low price point of some sensors (particularly IMU,
GPS and Cameras) the entire system may have been assembled by a non-expert, who

has little knowledge of the methodology required to calibrate the sensors.
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Figure 1.1 — Data taken from a section of the KITTI dataset. Top: an INS/GPS plot
of the vehicle’s movements. Middle: The view from one of the vehicle’s mounted
cameras. Bottom: One of the point clouds generated by the vehicle’s 3D lidar.
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Figure 1.2 — The fusion of all of the information shown in Figure 1.1 into a single
coloured 3D map of the area. The fused map provides a far richer view of the
environment than any one sensor could generate alone.
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Because of this, there is a steadily increasing need for methods that can automatically
calibrate the sensors, without the requirement of any markers or human interaction.
The aim of this thesis is to analyse the observations obtained by sensors of different
modalities during their typical operation and use this information to develop methods

via which the sensor outputs may be aligned.

This registration, utilising the surrounding environment, also introduces new issues as,
for any sensor and metric combination it is possible for there to be an environment
in which one or more of the sensor’s parameters is either unobservable or barely
observable. In the unobservable case the method will fail to give a calibration and the
user or robotic system can take action accordingly. However in the barely observable
case, the calibration will be heavily influenced by the noise in the sensors, resulting in
an exceptionally poor calibration. To account for this issue, we also develop methods

via which an indication of the calibration uncertainty can be obtained.

1.2 Contributions

Specifically this thesis makes the following contributions:

e The development of a new multi-modal appearance-based metric, the Gradient
Orientation Measure (GOM). This metric operates by aligning the gradients

present in different sensor modalities.

e An analysis of the issues surrounding appearance-based metrics including the

difficulty of their optimisation and accuracy estimation.

e A robust method for temporally aligning sensor outputs using the magnitude of
the observed angular ego-motion. The method can operate on any number of

sensors, is robust to outliers and considers the accuracy of the input readings.

e An extension of traditional hand-eye calibration techniques into a robust proba-

bilistic framework that considers the uncertainty of each sensor’s readings. This
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formulation allows the technique to be applied to multiple sensors simultane-

ously and for the uncertainty in the final calibration to be evaluated.

e The combination of appearance-based calibration and motion-based calibration.
This is done by using the motion-based calibration to constrain and guide the
optimisation of the appearance-based metrics, improving the robustness of their

calibration.

e The development of a second new multi-modal metric, the Intensity-Motion
(IM) metric for aligning lidar with cameras. This metric is designed for use
with mobile vehicle-based systems and utilises both appearance and motion

characteristics in its refinement.

e Extensive evaluations of all methods presented with different datasets and com-

parisons with state-of-the-art algorithms.

Many of these contributions have resulted in publications. Our initial examination
of the lidar-camera calibration problem is presented in [85]. The development of
GOM was first presented in [89]. Additional experimentation and examination of the
nature of GOM’s search space led to the publication of [90] and a brief overview of
the entire system was also presented in the workshop paper [86]. We first examined
motion-based calibration with an initial workshop paper [87]. The process presented
in this paper underwent significant revision and improvement before being presented
in [88] where we also considered metrics that utilised both motion and appearance

information.

During our research, several of the methods developed were utilised to align data
for a range of applications. In [50] and [51], 3D lidar scans were combined with
hyperspectral images to estimate the minerals present in a cliff face. Finally, in [29]
Red Green Blue (RGB) and InfraRed (IR) images of almond trees were aligned to

allow for the detection of almonds.

All of the source code used in generating the results found in this thesis has been

made publicly available at [84].
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1.3 Thesis Structure

Chapter 2 presents an overview of the existing literature in the field of multi-modal
sensor calibration. The work is divided into two main areas, appearance-based

and motion-based calibration.

Chapter 3 examines appearance-based calibration in further detail, mainly focus-
ing on the calibration of lidar-camera systems. In this chapter we analyse
several state-of-the-art methods and present our metric, GOM. We also present

a framework for its implementation in calibrating these systems.

Chapter 4 looks into estimating the accuracy of the resulting calibrations. Several
approaches are examined with their limitations, computational times and other
relevant properties considered. In this chapter we also explore the inherent lim-
itations of the accuracy analysis that can be performed when using markerless

calibration techniques.

Chapter 5 departs from appearance-based techniques and analyses methods that
can capture calibration information from the motion of the system. The advan-
tages and disadvantages of this approach are presented. Traditional hand-eye
calibration techniques are then examined and extended to allow the incorpo-
ration of the uncertainty of readings, multiple sensors and outliers in a prob-
abilistic framework. This framework also provides an estimate of the overall
confidence in the calibration. Finally, this chapter considers the combination
of motion-based techniques with appearance-based techniques to give a method

that exhibits the strengths of both approaches.

Chapter 6 presents the experimental results obtained by the methods outlined in
Chapters 3, 4 and 5, and compares these results to several of the state-of-the-art

techniques examined in Chapter 2.

Chapter 7 summarises the contributions made and looks towards future work before

concluding this thesis.
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Appendices

Appendix A gives a series of applications that the work from this thesis has

been applied to.

Appendix B compares the results obtained in this thesis with those in the
literature, and also examines the reasons why different authors report sig-

nificantly different results when using the same methods.

Appendix C gives a brief overview of some of the practical considerations

encountered when fusing the aligned data.
Appendix D looks at the different conventions for representing rotations.
Appendix E briefly outlines the finite difference methods used in this thesis.

Appendix F examines the trade-offs and limitations of the Monte Carlo and

delta method.

Appendix G looks at several options for mitigating the influence of outliers.



Chapter 2

Literature Review

The literature on multi-modal sensor calibration can be divided into two distinct
groups. The alignment of sensors based on the appearance of the surrounding envi-

ronment, and alignment based on the motion experienced by the sensors.

2.1 Appearance-Based Metrics

A large body of work exists for the calibration of sensors based on appearance infor-
mation. To provide an in-depth review of the methods most relevant to our proposed
techniques, we have limited the scope of this section to methods that are both multi-
modal and markerless. To highlight the similarities and differences among these
methods we further divide the appearance-based metrics into four sections. First,
we present a description of mutual information, followed by three application-based
sections. We review methods that operate on two dense images, then methods that
match a single high-resolution point cloud to an image, and finally, methods that
work on data gathered from a moving platform and optimise over a large number of

data frames.
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2.1.1 Mutual Information

Many of the common multi-modal image matching techniques are based on a metric
providing statistical dependency between two signals known as Mutual Information
(MI). This technique is widely used in medical image registration and a survey of
MI-based techniques has been presented by Pluim et al. [65]. MI is at the core of
many multi-modal registration techniques, including methods presented in all three
of the following sections of this literature review and two of the methods evaluated
in this thesis. Due to this widespread application, we begin our examination of the

literature with a brief description of the technique.

MI was first developed by Shannon [74] in information theory using the idea of Shan-
non entropy, which is a measure of how much information is contained in a signal.

Its discrete version is defined as:

H(X) = H(px) = zp 1og<;> (2.1)

where X is a discrete random variable with n elements and the probability distribution

Px = (Pl: 7pn)

When two variables are statistically independent, their joint entropy is equal to the
sum of their individual entropies. As shown in Equation 2.2, MI uses this fact to give
a measure of the signal’s dependence by taking the difference between the individual

and joint entropy H(M, N).

MI(M,N) = H(M)+ H(N) — H(M,N) (2.2)

To align sensor outputs using MI, the output of one sensor is transformed and mapped
onto the other sensor’s output. After this mapping has been performed, points that
contain information from both sensors are used to generate the MI value. An opti-

misation strategy is then applied to find the parameters of the transformation that
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maximise the given MI score, assuming that this will correspond to the optimal map-

ping of the data.

There are two main issues with the MI metric. Firstly, it makes no use of any local
structural information in the data [5], and secondly, it makes no use of the locations
where only one sensor reading exists. This second issue means that, when used for
registration, MI can be influenced by the total amount of information contained in
images. This causes it to favour mappings that give less overlap, as was shown in
[80]. This drawback is somewhat mitigated by using Normalised Mutual Information

(NMI), which is defined as:

H(M) + H(N)

NMI(M,N) = B )

(2.3)

In practice, for images, the required probabilities p(M), p(N) and p(M, N) are typi-

cally estimated using a histogram of the distribution of intensity values.

2.1.2 Multi-Modal Image-Image Systems

A vast number of methods have been proposed for solving the problem of multi-
modal image matching and the related problem of multi-modal stereo correspondence.
Many of these methods were first developed for the alignment of Medical Resonance
Imaging (MRI) and Computed Tomography (CT) scans for use in medical imaging

[56]. An example of the typical data these methods operate on is shown in Figure 2.1.

The most common methods used in medical image registration are the MI and NMI
methods that have already been discussed. However, many other methods exist. The
correlation ratio used by Roche et al. [68] provides a measure of the functional depen-
dence of the intensities. A second closely related metric is the correlation coefficient;
this is a less general metric providing a measure of the linear dependence of the two
images’ intensities. A method known as gradient correlation takes the normalised
cross-correlation between two gradient images created using a Sobel filter [63]. Zana

and Klein [102] used a Hough transform to register retinal images; the vessels in the
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Figure 2.1 — An example of the type of medical data the image-image registration
problem typically operates on. Left: A MRI scan of a human brain [41]. Right: a
CT scan of a human brain [21].

eye provided strong lines for this method to detect and align. Wachinger and Navab
[98] developed a method called entropy Sum of Squared Differences (eSSD) that uses
the entropy of patches of the images for registration of T1 and T2 MRI scans. The
method works by first creating images where each pixel’s intensity is equal to the
entropy of the pixels in an n-by-n patch around it. Matching is then performed by
taking the Sum of Squared Differences (SSD) of the two generated entropy images.
In the majority of these presented medical alignment methods, the metrics used were
developed by observing the relationship between intensities in corresponding scans
and developing a method to exploit any correlation observed. This means that while
the methods operate well in the scenario they were designed for, they may not gen-
eralise well to other multi-modal registration problems. The medical images are also
obtained in a controlled environment with a much smaller range of targets and scenes
than the sensors found on robotic systems. This reduces the need for the metrics to
be robust to issues such as outliers, sensor noise, dynamic objects and large offsets

that are encountered in robotic applications.

A method known as self-similarity was initially developed by Shechtman and Irani

[75] to identify an object in a scene from a rough sketch. It works by assuming that
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differently coloured areas in one image will be more likely to be coloured differently in
the other modality. Several attempts have been made to use self-similarity for multi-
modal image matching, usually with slight changes to the implementation to increase
performance. Torabi and Bilodeau [91] used self-similarity to perform multi-modal
stereo correspondence between visual and IR images. Heinrich et al. [25] made use of
an altered version they called the Modality Independent Neighbourhood Descriptor
(MIND) to register MRI with CT scans of the human brain. The main differences
between MIND and self-similarity are that the patches were a single pixel in size and

no conversion to log-polar bins was made.

Bodensteiner et al. [10] successfully matched images of different modalities using the
mono-modal feature descriptor called the Scale Invariant Feature Transform (SIFT)
[39]. In most multi-modal applications, however, it is found that the assumptions
made by SIFT about the directions and relative magnitudes of the gradients do not
hold [25]. To attempt to overcome this issue, Chen and Tian [12] developed a version
of SIF'T that was based on the absolute value of the gradient so that no distinction
was made as to whether the gradient was increasing or decreasing. This method
however, is still limited due to SIFT’s assumption of only linear changes between

images.

2.1.3 Single Laser-Image Scan Systems

These systems operate by matching a single high-resolution scan of an environment
with its corresponding image. High-resolution scans are usually produced by mount-
ing a single lidar on a rotating platform and even with current state-of-the-art scanners
can take up to an hour to integrate all of the data into a single scan. An example of

the type of data aligned by these systems is shown in Figure 2.2.

A method proposed by Li et al. [36] makes use of edges and corners. Their method
works by constructing closed polygons from edges detected in both the lidar scan
and images. Once the polygons have been extracted, they are used as features and

matched to align the sensors. The method was only intended for aerial photos of
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Figure 2.2 — An example of the type of data the single-scan registration problem
typically operates on. Left: an image of Sydney University’s Great Hall. Middle:
a section of a high-resolution lidar scan of the same building. Right: the image
projected onto the scan after alignment.

urban environments, where polygons can be easily observed in the data.

Mastin et al. [44] achieved registration of an aerial lidar scan by creating an image
from it using a camera model. The intensity of the pixels in the image generated
from the lidar scan was either the intensity of the laser return or the height from
the ground. The images were compared using the joint entropy of the images and
optimisation was done via downhill simplex. The method was only tested in an urban
environment where buildings provided a strong relationship between height and image

colour.

A method for aligning ground-based lidar scans of cliffs with hyperspectral images
of the same area was developed by Nieto et al. [54]. The method makes use of a
pre-calibrated second camera that is rigidly attached to the lidar to give RGB colour
to the lidar scan points. A camera model is then used to generate a colour image from
this laser scan. The hyperspectral camera’s image is matched to this generated image
by using SIF'T features to perform an affine transform on the image. The matching is
then further refined using a local warping that utilises the normalised cross-correlation
between patches. While this method worked well for the application presented, it had
the drawback of requiring a second pre-calibrated camera. In our own earlier work,
we developed a method to perform the same task without this limitation [85]. The

method operates by creating an accurate camera model that emulates the hyperspec-
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tral camera and using it to project the lidar points onto the camera’s images. Some
of the lidar point clouds did not have usable intensity information, therefore a new
intensity was assigned to the points, based on an estimation of the direction of their
surface normals. These lidar points were compared to the points in the image that
they were projected onto, using NMI. It was assumed that when this measure was
maximised, the camera model would have the same parameters as the actual camera
used, allowing it to relate each point in the image to its corresponding point in the

lidar’s output point cloud.

For the alignment of fixed ground-based scans in urban environments, several methods
exist that exploit the detection of straight edges in a scene [34, 38]. These straight
lines are used to calculate the location of vanishing points in the image. While these
methods work well in cities and with images of buildings, they are unable to correctly

register natural environments due to the lack of strong straight edges.

A more theoretical view on calibration is presented by Corsini et al. [14] where the
authors looked into different techniques for generating a synthetic image from a 3D
model so that MI would successfully register the image with a physical photo of
the object. They used NEW Unconstrained Optimisation Algorithm (NEWUOA)
optimisation in their registration and looked at using combinations of the silhouette,
normals, specular map and ambient occlusion to create an image that would robustly
be registered with the real image. They found surface normals and a combination of

normal and ambient occlusion to be the most effective.

2.1.4 Mobile Systems

While in theory a similar problem to the single lidar scan case explored above, mobile
sensing systems typically have some key differences. First, the scanning systems are
generally of much lower resolution due to the time constraint on the scans. This
lower resolution means that most methods developed for the above systems give poor
results on these datasets. An example of the type of data these systems typically

operate on is shown in Figure 2.3. A second key difference is that the sensors are
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Figure 2.3 — An example of the type of data the multi-scan registration problem
typically operates on. Left: an image taken by the KITTI sensor vehicle. Middle:
a Velodyne scan of the same area. Right: the image projected onto the scan after
alignment.

typically mounted in a rigid, fixed configuration on the sensor vehicle. This permits

the use of multiple observations to estimate the calibration parameters.

Widespread availability of 3D lidars capable of operating from a moving platform did
not happen until the Velodyne HDL-64E was released in 2007; because of this the
previous work in this field is rather limited. One of the first approaches that did not
rely on markers was presented by Levinson and Thrun [35]. Their method operates
on the principle that depth discontinuities detected by the lidar will tend to lie on
edges in the image. Depth discontinuities are isolated by measuring the difference
between successive lidar points and removing points with a depth change of less than
30 cm. An edge image is produced from the camera that is then blurred to increase
the capture region of the optimiser. The average of all of the edge images is then
subtracted from each individual edge image to remove any bias to a region. The two
outputs are combined by projecting the isolated lidar points onto the edge image and
multiplying the magnitude of each depth discontinuity by the intensity of the edge
image at that point. The sum of the result is taken and a grid search used to find the
parameters that maximise the resulting metric. A drawback of this method is that
the averaging step means the process cannot be directly applied to the single-scan

case.

Two very similar methods have been independently developed by Pandey et al. [61]

and Wang et al. [100]. These methods use the known intrinsic values of the camera and
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estimated extrinsic parameters to project the lidar’s scan onto the camera’s image.
The MI value is then taken between the lidar’s intensity of return and the intensity
of the corresponding points in the camera’s image. When the MI value is maximised,
the system is assumed to be perfectly calibrated. The only major difference between
these two approaches is in the method of optimisation used; Pandey et al. make use
of the Barzilai-Borwein (BB) steepest-gradient ascent algorithm, while Wang et al.
make use of the Nelder-Mead downhill simplex method. In both implementations,
aggregation of a large set of scans is required for the optimisers used to converge to

the global maximum.

More recently an approach was developed by Napier et al. [52] for registering a push
broom 2D lidar with a camera. To form an image from the 2D scanner, its scans
are first combined with an accurate navigation solution for the mobile system to
generate a 3D scan. A 2D image is then produced from this 3D scan using a camera
model. The two images have the magnitude of gradients present in them calculated
and normalised over a small patch around them. The camera and lidar are assumed
to be aligned when the sum of the differences in these gradient magnitude images
are minimised. The metric also has an additional weighting that favours areas with

higher resolution scans.

The techniques developed for the appearance-based calibration of lidar-camera sys-
tems mounted on mobile platforms are the most directly applicable to our area of
research. Because of this, several of the techniques outlined in this section are com-
pared to our methods in the experiments carried out in Chapter 6. A comparison of
the accuracy of these methods reported by different authors in the literature is also

presented in Appendix B.

2.2 Motion-Based Metrics

These methods exploit the motion of rigidly mounted sensors to calibrate the system’s
parameters. The most common application of these techniques is in the calibration

of systems that incorporate robotic arms through the use of ‘hand-eye’ calibration.
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This is not the only application though, as in recent years several methods have also

applied this approach to ground vehicles and other sensor systems.

2.2.1 Hand-Eye Calibration

The hand-eye calibration problem is a well known problem in robotics [76, 93, 99].
It is usually expressed as follows: if two points are rigidly connected and both points
undergo a series of known transformations, how can the transformation between the
two points be recovered? The name is derived from one of the first robotic applications
of the problem, where a camera was mounted onto the ‘hand’ of a robotic arm and the
transformation between the ‘hand’ and the camera or ‘eye’ needed to be calculated.
The problem is also sometimes referred to as AX = XB, as if A and B are the
transformations the two sensors undergo, X is the transformation between them. A

depiction of the calibration process for a robotic arm is shown in Figure 2.4.

In its most basic form the problem is well understood, with techniques developed by
Tsai, Lenz and others in the late 80s giving efficient methods that are optimal in the
least squared sense [93]. These methods operate by first finding the rotation axis for
each transform. All points on a rigid body share the same rotation axis, and so this
can be found before the translation is known. Once these axes are found, they can be
optimally aligned using an approach known as the Kabsch algorithm [32]. After the

rotation has been found, the translation can be obtained using simple linear algebra.

These techniques have the disadvantage of requiring calibrated markers to be placed
in the scene to allow the camera’s transformations to be calculated. More recently,
several methods have made use of visual odometry methods to remove this limitation
2, 26]. As visual odometry utilising a monocular camera has no scale associated with

it, this additional parameter must be estimated for every transformation pair.

Another recent modification of the problem was given by Ackerman et al. [1] where a
solution is calculated for two sensors that operate asynchronously and provide data
at undefined intervals. In this approach, the fact that the magnitude of a rotation

is constant for all points on a rigid body is exploited. This magnitude allows the
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Figure 2.4 — The standard hand-eye calibration problem. A robotic arm is moved
through a series of poses. By examining the transformation experienced by the
robotic hand A and the Camera (aka the ‘Eye’) B, the transformation between the
camera and hand can be recovered using the relationship AX = XB.
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authors to find the most likely correspondences of the data. Ovren and Forssen [57]

also made use of this in setting the timing between a camera and IMU.

This technique has also been adapted for real-time applications, for example Schneider
et al. [72] presented a method that makes use of a Kalman filter to calibrate an INS
system with a stereo camera rig. A method for online calibration of a phone’s IMU and
camera was presented by Li et al. [37]. In this method a large number of parameters
are estimated in addition to the extrinsics to account for the imperfect nature of the

phone’s low-cost sensors.

As well as extrinsic parameters, motion-based methods can be used to calibrate the
intrinsic properties of a camera. Keivan and Sibley [33] used an IMU to calibrate the
focal length and centre point of a camera. The process also detected if the calibration

parameters undergo significant change and in this event recalibrates.

2.2.2 Lidar-GPS Calibration

Underwood [95] utilised the motion of a vehicle to calibrate a Global Positioning
System and Inertial Navigation System (GPS/INS) to operate with 2D lidar. To
overcome the inherent observability issues of using a 2D lidar, Underwood constrained
the environment to a field with a single vertical pole that was used as a target. The

authors also considered the variance of the resulting calibration.

2.2.3 Camera-Camera Calibration

In work presented by Heng et al. [27], four cameras with non-overlapping fields of
view are calibrated on a vehicle. The method operates by first using visual odometry
in combination with the car’s motion provided by odometry, to give a coarse estimate
of the cameras’ position. This is refined by matching points observed by multiple
cameras as the vehicle makes a series of tight turns. Bundle adjustment is then

performed to refine the camera position estimates. The main limitation of this method
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is that it was specifically designed for vision sensors and makes use of feature matching

between multiple sensors to refine the calibration.

2.3 Summary

Multi-modal sensor calibration is a problem that is present in a wide range of fields and
applications. In many of these fields, the research into the calibration techniques has
focused solely on the specific sensor setup they are utilising and generally gives little
consideration to the techniques used to calibrate similar setups in unrelated fields.
This has resulted in fundamentally different calibration approaches being established
for use with medical systems, high resolution lidars, mobile robotic systems and
robotic arms. This is reflected in the presentation of the literature where each group

of calibration approaches is largely dominated by a single application.

In the coming chapters we will examine the advantages current techniques developed
in each of these fields offer, and when possible, combine them. This will lead to a cali-
bration framework that can provide accurate results while placing minimal constrains

on the layout and sensors that can be calibrated.

In Chapter 3 an appearance-based metric, GOM, that takes inspiration from both
medical and robotic approaches will be presented. It will then be demonstrated that
this metric can be used in a large range of lidar-camera and camera-camera calibration
problems. After this, Chapter 4 examines methods for estimating the accuracy of the
calibration, and in doing so, highlights several shortcomings of the appearance-based
approach. To overcome this Chapter 5 looks at the motion-based methods utilised in
robotic arm calibration and extends these approaches to consider issues encountered
in the mobile robotics domain. Finally, the strengths of both the appearance- and

motion-based methods are combined into a single robust framework.



Chapter 3

Appearance-Based Metrics

3.1 Introduction

In order to reliably utilise appearance information to align two sensor outputs of dif-
ferent modalities, an observed location must be unambiguously identifiable in each
sensor’s output. This requirement significantly limits the sensors that can be cali-
brated using these techniques. The most common sensors where appearance metrics
are used for calibration are cameras of various modalities (IR, RGB, multi-spectral,
hyper-spectral, etc.), structured light sensors and lidar sensors. In this chapter we
examine the challenges of this calibration problem and present a metric we have devel-
oped, the Gradient Orientation Metric (GOM), which can effectively align the output
of sensors of this type. Unlike most current calibration approaches, the new metric
is also able to calibrate from a single-scan pair. This property makes our approach
suitable for a broad range of applications since it is not restricted to calibration based
on multiple observations from sensors attached to a rigid mount. For example, our
approach is appropriate for registration of multi-temporal data and data collected
from non-rigidly mounted sensors. One of the applications that motivated the devel-
opment of this metric was to align images and lidar scans taken at a mine site. The
camera and lidar scanner were operated by two different teams at different times,

and the only location provided was through use of a hand-held GPS system. Further
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Figure 3.1 — Camera and lidar scan being combined. Top left: Raw lidar data. Top
right: the corresponding camera image. Bottom: The textured map obtained after
alignment with GOM.

details of this case can be found in Appendix A.1. Figure 3.1 shows an example of

the result given after aligning a camera and lidar sensor with the GOM metric.

Specifically this chapter makes the following contributions:

e The formulation of a pipeline for comparing 2D /3D sensor data with information
captured by a camera.

e The development of a new multi-modal error metric, the Gradient Orientation
Measure (GOM).

e The examination of possible features for use in giving intensity information to
3D data.

e The exploration of the issues surrounding the optimisation of appearance-based

multi-modal metrics and their challenging search space.
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3.2 Multi-Modal Sensor Approach

Figure 3.2 illustrates the overall idea of our approach to appearance-based multi-
modal registration and calibration. The method can be divided into two main stages:

feature computation and optimisation.

The feature computation stage converts the sensor data into a form that facilitates
comparisons of different alignments during the optimisation stage. The initial step
is to assign an intensity value to each data point. For 2D data the average of the
colour channels is used. For 3D data, the user selects one of several possible features,
usually dependant on the exact sensor and application (the features considered will
be presented in Section 3.3). After this is done, histogram equalisation is performed
to ensure high contrast in the data. Next, a gradient detector is applied to the data to
estimate the intensity and orientation of gradients at each point; the gradient detector
used also depends on the dimensionality of the data. The strength of the gradients
is histogram equalised to ensure that a significant number of strong gradients are
present. This gradient information is finally passed into the optimisation, completing

the feature computation step.

The sensors’ outputs are aligned during the optimisation. This is done by defining
one sensor’s output as fixed (called the base sensor output) and transforming the
other sensor’s output (referred to as the relative sensor output). In our framework,
to allow simple mapping of the relative sensor’s output onto the base output, we set
the base sensor output to always be a dense image. In the case of two 2D images,
an affine transform is used, and for 2D-3D alignment, a camera transform is used to
project the 3D points of the relative output onto the 2D base output. Once this has
been done, the base output is interpolated at the locations that the relative output

was projected onto to give the gradient magnitudes and directions at these points.

Finally, GOM is used to compare the gradient features between the two outputs and
to provide a measure of the quality of the alignment. This process is repeated for
different transformations until the optimal set of parameters is found. For the op-

timisation, our approach uses particle swarm [47] for one-off data registration, and
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Figure 3.2 — An example of the steps of our approach. This diagram shows the
alignment of a camera image with a high-resolution lidar scan coloured by its
return intensity.
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Figure 3.3 — An example of the features used to give intensity information to the lidar
scans. Left: normals of points. Middle: return intensity. Right: range.

Nelder Mead simplex [53] for multi-sensor platform calibration. Different optimisers
are used as, in the platform calibration case, scans can be aggregated. This aggrega-

tion smooths the search space and allows a local optimiser to be used.

3.3 Features

To allow the chosen metric to correctly calibrate the system, there has to be a strong
relationship between the intensity of corresponding points. For 3D range sensors,
several possible features exist that can be used to set the points’ intensities. The
features analysed in this work are: (i) the normals of the points, (ii) the return
intensity and (iii) the distance of points from the sensors. Histogram equalisation is
performed on all features to improve contrast. An example of these features being

used to colour a lidar scan is shown in Figure 3.3

Normals of points: One of the most significant factors influencing the appearance
of an object in a camera image is the angle between the camera, the object’s surface,
and any light sources. Because of this, there is a relationship between a point’s
normals and the camera’s pixel intensities. To obtain an estimate of the normals, a
plane is approximated at the location of each point. This is done by first placing the

points into a k-d tree [8], from which the eight nearest neighbours to each point are



3.3 Features 27

found. The normal vector is calculated from the eigenvectors and eigenvalues of the

covariance matrix C, given by Equation 3.1 [69]:

1

C = 2:1(1% —c)(pi — C)T (3.1)

oo

where p; is the i-th nearest neighbour location and c is the location of the point.
The eigenvector corresponding to the smallest eigenvalue of C' is the best estimate
of its normal vector to the plane. Once the normals have been calculated, the three
values that make up the normal vector are converted into a single intensity value by
calculating the difference in angle between the normal vector and a line between the
point and the origin of the scan. While other methods based on the angle of the

points can be used, this method was empirically found to give good results.

Return intensity: Lidars provide a measure of the return strength of the laser from
each point. This usually gives a strong relationship between the intensity of matching
points. This occurs as both laser reflectance and the camera pixel intensity rely on the
reflectance of the target material. While most lidar systems will output the intensity
reading, it cannot be used in all situations as the intensity of return is dependent
on the distance of the object from the sensor. This means that when multiple scans
from different locations are combined, the intensity readings associated with a point
will depend on which lidar recorded it. A second issue with this method occurs when
using systems that make use of multiple lasers. In these systems, each laser scans a
different section of the environment. For example, in the Velodyne HDL-64E, the scan
is built up by rotating its head containing 64 separate lasers [30]. Each of these lasers
has slightly different characteristics and can give substantially different intensity of

returns for the same object [79].

Range: The distance from the scanner to a point is a simple, fast, and often effective
way of generating intensity values for 3D points. The relationship between point
distance and intensity, however, is not as strong as for the other features. It operates
on the assumption that, in environments with a large number of distinct items, a

relationship between the distance to each item and the colours of that item will
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typically exist. This feature works best when used in fairly cluttered scenes with a
large number of objects at different distances from the camera, such as on a busy
street or in a garage. In open environments such as fields or highways, however, the

method generally fails due to a lack of sharp changes in depth.

3.3.1 Transformation

The transformation applied to align the sensors’ outputs depends on the dimension-
ality of the two sensors. If one sensor outputs 3D data, for example a lidar, and the
other sensor is a camera, then a camera model is used to transform the 3D output.
If both sensors provide a dense 2D image, then an affine transform is used to align

them.

Camera Models

To convert the data from a list of 3D points to a 2D image that can be compared
to another sensor’s image, the points are first passed into a transformation matrix
that aligns the sensor’s axis. After this has been performed, one of two basic camera

models is used. For most sensors, we utilise a pin-hole camera model that is defined

as:
CTr
cam — - 3.2
Xz Zo > ( )
cy
cam — I 3.3
Y Yo > (3:3)
Where:

Team 5 Yeam are the X and Y position of the point in the image.
x, y, z are the coordinates of points in the environment.
¢ is the principle distance of the model.

Ty , Yo are the location of the principle point in the image.
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Figure 3.4 — Cylinder model used to represent a panoramic camera.

For some of our datasets, the images were obtained from a panoramic camera. In
regular cameras, an image is created when light strikes a 2D CCD. However, in this
panoramic camera, the CCD is a single vertical line array mounted on top of a motor
and slowly rotated to build up a panoramic image of the environment. To account
for this, a camera model that projects the points onto a cylinder must be used. A
rough depiction of this is shown in Figure 3.4. This model projects the points using

[71]):

Team = To — carctan(?y) (3.4)

cz

Yeam = Yo — \/m (35)

A depiction of how the camera model operates on a point cloud can be seen in Figure

3.5.
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Figure 3.5 — An image of a lidar scan. A virtual camera has been placed in the scan
and is generating an image from the scan that will later be aligned with a real
image of the same scene.

Affine Transform

To perfectly align all points in two images taken by two cameras at different locations,
the distance to each point in the images must be known. This is due to parallax
changing where objects appear in each image. This alignment can be estimated
using stereo-vision methods. However, the correspondence between pixels must be
recalculated for each frame. Due to the difficulty of performing such alignment on two
cameras of different modalities, we instead calibrate the camera images using a simple
affine transform. While not perfect, for two cameras with only small differences in
location and orientation, an affine transform can give high-quality image registration

104].
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3.3.2 Gradient Calculation

Once the features have been calculated and used to assign intensity values to the data,
the gradient at each point must be calculated. This is required as our method utilises
the angle between corresponding gradients to determine the strength of alignment in

the sensor outputs.

The magnitude and orientation of the gradient of a camera’s image intensity is calcu-
lated using the Sobel operator [78]. Calculation of the gradient from 3D data sources
is slightly more challenging. The gradient of the points in the 3D data should be
from the perspective of the camera so that, once transformed to the camera’s frame

of reference, the orientations for both sensors will be aligned.

To do this we provide two different approaches. In both methods however, the first
step is the same. Initially, the points are projected onto a sphere that is centred at

the estimated location of the camera using Equations 3.6 and 3.7.

4
sphere — 3.6
Tsph arccos(\/m) (3.6)
Ysphere = arctan(y) (37)

xz

A sphere is used rather than a plane as in image generation, as with a plane, points
in front of and behind the camera can adversely be projected onto the same location.

It was also found to be more resilient to error in the estimated location of the camera.

From this point the first method uses linear interpolation to generate an image from
these points. We set the resolution of the image so that the number of pixels in the
image is approximately equal to the number of points being interpolated. Once the
interpolation is done, a Sobel operator is used to find the gradients. After this has
been done, we again use linear interpolation to find the gradient intensities at the
corresponding lidar points. This method gives good results on high-resolution scans

such as those produced by the Riegl lidar VZ-1000 and LMS-Z420i. However, it can
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perform poorly with lower resolution scans such as those produced by the Velodyne

HDL-64E.

Because of this, unless otherwise stated, we make use of a second method. In this
method each point on the sphere has its 8 nearest neighbours evaluated before the
gradient is calculated by adding the gradient vectors to each neighbouring point. The

process for this is shown in Algorithm 3.1.

Algorithm 3.1: Gradient calculation for 3D sensors
Let
Dz, Py, Py be the current point’s x-position, y-position and intensity-value, respectively
Nz, Ny, N, be the neighbouring points’ x-position, y-position and intensity-value, respectively
g,temp, Gmag, gor be the gradient vector, a temporary vector, the gradient vector’s
magnitude and the gradient vector’s orientation, respectively

g=20
for neighbouring point n do
T =Pg — Ny
Y=DPy — Ny
UV =Py =Ty
tempmag = 8\/;;—&-71/2
temp,, = arctan2(y, x)
L g=g+temp

As the gradient is dependent on the location of the camera, it requires re-estimation
every time the camera’s extrinsic parameters are changed. However, as this process is
computationally expensive, for the purpose of gradient calculation in our process it is
assumed that the initial parameters are approximately equal to the final parameters.
This assumption allows the gradients to be pre-calculated and gives a large reduction
in the computational cost. We concluded that this assumption would be valid for most
practical cases as the search space used for optimising the lidar’s extrinsic calibration
is usually at most 1m and 10 degrees, whereas the distance to most objects in the
environment in all our experiments was well over 10m. This meant that there would
have been only minor changes in the calculated gradients’ magnitude and orientation.
To test the validity of this, a simple experiment was run on one of our datasets. A
lidar scan of the Australian Centre for Field Robotics (ACFR) building (ACFR scan
1 presented in Section 6.3.3) was first aligned using GOM without the simplifying



3.3 Features 33

0.71 GOM values for different offsets in X when calculating gradients 0.71 GOM values for different offsets in Roll when calculating gradients
om 0 degrees
————— 1m *—— 10 degrees
0.7 — — — 10m 0.7 — — — 45 degrees
0.69 0.69
0.68 0.68
g 0.67 g 0.67
© ©
> >
= =
o 1 o
© 0.66F i © 0.66F
I
!
0.65 0.65
0.64 - 0.64 -
0.63 0.63
062 1 1 1 J 062 1 1 1 J
-100 -50 0 50 100 -100 -50 0 50 100
Offset in Yaw of Camera (degrees) Offset in Yaw of Camera (degrees)

Figure 3.6 — The plots illustrate how offsets in the position and orientation of the
camera affect GOM, when assuming constant gradient values. GOM is plotted for
a range of yaw values to show the global maximum for each run.

assumption of constant gradient values. The gradients were then recalculated for
different levels of offset from the position and perspective of the camera. These scans
were used to calculate the GOM values over a range of camera yaw values. The results

are shown in Figure 3.6.

Three different levels of offset were introduced into the X location at which gradients
were calculated at. These offsets were Om, 1m and 10m. Despite the different locations
where the gradients were calculated, the global maximum for GOM still occurred in
the same location for all three runs. While the value of the global maximum for the
1m and 10m error runs was slightly lower than that of the Om run, it was still clearly
distinct from other local maxima. Similar results were also obtained from different

datasets and introducing errors into the Y and Z dimension.
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The same experiment was performed for the orientation of the lidar. For its roll, three
different errors of 0, 10 and 45 degrees were used. A roll offset of 10 degrees has little
impact on the results. However, a roll offset of 45 degrees significantly reduced the
value of the global maximum. This is expected, as a change in roll has the most direct
impact on the orientation of the gradients, and therefore an initial offset as large as
45 degrees breaks the assumption that the initial parameters are approximately equal
to the final parameters. Pitch was found to have less impact, and yaw is independent
of the gradients. While this assumption would slightly degrade the value of the global
maximum, this experiment showed that for our application it would be unlikely to
shift it significantly, making the large reduction in computational time offered by the

assumption worthwhile.

3.4 The Gradient Orientation Measure (GOM)

The formation of a measure of alignment between two multi-modal sources is a chal-
lenging problem. Strong features in one source can be weak or missing in the other.
A reasonable assumption when comparing two multi-modal images is that, if there
is a significant change in intensity between two points in one image, then there is a
high probability there will be a large change in intensity in the other modality. This
correlation exists as these large changes in intensity usually occur due to a difference
in the material or objects being detected. This correspondence even exists between
seemingly unrelated features such as range and reflectance. For example, a sharp
change in distance usually indicates a change in the object being detected. There is a
high probability that these objects will be made of materials with different reflectance
properties, meaning it is likely that there will be a significant change in reflectance

at the same location.

GOM exploits these differences to give a measure of the alignment. GOM was inspired
by a measure proposed by Pluim et al. [64] for use in medical imaging registration.
The presented measure, however, has several differences as Pluim et al.’s method is

un-normalised, uses a different calculation of the gradient’s strength and direction,
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Figure 3.7 — A pair of example images showing how gradients may reverse direction
between modalities. In the left image, taken at 950 nm, the trees are white with
a black sky behind them. However in the right image, taken at 418 nm, the trees
appear black and the sky white. This means that if the gradient between the trees
and sky is calculated, the gradients will be 180 degrees out of phase for the two
images.

and is combined with mutual information. GOM operates by calculating how well
the orientation of the gradients are aligned between two inputs. For each pixel, it
gives a measure of how aligned the points are by taking the absolute value of the dot

product of the gradient vectors:

alignment; = |g(1) - 9(2.5)| (3.8)

where g(; ;) is the gradient in image 7 at point j. The absolute value is taken, as a
change going from low to high intensity in one modality may be detected as going
from high to low intensity in the other modality. This means that for two aligned
images, the two corresponding gradients may be out of phase by 180 degrees. An

example of this occurring is shown in Figure 3.7.

Summing over the values of these points results in a measure that is dependent on
the alignment of the gradients. An issue, however, is that this measure will favour
maximising the strength of the gradients present in the overlapping regions of the

sensor fields. While this issue could be corrected by normalising the vectors before
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taking the dot product, sharper gradients represent features that are more likely to be
preserved between images. The stronger gradients also mean that the direction of the
gradient calculated will be less susceptible to noise, and thus, more accurate. This
means that these points should be given an increased weight, which normalising at
this stage would remove. To correct for this bias, the measure is normalised after the
sum of the alignments has been made, by dividing by the sum of all of the gradient

magnitudes. This gives the final measure as shown in Equation 3.9:
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The measure has a range from 0 to 1, where, if 0, every gradient in one image
is perpendicular to that in the other, and 1 if every gradient is perfectly aligned.
Something of note is that if the two images were completely uncorrelated, we would
expect the measure to give a value of 0.5. This means that if two images have a GOM
value of less than 0.5, the score is worse than random and it is a fairly safe assumption
that the system is in need of calibration. Some typical GOM values for a range of

images is shown in Figure 3.8. The NMI values are also shown for comparison.

3.5 Normalisation and Bias

The normalisation performed prevents the metric from exhibiting a bias towards
maximizing the overlap between sensors. Unfortunately, in doing so it creates a
second bias which results in the metric favouring alignments with exceptionally small
numbers of overlapping points. The reason for this bias is that, as the number of

points reduces, the chance of two unrelated areas matching increases.

In our examination of the literature, all markerless appearance metrics we have en-
countered are susceptible to one of these two biases. MI’s bias to minimising overlap
is well known [80, 65] and, in the extreme case, NMI will report perfect alignments for

a single overlapping point regardless of its value. In Levinson’s method [35], adding
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Figure 3.8 - GOM and NMI values when the base image shown on the left is compared
with a range of other images.
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more points increases the perceived alignment strength, giving a strong bias to max-
imising overlap. Several methods have been looked at for reducing the effect of these
biases, such as a simple threshold, weighting by overlapping points or examining the
entropy of the overlapping region. However, no solution could be found that both
removed the bias and maintained the possibility of aligning sensors that did only

contain small areas of overlap.

In problems with a tightly constrained search-space (as formed by an accurate initial
guess to the parameters of the system), the bias towards minimising overlap generally
does not play a significant role. This is due to the search-space only containing

calibrations that have sufficient overlapping points to mitigate its effect.

3.6 Projecting 3D Points to 2D Images

Several issues arise when attempting to create an image from the point cloud produced
by a 3D sensor. The sparse nature of the scans (especially those obtained from
mobile platforms) causes the majority of the pixels to have no associated intensity
value. Aliasing issues also occur from forcing the points onto the discrete grid that
makes up an image. These issues significantly degrade the quality of the alignments,
especially for methods based on edge directions, such as GOM. A typical image
produced from Velodyne data is shown in Figure 3.9. To overcome these issues, a
range of different post-processing options and interpolation or blurring techniques
were attempted. However, it was found that most of these techniques would destroy

sharp edges and do little to improve results.

To prevent these issues, the generation of a traditional image from the 3D data is
only done for visualisation purposes. Instead, the points are kept in a list, and when
they are projected using the camera model their position is not discretised. To get
the matching points from the base sensor’s image, linear interpolation is performed

at the coordinates given by the point list.
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Figure 3.9 — An image generated from Velodyne lidar data is shown on the left. The
centre image shows the image’s gradients calculated using a standard Sobel filter;
the right image shows the gradients calculated from the point cloud by our own
technique. Due to the sparse nature of the lidar points when a Sobel filter is used,
its gradients tend to depend more on the distribution of points than their intensity.
In this instance this results in almost all the gradients being detected as horizontal
or vertical lines.

3.7 Optimisation

The registration of one-off scans, and the calibration of a multi-sensor system tend
to have significantly different constraints on their optimisation. Because of this, our

approach for optimising each problem differs, as outlined below.

3.7.1 Multi-Sensor Calibration

When multiple scans can be aggregated, as in the case of multi-sensor platform cali-
bration, the optimisation is performed using the Nelder-Mead simplex method. This
method is a well established local optimisation technique developed by Nelder and
Mead [53]. Tt creates a simplex on the function and uses the points of this simplex to
estimate the position of the maximum. It then uses this information to replace one
of the points in the simplex. This process repeats until the function converges to a
solution. For this optimiser to reliably converge, the search space must be convex. If
this condition is not met, the optimisation can become trapped at a local maximum.
Generally, this requirement would not be satisfied by any of the metrics analysed
(GOM, MI ,NMI or the metric presented by Levinson and Thrun [35]). However, for
the case of multi-sensor calibration, in some cases, it can be a reasonable assumption

for three key reasons:
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1) In calibrating a multi-sensor system, an accurate initial guess as to the alignment
of the sensors is often known. This is because the sensors are mounted in a rigid setup

with most uncertainty caused by the location of the sensors within their housings.

2) As the sensors are rigidly mounted, a large number of sensor readings can be aggre-
gated. Aggregating readings is beneficial as it both provides additional information
and helps to minimise the impact of alignments between unrelated areas. The effect

of this is to reduce the strength and number of local maxima produced by the metric.

3) The basin of attraction for GOM’s global maximum can be substantially increased
by applying a Gaussian blur to the output of one of the sensors it is aligning. This
works as the GOM exploits the strong gradients present at overlapping edges as an
indicator of an accurate alignment, and, unless the edges are partially overlapping,
there is nothing to show how close to the correct alignment the measure is. When
blurring is applied, the size of the edges is increased, providing more overlap between
them, and an improved indication of the alignment. An issue with this blurring is that
it removes many of the small edges that can be used to indicate a precise alignment,
reducing the accuracy of the metric. To prevent this issue, an optimisation pyramid
was implemented where the result of a level of the pyramid is used as the initial guess
for the optimisation of the same image with less blurring. In our experiments, four
layers were used, with Gaussians with o of 4, 2, 1 and 0 applied. The effect of the

aggregation and blurring can be seen in Figure 3.10.

3.7.2 Registration

Optimisation of the registration problem with single scans is generally significantly
more challenging than the calibration problem. The main reason for this is that
the error in the initial guess for the sensors’ alignments can be very large. In one
of the situations we explored, the initial conditions were only given using consumer
GPS systems or a simple note claiming that the sensors were positioned close to each
other. This can lead to initial position errors in excess of 1m and 10 degrees. There is

also no rigid connection between the sensors, preventing scan aggregation from being
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Figure 3.10 — GOM values plotted for the roll and yaw of a typical lidar-photo align-
ment using one scan-image pair (top) and 20 scan-image pairs (middle). Also shown
is the result of applying a Gaussian blur to the 20 images (bottom). Aggregation
and Gaussian blurring both significantly smooth the function, allowing for easier
optimisation of the metric.
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used. These limitations result in a highly non-convex search space that requires a

global optimisation technique to find the maximum.

We evaluated several different global optimisation methods such as pattern search
3], global search [94], genetic algorithms [20] and particle swarm optimisation [47].
Particle swarm was found to perform the fastest of the options while still being robust.
It was also fairly intuitive, allowing the progress of the optimisation to be evaluated

during operation.

Particle swarm optimisation works by randomly placing an initial population of parti-
cles in the search space. On each iteration, a particle moves to a new location chosen
by summing three factors: i) it moves towards the best location found by any particle,
ii) it moves towards the best location it has ever found itself and iii) it moves in a
random direction. The optimiser stops once all particles have converged. The process
of registration is shown in Algorithm 3.2. The implementation of particle swarm used
was developed by Chen [13]. In our experiments we used a particle swarm optimiser

with 500 particles.

3.8 Summary

In this chapter we have outlined a framework for calibrating 3D lidar and camera
sensors based on the appearance of an arbitrary surrounding environment. This
process operates by creating a virtual camera and using it to project the lidar data
onto the real camera’s image. Once projected, a measure of the similarity between
the data is generated. To this end, we have developed a metric GOM to act as an
indication of the alignment of the two sensors. The optimisation of this metric is
dependent on whether the setup allows the aggregation of multiple scans, and the

accuracy of the initial guess, as the search space is inherently non-convex.

One of the key features required for deploying robotic systems into the service of non-
expert users is self-diagnostics. To perform this the system will require a measure of

the quality of any alignment performed, as well as ways to estimate and propagate
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Algorithm 3.2: Particle swarm algorithm
Let
r%(t) be the position of particle i at time ¢
v*(t) be the velocity of particle 4 at time ¢
pf;l’L be the local best of the ith particle for the nth dimension
p? be the global best for the nth dimension
nel,2,..N
t be the time
At be the time step
¢y and co are the cognitive and social factor constants

@1 and ¢ are two statistically independent random variables uniformly distributed between
0 and 1

w be the inertial factor

for each iteration | do
if f(?ji(l +1)) > f(pi’L(l)) then
| ph R+ 1) =

end

if f(r'(l+1)) > f(p?(l)) then
| pr(l+1)=r"

end

v}, (t+ At) = wo (t) + c1p1 [ph" — ol ()] At + coga[pd, — i, ()] At
ri(t+ At) = ri (t) + Atvl (¢)

end

any uncertainty in its calibration parameters. In the coming chapter we examine
error estimation techniques that can be applied to these metrics and any challenges

and limitations faced in doing so.



Chapter 4

Variance Estimation

Estimation of the variance in the parameters is an important component of sensor
registration and calibration, as without some indication of accuracy the results are of
limited value. However this is an area that is often overlooked; in our examination of
the appearance-based markerless calibration literature, only one paper provided any

estimate of the uncertainty [62] and this formed a lower bound on the error.

The only method utilised for estimating the accuracy of a calibration is often by a
user observing the projection of one sensor’s output onto another. In many situations
this method is impractical and error prone; it also cannot be applied to autonomous
systems. Part of the reason for the lack of methods to estimate calibration uncertainty

is the difficulty of its calculation in multi-modal markerless registration problems.

This chapter presents the following contributions:

e An examination of the challenges regarding the estimation of the variance for
appearance-based markerless metrics and the constraints required for accurate
and timely estimation.

e An exploration of methods that can be utilised in estimating the variance of an
algorithm’s output.

e The consideration of the assumptions these variance approximation techniques

make and the examination of issues, such as any bias or outliers present.
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4.1 Variance in Appearance-Based Metrics

Most approaches to estimating the uncertainty of parameters obtained by maximising
a metric make the implicit assumption that the search-space is convex, or at the very
least has no local optima. This assumption stems from the methods only examining
the structure either at, or in a small region around the global maxima. Both the
delta method [55] and Cramér-Rao lower bound [67], which are examined later in
this chapter, implicitly assume this. This limitation links the need to calculate the
covariance in a robust and efficient manner to the need to develop a convex search
space, an area that poses serious difficulty to metrics that rely on the environment’s

appearance.

This difficultly arises, as regardless of the approach taken, local maxima will occur
due to repetitions in the environment. To illustrate this, consider an example where
two sensors are placed in two different, but identical rooms. Given only observations
of the environment, it is impossible for the sensors to tell that they are not viewing
the same location and the metrics value would reflect this confusion. While this is an

extreme example, repetitions are abundant in man-made environments.

This means that when a single sensor reading is used to align two sensors, the local
variance, and hence confidence in the method may be very different to the actual. An
example of this problem is shown in Figure 4.1, where GOM optimisation has been
run aligning a single lidar scan with a camera’s image. The distribution contains a
large number of very ‘spiky’ local maxima. As a result of this, if we were to evaluate
our confidence in one of these local maxima being the correct solution, by looking at
the local curvature or nearby points, this would cause us to give a vastly overconfident

assessment of the situation.

While no closed-form covariance estimate exists in these cases, a measure of the
uncertainty can still be obtained using sampling based methods. To do this, in
situations where the variance was required (See Section A.1) we applied a global
optimisation technique in combination with bootstrapping of the data. While this

method was found to be effective it has two significant drawbacks.
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Figure 4.1 — The GOM values when roll and pitch are adjusted for a single Velodyne
scan aligned with an image. The resulting distribution is highly multi-modal with
a large number of local optima.

The first issue is that neither bootstrapping nor global optimisation methods provide
any form of formal guarantee, or even bound, on the accuracy of their results. The
second issue is that both methods require large numbers of function evaluations. The
method described in Section A.1 took several hours to complete, despite the use of
efficient Graphics Processing Unit (GPU) routines for the evaluation of the metrics,
a heavily constrained search space and only 20 samples used in the bootstrapping

process.

To avoid these issues, methods that utilise the environment typically recommend
that they are calibrated using a large number of readings from a variety of locations.
The hope is that any chance alignments, similar areas, repeated structure and other
idiosyncrasies will be unique to that one pair of sensor readings. If this holds then for
sufficiently large numbers of scans, all of these chance alignments and their associated
local optima will be smoothed away. Ideally this will result in a perfectly convex cost
function. As previously discussed this convexity facilitates the analysis of the variance

and observability of the parameters using simple analytical methods.

To further assist in developing a convex cost function, the search space of possible
solutions may also be clamped to a small range around the correct solution. This is
done as, even for large numbers of scans, most appearance metrics will never become

globally convex. The main reason for this is that most appearance-based multi-
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Figure 4.2 — A camera image and two sections of the corresponding lidar scan. The
top left scan has a close initial alignment, whereas the bottom left scan is far from
the correct solution.

modal metrics only utilise overlapping regions of the sensors. This limitation will, in
almost all cases, result in a non-convex search space. For example, consider aligning
a camera with a high-resolution lidar by projecting the lidar’s generated point cloud
onto the camera’s image, as shown in Figure 4.2. In the case of the top left scan,
while the parameters used to create this scan differ slightly from those of the actual
camera, they are close to correct. This results in a similar image for which, if the
correct multi-modal metric is applied, could conceivably have a smooth and easily
optimised convex search space between its current position and the true parameters.
On the other hand, if the initial guess to the alignment is very poor (bottom left scan
in Figure 4.2) none of the lidar points projected onto the image will correspond to
anything in the camera’s field of view. This means that there is nothing to indicate
how the alignment parameters must change to bring the two sensors into a closer
alignment. With the exception of highly contrived environments, adding more scans

will not do anything to alleviate this issue.

The need to clamp the search space to as small a search region as possible is further
motivated by the so-called ‘curse of dimensionality’ that increases the difficulties
that the non-convex nature of the search space presents. To illustrate this, consider
an example where we optimise parameters of an n dimensional problem. For each

parameter of this problem, let us assume we have a metric that provides a smooth
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and convex surface for 50% of the search space. For a one-dimensional problem this
results in a randomly initialised gradient ascent optimiser having a 50% chance of
correctly finding the global maxima. This would mean that running an optimiser
such as this for several different initial conditions would be an effective and efficient

method for locating the maximum.

However, in all of our problems we have a minimum of 6 unknown variables cor-
responding to the extrinsic calibration parameters to find. Thus the chance of a
randomly initialised local optimiser converging to the correct solution would be 0.5
or roughly 1.6%. This small convex region now means that the previously suggested
optimisation method of starting a series of local optimisers has become far more
computationally expensive. These problems only get worse as more parameters are
optimised over (focal length, camera centre, lens distortion parameters, timing offset,

etc.).

The clamping of the search space also acts to alleviate two other issues. The first
is the bias to overlap that was discussed in Section 3.5. The second is that in data
gathered from ground vehicles in urban environments, there typically also exists a
strong local optima when a sensor is rotated 180 degrees from the correct position.
This is due to the symmetry often present in the shape of roads and the position of

buildings to either side of them.

In a system being calibrated by an expert user, many of the issues presented here
would not pose a significant issue as they could quickly be recognised and accounted
for. However, in the case of a fully automated system, one set up by a hobbyist or

being maintained by non-experts these issues must be addressed.

To facilitate a more robust solution to the automatic calibration problem we examine
other cues, such as sensor motion, that can be used for calibration; this is presented
in Chapter 5. Before this area is explored, we require the ability to estimate the
variance of the output of an arbitrary function given the variance of its inputs. Thus,

we first present the methods we have made use of to achieve this.
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4.2 Estimating the Variance of Algorithms

In calculating the uncertainty present in a system, there are many situations where
the variance of the output of an algorithm is desired given the variance of its inputs.
It is also desirable that the output is a Gaussian distribution as this simplifies the

equations and the propagation of probability estimation of future steps [58].

Estimating the variance of the output provided by an algorithm can be approached
in different forms, and it is in general problem specific. In our work we make use of
a range of approaches listed below, in roughly the order of preference with the most

desirable first.

4.2.1 Exact Covariance Calculation

The exact covariance can be calculated when an analytical method for formulating the
output uncertainty from the input uncertainty is given, and the resulting distribution
is Gaussian. For example, the rotation of a vector x by a rotation matrix R gives the

equation z = Rx and has its covariance given by:

cov(z) = Recov(x)R" (4.1)

4.2.2 Approximate Analytical Variance

An analytical method that gives an approximate covariance is used in situations
where the output variance is either non-Gaussian or intractable to calculate, but a
close approximate formulation exists. An example of this situation is the rotation of
a vector by a rotation matrix R, where both the vector and the rotation matrix have
an associated covariance. In this situation we make use of the angle-axis vector form
of the rotation r and note that for ‘small’” deviations in r designated Ar, the change

in the corresponding rotation matrix R, designated AR is:
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0 —AT3 ATQ
AR=| Ars 0 —An (4.2)
—ATQ AT‘l 0

Barfoot and Furgale [6] make use of this relationship to form several approximate

analytical covariance methods of varying complexity and accuracy for this situation.

4.2.3 The Delta Method

The approximate approach given above can allow accurate estimation of the variance
for a large range of problems. However, the approximate formula used is unique to
each problem, and it may be difficult to find an approximation that remains accurate

for all possible input values and variances.

In these situations we make use of the delta method [55]. This method is a simple
and powerful approach to approximating the variance of a function. It operates
by forming a first-order approximation to the function at the point of interest and
finding the variance of this approximation. Let z = f(x), where f is an arbitrary
function relating two variables  and z; the delta method gives an approximation to

the covariance of this equation by:

ﬁT
ox

d
cov(z) = —fcov(x)

o (4.3)

As this method is only used when no analytical or simple approximation to the vari-
ance exists, the analytical calculation of g—fg is typically also intractable. Because of
this we make use of simple finite difference methods (Appendix E) in its calcula-
tion. In our work this approximation is utilised when calculating the variance of our

translation estimates during optimisation.
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4.2.4 Approximate Covariance of a Minimisation

Consider the case where we are attempting to find the values of z, 2, that minimise

the function y = f(z,2) given data &. Let this situation be expressed as:

2 = g(2) = argmin, f(z, %) (4.4)
then applying the delta method from before yields

@T

dg
) oz

—=cov(z)

~ o (4.5)

cov(Z

However, the issue with this formulation is the term 2. As g(#) is a minimisation,
any analytical calculation of its derivative is usually beyond our abilities to compute.
We also face the issue that if the finite difference method is used to solve this term,
it will require the minimisation process to be repeated at least once per element of
2. This minimisation process is typically computationally expensive and would likely

form a significant bottleneck in any approach that made use of it.

Fortunately this term can be approximated by a relationship presented in [11]. As
we have performed a minimisation, the gradient of g(x) at & must be zero; from this

the implicit function theorem means that at x = # and z = ¢(%)

dg __ @ )

or @) 0xr0z (4.6)

This equation removes the need to find the partial derivative of the minimisation

function and simplifies the calculations!

. In many cases the underlying function f
is also a relatively simple function such as a least squares calculation, allowing for

simple calculation of the needed derivatives.

1See [11] for the full derivation.
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4.2.5 Cramér—Rao Lower Bound

In situations where the algorithm utilises probabilities, an absolute lower bound can
be calculated on the variance through the use of the Cramér-Rao lower bound [67].
This process calculates the minimum possible covariance an unbiased estimator can
possess. It is the inverse of the Fisher information matrix, which is calculated by
finding the negative expected log likelihood of the second derivative of the output of
the algorithm of interest. In our work it has been found that this method is typically
too optimistic in its estimates to be used alone. Instead, we typically make use of it
as a simple sanity check as any variance given by other methods should be greater

than this lower bound.

4.2.6 Monte Carlo Simulation

The delta method makes the assumption that the local shape of a cost function can
be extended to the whole space. As we discussed in Section 4.1 this will not be the
case for functions with multiple local optima, as are frequently observed in multi-
modal appearance metrics. In these situations Monte Carlo simulations can be used
to estimate the output [42]. The process is very simple; a point is drawn from the
input distributions and evaluated. This point is recorded and the process repeated a
large number of times and the final covariance is calculated from these points. This
random sampling method is the most general approach, however it is usually the most

computational expensive.

4.2.7 Bootstrapping

In some situations the covariance of one or more input variables is not known. If, in
these cases, the system is also over-defined by these variables, an indication of the
output covariance can still be calculated. To do this a technique known as ‘boot-
strapping’ is used [17]. In bootstrapping a new subset of the variables is created by

sampling the original variables with replacement, the algorithm is run and the result
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recorded. This is repeated a large number of times and the covariance calculated
using the outputs. This method can be combined with Monte Carlo simulation when

some variables have known covariance.

4.3 Issues with Approximations

In all of our methods we represent the results using the distribution’s first and second
moments, which are optimally described by the Gaussian distribution [31]. While
this gives an accurate approximation for many situations, in some cases the utilised
Gaussian is a poor fit to the actual distribution. One of the most common cases
where we encountered this in our work is dividing by a value that is approximately 0.
For example, this happens in practice when we calculate the translation between two
sensors for a timestep where little rotation has been observed. Figure 4.3 shows the
case of calculating i where x has a p of 0.01 and o of 0.05. This gives a distinctly
multi-modal output. However in cases where o « i these multi-modal peaks disappear

and the Gaussian approximation becomes valid.

This is a trend present in most cases we have encountered. As sigma reduces, the
validity of the Gaussian approximation increases, thus in practice, as long as a signif-
icant number of low covariance readings occur, accurate results can still be obtained.
Our outlier rejection process also acts to remove the cases where these issues result
in the variance being underestimated by a significant margin. These issue as well as
the trade-offs in performance and speed given by the Monte Carlo and delta method
are further explored in Appendix F.

A second problem is that bootstrapping and random sampling both rely on a suffi-
cient number of samples to give accurate results. This is an issue, as in general the
more samples obtained, the more accurate the estimation will be, but at the expense
of computation time. In all cases where we make use of Monte-Carlo or bootstrapping
methods, unless explicitly stated otherwise, 1000 samples are used. It was empiri-
cally found that for most situations this number gave what we considered, to be a

reasonable trade-off between accuracy and run time [16].
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Figure 4.3 — The PDF of % when x has a p of 0.01 and o of 0.05. This PDF gives
a multi-modal distribution which would be poorly approximated by a Gaussian
distribution preventing many of the covariance estimation strategies from operating
correctly.

4.4 Bias

In our work we generally make the assumption that our methods produce estimates
that are unbiased, however this is not always the case. The main source of bias in
our work stems from the assumption that the intrinsic calibration of our sensors is
perfect. The result of errors in this calibration will have different effects depending on
the sensors. As one example of the possible issues these biases can cause, consider the
Velodyne sensor used at the ACFR. Originally this Velodyne sensor had some slight
error in its intrinsic calibration that resulted in all scans appearing slightly ‘squished’
vertically. This intrinsic calibration would lead to all movement in this direction
being underestimated. As most ground-based robots typically undergo little vertical
movement, errors in this direction tend to be amplified and even a small error can

have a significant effect on the accuracy of the resulting calibration.

While it is possible to estimate the bias in the sensors, even a simple linear model
would double the number of parameters that must be estimated during calibration.
This would increase computation time and more importantly would increase the sen-

sitivity of the method to noise. As significant errors in the sensor intrinsics would



4.5 Outliers 5}

generally mean that any extrinsic calibration would be of limited use, we have chosen
to assume no bias in our setup. While for the systems examined this assumption
appears valid, the estimation and compensation for any bias is an important topic,

though one whose examination lies beyond the scope of this thesis.

4.5 OQOutliers

In some circumstances the estimated covariance can form a poor representation of the
true error present in an estimate. Cases where the variance has been overestimated
have little impact on the system other than to undervalue some information, and while
not desirable, will not adversely affect the results by any significant amount. However,
points where the variance has been greatly underestimated will have a large impact
on a method’s accuracy and reliability. These points are deemed to be outliers and

their impact must be mitigated to allow the system to converge to a correct solution.

There are a large range of possible approaches to the handling of outliers present in
the literature [43]. In our approach we deal with outliers by using trimmed means.
Trimmed means (also known as truncated means) is a process via which the data is
sorted and a set ratio of the worst performing data is labelled as outliers and discarded
before the mean of the remaining data is taken. In our work we set 25% of the data
as outliers, however the process is fairly insensitive to the exact value used as long
as it is greater than the true ratio of outliers. We chose trimmed means as it gave
an intuitive process and worked with our local optimisation framework; for the full

justification as well as comparisons to other options refer to Appendix G.

4.6 Summary

In this chapter we first examined the issues associated with the non-convex search
space given by the appearance metrics and their implications for the robustness of

any optimisation. We then examined the situations and constraints that allow an
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estimate of the calibration’s uncertainty to be obtained. After this we explored the
more general problem of estimating the uncertainty of the output of an algorithm
given its input uncertainty. Finally we explored the issues with the approximations
made to obtain these uncertainty estimates and looked at the issue of outliers in the
data. The techniques outlined in this chapter lay the ground work for motion-based

calibration approaches that will be presented in Chapter 5.



Chapter 5

Motion-Based Metrics

5.1 Introduction

While appearance-based metrics have the potential to quickly and automatically cal-
ibrate the sensors of a system, they suffer from two main drawbacks: i) they require
the sensors to have an overlapping field of view, and ii) they generally require a highly
constrained search space in order to locate the metric’s global maximum in a robust
and timely manner. These limitations are inherent to how these metrics operate; a
sensor cannot align to what it does not observe and an unconstrained environment

can contain repetitive structure and chance similarities that will yield local maxima.

Therefore, to improve the robustness and reliability of automated registration and
calibration, and to increase the range of problems to which it can be applied, we must
look to other sources of alignment information. In a large number of applications
the sensors are positioned in a rigid mounting and provide continuously updated
information about their surroundings. The most common example of this is the

rapidly growing field of mobile robotics.

In this chapter we examine the problems involved in motion-based calibration and
present a pipeline for exploiting the motion of a vehicle travelling through an arbitrary

environment to provide the extrinsic calibration of its sensors. The intuition behind
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Figure 5.1 — A plot of the detected motion of a camera, Velodyne and GPS/INS system
that are part of the KITTT vehicle during a drive. Simple observation of the paths
allows a user to see how the axes must be rotated to align the co-ordinate systems
of the sensors. More detailed analysis can also give the translation between the
Sensors.

this approach is very simple, as illustrated in Figure 5.1.

In this Figure, a sensor vehicle equipped with a camera, Velodyne and GPS/INS sys-
tem has been driven through a short series of turns. The motion that each sensor has
undergone has then been independently estimated using sensor-specific techniques.
From observing the plots of this motion, a user can quickly identify the rough rota-

tions each sensor must undergo to bring its co-ordinate systems into alignment. More
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detailed analysis also allows the translation to be estimated. This is the intuition

behind a category of calibration techniques known as ‘hand-eye’ calibration.

In the following sections we will begin by deriving the constraints and equations that
relate the motion sensors on a vehicle undergo, to the offset between the sensors.
With these relationships in place, we will formulate motion-based error metrics for
the rotation, translation and timing offset between the sensors. These metrics are
constructed in a probabilistic manner that makes use of the uncertainty present in
each sensor reading. This allows for the comparison of the offset between any number

and combination of cameras, 3D lidars and navigation sensors.

A process for automatically initialising the sensor offset parameters, and optimising
them using the developed error metrics is then presented. This process not only
provides the most likely estimate for the sensor layout, but also gives the confidence
in the parameters obtained. Furthermore, this system, unlike the previously examined
appearance-based techniques, does not require the user to provide any form of initial

guess as to the configuration of the sensors.

As this motion-based approach does not require a constrained search space it is
complementary to previous appearance-based approaches, by providing the accu-
rate initialisation needed by appearance-driven methods (such as those presented
in [35, 52, 61, 85]). We will finally present new techniques that make further use of

the sensor motion in combination with the environment’s appearance.

Specifically this chapter makes the following contributions:

e The formulation of a pipeline for calibrating an array of 3D lidars, cameras and
GPS/INS sensors on a mobile vehicle moving through an arbitrary scene.

e The extension of ‘hand-eye’ calibration techniques to a probabilistic form that
incorporates the uncertainty of each sensor’s readings.

e The use of motion-based techniques to constrain and guide the optimisation of
appearance-based approaches.

e The development of a new alignment metric, the Intensity-Motion (IM) metric,

which is designed for aligning lidar-camera systems on mobile vehicles through
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a combination of motion and appearance cues.

e The estimation of the uncertainty present at all stages of the calibration.

Algorithm 5.1 presents an overview of our process for motion-based calibration. In
this chapter we will present the theory, design decisions and practical considerations

that led to the development of this approach.

Algorithm 5.1: High level overview of motion-based calibration approach.

1. Given n sensor readings from m sensors.
. . . . . ik—1
2. For each sensor ¢ at time k convert sensor readings into sensor motion T}~ . Each
b

transformation has the associated covariance matrix cov(Tii,’,f_l).
3. Arbitrarily set a sensor to be the base sensor B. ]
4. Use the sensor transformations to find their rotational velocity w;”,:_l and its associated

variance.
5. Use the rotational velomty to find the timing offsets T, B that minimises the trimmed sum of
i, (k—1477)
i, (k+77)
6. Approximate the variance of the resulting timing offset TiB and transfer it to the uncertainty
i,k—1

).

the variance of w, weighted by the inverse of its variance.

of the motion cov(T}
7. Use the timing offset to interpolate all sensor readings to when the slowest updating sensor
obtains readings and reject uninformative data.
8. Convert R:::’,:_ to angle axis form Al k=1
9. For every sensor t, find a coarse estlmate for Rf by using the Kabsch algorithm to solve
A:Z = RB AB k=1 weighting the elements by their variance.
10. Refine RB by ﬁndlng the values that maximise the trimmed sum log-likelihood of
A;:Z_l = Rz AZ *=1 for all combinations of two sensors 4 and J-
11. Approxnnate the variance of the resulting rotations Rf .

12. For every sensor %, find a coarse estimate for tB by finding the least squares solution to the

system of equations given by considering t& = (Rl k=1 I~ 1(RBtB k=1 tz ﬁ Yy at

each time-step, weighting the equations by their parameters variance.

13. Estimate the scale of the transformations provided by the monocular cameras and their
associated uncertainty.

14. Refine tf by finding the Values that maximise the trimmed sum log-likelihood of
t;. = (R;::,’:_l I)~Y(R; - t”’k 1) for all combinations of two sensors ¢ and j.

15. Approximate the variance of the resultlng translations t?.

16. Find all sensors that have overlapping field of view.

17. Use sensor-specific metrics to estimate the transformation between sensors with overlapping
field of view.

18. Combine results to give final RP, cov(RP), t? and cov(tB).
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Figure 5.2 — A diagram of a car with a camera (C), Velodyne lidar (V) and navigation
sensor (N). The image on the right shows the position of the three sensors on the
vehicle. The image on the left shows the transformation these sensors undergo at
timestep k.

5.2 Estimating Sensor Extrinsics from Motion

Before we can utilise sensor motion to calibrate a system, we must first explore how
this motion is related to the sensors’ parameters. Figure 5.2 shows a depiction of
how each sensor’s motion and relative position are related. As the vehicle moves, the
transformation between any two rigidly mounted sensors x and y at timestep k can

be given by:

TITew " =Tor Ty (5.1)

This is the basic equation from which all of the motion-based alignment information

is derived.
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Our objective in performing the motion-based calibration of a system is to find the
values of the inter-sensor rotation R, translation ¢; and timing offset 7, for which
Equation 5.1 holds. In order to achieve this, we begin by first examining Equation 5.1

in terms of its rotational and translational components. This yields two equations:

T k=1 z,k—1 px
yRZ,k - Rm,k Ry (52)
and
ol = RO ! (5.3)

Importantly, if the terms of the rotational component (Equation 5.2) are examined,
we see that this equation is not dependant on the translational offset. This allows
the rotational component R to be found before the translational component t; is

known, decoupling these two terms.

Until now, we have assumed that no time offset is present in the sensor readings.
This assumption is not required however. If we take two sensors that were started
independently and assign variables a and b to represent their individual timesteps

then Equation 5.2 becomes:

x b—=1 _ pza—1pz
sRybl _ pra-ip (5.4)

y,b

which for non-constant rotational velocities will only hold when:

T, =b—a (5.5)

Furthermore, the magnitude of the angle through which a rotation matrix rotates a
point is independent of the frame of reference. Thus, if the angular magnitude of the

rotation is given by 6, the relationship can be expressed as:
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W=b—a = 0 ' =000 (5.6)

This equation is now completely independent of the extrinsic transformations between
the sensors, only depending on the timing offset 7. This allows the timing offset
between the sensors to be found before any extrinsic transformation information is

known.

These three Equations (5.2, 5.3 and 5.6) are the standard equations that many authors
([1, 2, 26, 93] among others) have made use of in aligning sensor data from motion.
If the assumption of a rigid mounting holds and the sensors undergo sufficient non-

degenerate motion, these equations will give the unknown offset between the sensors.

Due to several factors, by far the most significant being noise in the sensor motion es-
timates, the observed values will not perfectly conform to these equations. Typically,
to account for these differences in readings, an approach that finds the least-squares
error for the system of equations is used. While this can be an effective approximation
method, it implies that every sensor reading was made with equal accuracy. Further-
more, if the approach was extended to consider more than two sensors, it would imply

that each sensor’s readings were of equal worth.

In a constrained environment that has been designed to calibrate a specific sensor
set, this assumption of equal accuracy in each sensor reading may be approximately
true. However, if we wish to calibrate a system composed of a wide range of sensors,
as it moves through an unconstrained environment, these assumptions will detrimen-
tally affect our system. Issues such as a Real-Time Kinematic (RTK) GPS losing
connection with its base-station, or a visual-odometry system encountering an area
with insufficient near-field objects to accurately estimate its translation, must be ac-
counted for. In order for a system to handle a wide range of sensors, as well as the
range of possible situations an unconstrained environment will provide, it must be

able to reason about the value of each reading it receives.

If the readings were given only as the simple point estimates that they are often

taken as, such a system would not be possible. Fortunately, the sensors utilised
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generally provide a far richer range of information than this single parameter. From
this information it is usually feasible to not only estimate a sensor’s motion, but also

the variance of this estimate.

To account for this, we reformulate the calibration problem to one that not only con-
siders the value of the sensor readings, but also the confidence that each sensor has in
its values. This allows the formation of an approach that uses the evidence given by
each sensor reading and reasons as to the most probable sensor configuration. Impor-
tantly, as this system takes into consideration the accuracy of each sensor reading and
the effect it has on the resulting system, it is also able to give an accurate assessment
of its confidence in the final configuration. We see this as one of the key advantages
of our approach as it allows a user or robotic system to know the confidence it can

place in the obtained configuration.

To facilitate this approach, we extend the above equations relating sensor offsets
to motion, to include the uncertainty in the readings. In the following sections, this
extension will enable us to develop error functions that can give the relative likelihood

of any set of offsets between the sensors being correct.

5.2.1 Timing Offset

In our work we utilise a three-element angle-axis form to represent our angles, with a
second three-element vector giving the variance of each element. This representation
will be covered in further details in Section 5.5.1. In this form, if [r,,r,,7.] are the

rotational elements, the magnitude of the rotation angle is given by:

0 = [[[rz,ry, r1ll2 (5.7)

and if [07,,07,,07.] are the associated variance, then the variance in the rotation

magnitude is given by:

cov(f) = ||[02,, 02,02 ]|I1 (5.8)

T Ty Uz
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The rotation of two sensors z and y at timestep k is linked via Equation 5.6. Using
this and modelling the sensor observations by their first and second moments, the

relative likelihood of these sensor observations for this system is given via:

1

(ea:k: 1 yk 1
exp | —
\/27r (cov (6™ + cov (0 ) ( 2(COV(9x,k Y) + cov(6 )
(5.9)

£9<x’ Y, k)

This formulation is equivalent to the evaluation of the PDF of a Gaussian distribution.
The distribution is formed using the difference between the two sensor readings for

the angle and is evaluated at 0.

5.2.2 Rotational Offset

As previously stated the rotations of the sensors are related by:

"RYV = RUCIRE (5.10)

Due to our use of an angle-axis rotation representation, this equation can be simplified.

If A is our rotation vector, then the sensor rotations are related by:

AP = REAT! (5.11)

From this starting point we perform a process similar to that done for the timing
offset. We first utilise the above equation to find the error present for the readings of

two sensors x and y at timestep k. This is expressed as:

Repr(z,y, k) = AV~ — REATE (5.12)

with associated variance:
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cov(Rerr (w9, k) = cov(RYE) + Ry cov(Ryy ) (Ry)T (5.13)

These equations are then combined to give the likelihood of the readings for the given

system:

1 Rerr(x7 y7 k)2
Lr(z,y,k) = exp <— (5.14)
: \/27r cov(Rerr(z,y, k)) 2 cov(Rerr (2, y, k)

This is equivalent to evaluating the likelihood of a Gaussian distribution with mean

R, and covariance cov(Re..(z,y, k)) at 0.

5.2.3 Translational Offset

The translational offset is related to the sensor motion and rotational offset via:

ol = RO ! (5.15)

Again, taking the error present for two sensors at timestep k we can calculate the

error in the system as:

terr(z,y, k) = (RU3H — Dt + 37 — Rio! (5.16)
However, unlike in previous calculations, the variance of the above system cannot
be given using a simple analytical combination of the components. This is due to
the interaction of multiple variables containing uncertainty, and the need to convert
several rotation estimates from angle-axis to rotation-matrix form. We overcome this
issue by making use of the aforementioned delta approximation (Section 4.2.3) to

estimate cov(te (2,9, k)).

Once this approximation has been performed, this information is again used to give

the likelihood of the readings via the equation:
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1 2
Loy, k) ferr (2, Y, k) ) (5.17)

\/27r cov(terr(z,y, k)) < 2 cov(terr(,y,k))

Scale Ambiguity in Translational Offset

For monocular cameras, unless further assumptions about the system are made, the
translational motion estimates will be normalised with no sense of scale. In the case of
a system solely comprised of cameras, this prevents the calculation of the translational
offset. In any other setup however, we will be able to utilise the camera’s motion to
give the offset. This is done through the introduction of a scale term s; for the
translation that is estimated at the same time as the translational offset ¢7. If in this

instance sensor y is the camera, Equation 5.16 would become:

terr (2,9, k) = (RYL — D)t + sty — RoDy (5.18)
With this new term for estimating the error in the modelled translation in place, all

other steps in the translation offset likelihood estimation would proceed in the same

manner.

5.2.4 Combining Multiple Readings

The above processes gives expressions for the likelihood of a pair of sensor readings
fitting our rigid sensor model, for a given set of offsets. Assuming that each sensor
reading is independent of the others, the joint likelihood of scans is then found by
multiplying together the likelihood functions. In practice, for numerical convenience

this is done through summing log-likelihoods.

Finding the parameters that maximise each of these pairwise log-likelihood sums
would result in a series of pairwise offsets between the sensors. Unfortunately, due
to sensor noise, it is unlikely that these estimates would form a consistent system.

That is, if there are three sensors x, y and z, then for this process T;TY # T7. To
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prevent this issue from occurring we consider the likelihood of all possible pairwise
offsets simultaneously, summing their pairwise log-likelihood to give a single measure
of the likelihood for the entire system. This likelihood should be maximised when the

correct timing, rotation and translation parameters are utilised.

More formally, if the system is comprised of n sensors each making m readings, our

objective is to find the parameters that maximise the following expression:

> > Z log L(x,y, k (5.19)
r=1y=1 k=1

for each of the likelihood expressions given by Equations 5.9, 5.14 and 5.17.

5.3 Optimisation

Given the motion of the individual sensors, the process for calibrating the system can

now be divided into three stages:

1. Timing offset estimation
2. Rotational offset estimation

3. Translational offset estimation

At each stage the optimal values for the unknown parameters are found by maximis-
ing the log-likelihood equations outlined in Section 5.2. This maximisation must be
performed using an optimisation process. In our implementation, this is accomplished
using a local optimisation strategy, the Nelder-Mead Simplex Optimiser [53]. This ap-
proach was used as it is a derivative-free method that can efficiently find the required
maximum in a timely manner. The initial point used in starting this optimisation is

specific to the parameters being optimised and will be discussed in Section 5.4.

After the optimisation has located the most likely parameters, the uncertainty in this

estimate is found. This is calculated by taking the maximum values obtained from
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two strategies. We first make use of the Cramér-Rao lower bound. This estimate
is a lower bound however, and in many situations was found to be optimistic about
the actual accuracy of our readings. To overcome this issue we combine it with the
modified delta method presented by Censi and La [11]. This method, was discussed
in Section 4.2.4 and extends the delta method to allow for efficient variance estimates

on optimisation problems.

While the delta method should have an estimate that is always greater or equal to the
Cramér—Rao lower bound, in practice, rounding and numerical issues can sometimes
prevent this relationship from holding. Taking the maximum of the two estimates

helps to generate a more robust estimate.

5.3.1 Propagating Uncertainty

In this optimisation process, each stage utilises the previous stage and thus will be
influenced by the accuracy of its solutions. The dependence of the translation on the
rotational offset estimation’s accuracy is captured in the calculation of L(x,y, k).
However, the same is not true of the timing offset. While both the rotational and
translational offset equations depend on it, their equations implicitly assume exact
correspondence between the scans. To overcome this limitation we transfer the un-

certainty from the time parameter to the sensor motion estimates.

This is accomplished by assuming that the timing offset estimate is sufficiently ac-
curate that the rate of change of the sensor motion between the actual time and the
estimated time is roughly constant. That is, if 7 represents the timing offset, 7 the
true value of the timing offset, T the transformation the sensor undergoes and At

the error in our timing offset estimation, then:

d7T
dr

_dT

T dr

T=7

(5.20)
T=T+AT

With this assumption, the angular and linear rotational velocity can be taken to be

approximately constant for this time range. This means that the relationship between



5.4 Initialisation 70

timing error and position error can be linearly approximated as:

dT
AT ~ ATt— 21
TdT s (5:21)

The variance given by this equation is added to the variance already present in the

transformation estimates.

5.3.2 Scale Term Optimisation

When monocular cameras are used a scale term must be estimated for every timestep.
To accomplish this at each function evaluation, Equation 5.18 is rearranged to solve
for the scale parameter. This yields 3x (the number of non-camera sensors) values for
each scale parameter. The delta method is used to estimate the variance of each of
these estimates before they are combined into a single estimate. This estimate and
its variance, in combination with the other parameters, are then used to assess the

likelihood of the system’s configuration.

5.4 Initialisation

Our decision to consider all pairwise transformation estimates and sensor readings in
the calculation of the likelihood estimation results in a measure that can be relatively
computationally expensive to calculate. This also poses the problem that while the
likelihood functions will tend to be convex in a large region around the optimal
parameters, the system is not guaranteed to be globally convex. Because of these
issues, we wish to initialise the optimiser as close to the correct solution as possible.
This will ensure we are searching in the convex basin of attraction and minimise the

number of function evaluations required.

For the timing offset we simply initialise the optimiser assuming no offset between

the sensors. This assumption will be close to correct for most systems. In the case of
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the rotation and translation estimates the initialisation is more complex. However,
unlike the appearance-based methods, an initial guess does not need to be provided
to the system. Instead an accurate initialisation can be obtained from simplifying

our treatment of the sensor motion.

5.4.1 Rotational Initialisation

In the case of the rotational offset, the parameters used to initialise the optimisation
framework of Section 5.3 are found by simplifying our treatment of the variance and
considering a single pair of sensors at a time. This allows an efficient analytical

approximate solution to the system to be obtained.

In this approximation, one of the sensors is first arbitrarily designated to be the base
sensor B. We then proceed to calculate the approximate rotation between this sensor
B and each other sensor i, R?. This is accomplished through the use of a slightly
modified version of the Kabsch algorithm.

The Kabsch Algorithm

The Kabsch algorithm, presented in [32], is an approach that calculates the rotation
matrix between two sets of vectors providing the least squared error. The method
operates by first finding the covariance matrix between the sets of vectors. If Vi and

V, are the vector sets, the covariance matrix Y between them is given by:

¥ =) (5.22)

This covariance matrix can then be used to find the rotation, R via [32]:

R=(2T8)x"! (5.23)

If the two sets of vectors provided are the angle-axis form of the rotations provided

by the sensors B and i, this process will give an estimate for RZ. In our approach
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the Kabsch algorithm had been modified to give a non-equal weighting to each sensor

reading. The weight assigned to the readings at each timestep is given by:

1

\/Z cov( AMC L )+cov(Ayk Lii)

(5.24)

where cov(A) is the covariance matrix of the rotation axis. The summing of the
diagonal elements converts the variance into a form that is independent of the rotation

and reduces it to a single number.

5.4.2 Translational Initialisation

As in the case of the rotation, the translational initialisation operates by simplifying
the variance estimation and only considering a single pair of sensors to allow the

formation of an efficient analytical approximation.

Section 5.2 found that the relationship between motion and the translational offset

between two sensors x and y at timestep £ is given by:

tyk 1+tx ka 1tx+tcck 1 (525)

The terms of Equation 5.25 can be rearranged and combined with information from

n other timesteps to give the following system of Equations:

4 -1 - -

[ RYL 1 RItly — 105
RYZ—1 Reth2 — 2
A v i (5.26)

Ryn 1 —7 thxn 1 Zfy,n—l

L™ y,n . y-T,n yn

The only unknown here is t;. Solving this system of equations will yield a least

squares estimate for the translation and is the approach taken by Tsai and Lenz
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[93]. Just as in the case of rotation, we can improve the estimate of #; given by this
equation by weighting each of the terms with a value derived from taking the inverse

of a simplified sum of its variance.

In cases where one of the sensors is a monocular camera, the motion is only given up
to scale ambiguity. Because of this, the scale of the motion at each timestep must
also be estimated. One possible approach to solving this problem is simultaneously
solving for the scale terms s;. If we assume that the scale ambiguity is in sensor y,

this gives:

tr - 4 -1 -
)1 1 4T,
Sy Ryy—1 t 0 ... 0 Rty
1
RVZ—T 0 3 ... 0 RUt™3
sl=] " o vos (5.27)
0
Y,n mn—1 x4x,n—1
. RYn.,—1 0 0 ... tnt [Rumnt

This system gives the least squared solution to the offset ¢ as well as each of the
unknown scales si, however if n is the number of sensor readings, its calculation
requires the inversion of a 3n by n + 3 matrix. This inversion presents a significant
computational load in situations where several thousand estimates are made. As
this calculation is only used to initialise a second refinement stage, exact accuracy
of the solution is not required and so, to ease the difficulty of computation a rough
approximation is made. We assume for the sake of this initial calculation that the
offset between the sensors is approximately 0. With this approximation in place, the

scale can be estimated as:

sy~ Rotoy ()™ (5.28)
This will yield three estimates for the scale. Again, making a rough approximation we
assume that the scale term corresponding to the largest element of tZ:l,z_l will be the
most accurately calculated. This term is used to give absolute scale to the camera’s

motion, for use with Equation 5.26.
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We wish to clearly note here that this scale approximation is only used for this one
equation, with all other stages considering the offset when estimating the scale. The
offset calculated through this approximate method will have a bias towards estimating
zero offset. We do not see this bias as detrimental however, as when the exact
formulation given by Equation 5.27 is used, outliers can in some cases cause the
method to give unreasonable estimates (for example ¢ where the elements can exceed

100m). This zero bias helps to mitigate the effect of these outliers.

5.5 Practical Considerations

The process outlined so far gives a method for accurately determining the calibration
of a system of sensors using their motion. However to allow for an efficient and
robust implementation of the system, a range of factors must still be considered. The
following subsections present several implementation details that were important to

the development of our framework.

5.5.1 Transformation Representation

In the majority of our work, transformations are stored as six element vectors

[z, y, z,rz, 1y, rz]. The first three elements [x,y, z| give the translational component
of the transform. The next three elements are an angle-axis representation of the
rotation where [rz, ry, rz] give the rotation axes and ||[rz, 7y, rz]||2 gives the rotation
angle. This representation was chosen as it is a minimal three-element vector and
the rotation is in a form directly usable by hand-eye calibration techniques [93]. The
angle-axis system as well as other rotation systems are outlined in Appendix D, where

their strengths and weaknesses are also examined.

To represent uncertainty we assume that the six elements under consideration are

independent, giving a second six-element vector containing the associated uncertainty.

When the offset between two cameras is incorporated with the offset between other

sensors, we make use of a seven-element vector [nz, ny,nz, s, rz,ry,rz]. In this vec-
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tor, instead of a three-element translation vector, we have a four-element vector
[nxz,ny,nz,s|]. This is made up of a normalised translation vector [nz,ny,nz| and
the scale [s]. We use this notation as several situations arise where the camera-
camera transformation offset is known very accurately up to scale ambiguity, but the
scale is either noisy or completely unknown. This representation allows us to correctly

capture and represent this uncertainty.

5.5.2 Consistent Offset Representation

To ensure that all inter-sensor offsets form a consistent system, the optimisation only
generates offset estimates with respect to the base sensor. These offsets are then

combined to generate the parameter values with respect to each other sensor.

A second consideration is that for two sensors x and y, under our motion models,
L(z,y, k) = L(y,z,k). This reduces the number of calculations required at each

stage.

5.5.3 Outlier Rejection

There are a large range of approaches that can add robustness against outliers to
our framework. In our implementation, we made used of the trimmed-means outlier
rejection strategy described in Section 4.5. This trimmed value is used when log-
likelihood readings are summed to generate the overall likelihood in the optimisation

process.

5.5.4 Interpolation

Where interpolation of transformations is required, we make use of simple linear
interpolation. In the case of rotations, linear interpolation can yield highly non-linear
angular velocities between the two points [15]. However, due to the high update rate

our sensors provide, the maximum rotation a vehicle underwent between two sensor
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readings was 0.1 radians, with the average reading being closer to 0.0001 radians.
This meant that the small angle approximation of sin(6) ~ 6 is appropriate and

linear approximation can be used without these issues impacting accuracy.

5.5.5 Temporal Alignment

Sensors on a vehicle generally operate in an asynchronous manner. On a typical
robotic system, each sensor reading undergoes processing within the sensor before
being transferred to a central system via a route that may involve other sources of
delay. This creates an unknown timing offset between when the data was taken and
when the robot retrieves it. In scenarios where the sensors are not used as an input
to the control systems, these unknown timing offsets can be even more substantial.
In these systems, sensors may be individually started and record their data locally,
for combination after all the data has been transferred. In these situations, while
the sensor update rate is known, the unknown offsets between the sensors must be

corrected to allow high-quality calibration and fusion from the sensor information.

This situation is slightly different from the problem we have been looking at up until
this point. The presented process for finding the timing offset between the sensors
assumed that the sensors obtained readings simultaneously and the unknown offset

is given as a discrete number of timesteps.

To compensate for the asynchronous nature of the sensors, before the likelihood of
the data is assessed, we incorporate several additional processing steps. First, we
apply the current estimate for the timing offsets to the data before interpolating it
at n equally spaced intervals to create synchronous data. In our implementation,
n = 10,000 steps was chosen as this was found to give a suitable balance between

accuracy and runtime.

A second processing step is the differentiation of the data to give velocities rather than
positions. This step is undertaken because the absolute angular magnitude will often

suffer from drift as small errors in the estimated angle accumulate. Finally, sections
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Figure 5.3 — An overview of the steps taken to find the timing offset between the
Sensors.

of the sensor’s data that have no corresponding reading from the other sensors, are

discarded.

In practice, due to the simple relation between sensor angular magnitudes, the com-
parison of pair-wise offsets can also be simplified. In this case it can be found by
solving the equivalent problem of minimising the weighted variance of the sensors
readings at each timestep. An overview of the process for two sensors is shown in

Figure 5.3.

Once the timing offsets have been found, synchronised sensor-motion readings are
obtained. To accomplish this the motion of each sensor is interpolated at the times
when the slowest-updating sensor obtained readings. In the experimental systems

used this was typically at a rate of 5 to 10 Hz.
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5.5.6 Data Pre-Processing

After the temporal correspondence between the sensors has been established, we found
that performing a simple pre-processing step can eliminate many of the outliers. The
weighted mean rotational magnitude is found at each timestep. Points where one
of the sensor readings lies over 10 standard deviations from this mean are labelled
as outliers and removed. This pre-processing is fairly insensitive to the number of
standard deviations used as the threshold, as most outliers tend to be hundreds of

standard deviations from the mean.

At this stage we also remove uninformative data points. Motion with a rotational ve-
locity below a threshold value, or extremely high rotational variance, are all removed.
While not essential to the operation of our method, these points will have weightings
of approximately 0 when calculating offsets. Eliminating these points at this stage

reduces the computational demands of the process.

5.5.7 Camera-Camera Translation Estimation

While the approach given allows for the estimation of the translational offset between
two cameras through two scaling parameters (assuming that at least one sensor with
absolute scale is also present in the system), in practice these estimates were not
utilised. This was done because the two unknown parameters per timestep resulted
in the translation of two cameras relative to each other conveying minimal additional
information about the system. As in most systems, cameras are the most numerous
sensor; considering these correspondences also greatly increased the computation time

of the system.

5.6 Sensor Transformation Estimation

To facilitate the motion-based calibration process described above, individual sensor

motions, as well as an estimate of their uncertainty, is required. As different sen-
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sor modalities provide different types of information, the approach used for motion
estimation is sensor dependent. The following subsections explain how to estimate

sensor self-motion for the main sensor modalities found in mobile robots.

5.6.1 3D Lidar

To calculate the transform from one scan to the next, the Iterative Closest Point (ICP)
[9] algorithm is used. A point-to-plane variant of ICP is employed and the previous
transformation is used for the initial guess as to the transformation. We also ignore
points with an error of over a threshold distance (in our implementation set to 0.2m),

treating them as outliers.

Most 3D lidar systems, such as the Velodyne HDL-64E, map their surroundings
through a continuously rotating lidar head. This causes issues when the lidar is
mounted on a moving vehicle as even at sedate urban speed, the position of the lidar
at the beginning and end of its scan will have varied significantly. For example, if
the lidar is set to provide one scan every 0.1 seconds and is mounted to a vehicle
travelling at 20 kmph, the sensor will have moved by over half a metre during the

recording. To allow for accurate scan matching this offset must be compensated for.

To do this, the time at which each point was recorded must first be found. Some
platforms such as the Shrimp system used in our experiments, individually timestamp
each point recorded. However, the majority of systems used only record when the
scan starts and ends. In systems where the original point order is preserved and lidar
points with no return are recorded, we model the system as scanning points at a
constant rate over the duration of the scan. In systems where the point ordering has
not been preserved (for example the KITTI dataset) we assume a lidar model where
the scanner head rotates in a clockwise direction at a constant speed, scanning points
in a vertical line. This simplification has the drawback that it does not capture the
actual pattern of lasers used in the lidar’s head and can cause significant errors in the
area around where the lidar starts and finishes its scan. Am example of this issue is in

the Velodyne HDL-64E, where the actual laser configuration results in the sawtooth
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Figure 5.4 — Velodyne scan coloured by when the points were recorded (red for scan
start, blue for the end). Note the sawtooth pattern where the blue and red meet
showing where the scan starts/ends.

pattern shown in Figure 5.4. This means that some points recorded when the lidar
scan started will be incorrectly timestamped as occurring near the end of the scan.

To compensate for this the first and last 10% of the scan are discarded.

Once the time at which each point was scanned has been found and if we assume
the surrounding environment is static, then the transformation between scans can be
used to correct the position of the points. We assume that the velocity between scans
is constant and utilise linear interpolation to correct the scan. This means that every
point appears in the position it would have been in relative to the scanner when 50%
of the scan had been completed. As, at this stage the transformation to the current
scan is unknown, we use the transformation given by the previously matched scan.

An example of this motion compensation can be seen in Figure 5.5

To estimate the variance of the calculated transformation vector we utilise the vari-
ance approximation method from Section 4.2.4 that makes use of the delta method

approximation. For this method, while Velodyne specifies that the lasers have a stan-
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Figure 5.5 — Section of a Velodyne scan from the KITTI dataset made during a tight
turn with (green) and without (red) motion compensation.

dard deviation in their range of approximately 2cm, we use a o of 10cm to account

for any imperfections in the intrinsic parameters of the setup.

5.6.2 Cameras

The camera transforms are found using a fairly standard visual odometry approach.
First, Harris corners are detected in an image before Lucas-Kanade optical flow [40]
is used to find the location of these points in the next image. An example of this
process is shown in Figure 5.6. Optical flow was used as opposed to feature-based
approaches as it was found to generally find more matches and have fewer outliers.
The use of optical low meant that matches could only be done between images
from similar viewpoints, which prevents loop closure from being used to refine the
transformations. Loop closure, however, is generally only needed when attempting to
build large consistent maps. In our approach we are only interested in the motion of

the sensors and not their exact absolute position.
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Figure 5.6 — Two frames from the KITTI dataset with the inlier matching points
plotted.

A Maximum A Posteriori SAmple Consensus (MAPSAC) [92] implementation is used
to reject outlier points. The inliers are used to find the fundamental matrix using
the 8-point normalised algorithm [24]. This is combined with the known camera
intrinsics to give the essential matrix. The essential matrix is finally used to find the

transformation matrix between the positions.

As the only sensor employed is a monocular camera and its position on the vehicle
is unknown, no sense of absolute scale of the movements can be obtained. Several
methods were examined for providing an estimate of the relative scale between each
of the cameras frames, however issues were encountered with these approaches. When
a vehicle is travelling in a relatively straight path the scale of its movement relative
to previous frames is highly sensitive to noise and generally has significant variance.
This problem is made worse by the reliance of each frame on the scale estimated at
previous frames, meaning that a single poor scale estimate can detrimentally affect
all future estimates. Because of this, in order to gain reasonable scale estimates using
only the camera data we would need to make further assumptions about our system,
such as a constant height from a ground plane. This would reduce the flexibility of
the approach. Therefore, only normalised camera transformations are used and the
scale is estimated during the inter-sensor transformation estimation stage, where the

information from additional sensors can be incorporated.
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Once the transformation vector has been found, an estimate of its variance is com-
puted. The calculation of this variance has no closed form solution. In our im-
plementation we overcome this using a sampling strategy. This is done by either
bootstrapping, or in most cases, assuming the tracked points have a variance in their

position of 1 pixel and utilising the delta method.

5.6.3 GPS/INS Systems

GPS/INS sensors give the transformations directly and the variance of the sensor is
given either by the manufacturer as a fixed value or in the case of the translation,
is given as one of the outputs of the sensor. In order to convert the variance from
the given roll, pitch and yaw values into the form used by our approach, a simple

Monte-Carlo sampling approach was used.

5.7 Utilising Appearance to Refine the Calibration

While the accuracy of the motion-based methods depends on the dataset, motion and
sensors used, through experimentation several common trends appear. Under all but
the most extreme cases (for example datasets with a vehicle driving in a straight line at
constant speed) accurate rotation with low uncertainty is obtained. The translation
estimates however show more uncertainty. Generally for a non-holonomic ground
vehicle the translation will be most accurately estimated in the direction tangential
to the ground plane and perpendicular to the vehicle’s main direction of motion.
This accuracy stems from the large differences in translation the sensors will undergo
during a typical turning manoeuvre, and for our test systems was in the range of
10 to 50mm. The least accurately estimated parameter was the translation in the
direction of the normal of the ground plane. This is to be expected as with only planar
movement this parameter would be completely unobservable. This means that this

parameter has only been observed through the subtle movements caused by defects
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in the road surface and the rocking of the system on its suspension. This parameter’s

accuracy was typically in the range of 100 to 1000mm.

With this level of error possible in the translation estimation, the output of the motion
calibration provided by near-planar motion is of limited direct practical value. The
calibration has not been without purpose though, as we can now use it to guide the

optimisation of appearance-based metrics to further refine the transformation.

Initially, the true calibration between the sensors could take any parameter in a large
six-dimensional search space. As was outlined in Section 4.1, for appearance-based
metrics, this search space is typically highly non-convex and contains a large number
of local optima. Therefore searching the entire search space is error prone and often
intractable. However, our motion-based calibration estimates and associated variance
vastly reduce the feasible regions the solution could lie within. Generally only one
or two parameters still contain large uncertainty, with the remainder constrained to
small regions. Because of this, our motion-based calibration is complementary to these
appearance-based methods through the initialisation and constraining of their search
space. The improvements in accuracy possible using this method are qualitatively

shown in Figure 5.7.

For cameras and 3D lidar scanners, methods such as those presented by [35] or GOM
can be utilised for the calibration refinement. These metrics operate by examining
points at a single timestep, however we can exploit the already obtained motion
information in combination with the appearance information to form a new lidar-

camera alignment metric

5.7.1 Lidar-Camera Intensity-Motion Metric

Markerless metrics used to match between lidar scans and camera images either rely
on correlating the intensity of the two modalities (MI,NMI) or aligning edges (Levin-
son’s method [35], GOM). The problem with these metrics is that as the two sensors

perceive the world in fundamentally different ways, there will be many cases where
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Figure 5.7 — These images show a camera image from the KITTI dataset projected
onto its corresponding Velodyne scan. The top image shows the result obtained by
the motion only approach, while accurate rotation values have been estimated there
is significant uncertainty and error in the translation. The bottom image shows the
combined approach where the motion method has constrained an appearance-based
optimisation, allowing a superior calibration to be obtained.

the features of interest are not present in both modalities. Overcoming these incon-

sistencies is one of the main issues in developing a robust multi-modal metric.

The addition of motion information, however, greatly simplifies our problem as it
now becomes possible to align lidar and cameras using only mono-modal matching.
As the metric used to achieve this alignment makes use of both intensity cues and
motion cues in its development, we will henceforth refer to it as the Intensity-Motion

(IM) Metric. An overview of the process used to achieve this is shown in Figure 5.8.

In this metric a camera image and its corresponding lidar scan are found. A static
environment is assumed and the motion information estimated by the lidar used to
compensate for any timing difference between when the camera image was taken and
the lidar scan was recorded. Once this has been done the camera image is projected
onto the lidar scan giving each of the lidar points an associated colour. The same
lidar scan is then matched to the next camera image with the same process of using

the motion information to compensate for the timing difference. This image is again
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Raw Lidar Sean

Figure 5.8 — Overview of the intensity-motion (IM) metric. The motion undergone by
a lidar scan is used to project it into two successive camera images. The difference
in the image intensity at the same position on the scan forms the metrics alignment
€error.
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projected onto the lidar scan. This process has resulted in two different images being
used to give colour information to the same lidar scan. If we assume constant lighting
conditions, camera settings and a static environment, it would then be expected that,
if the camera offset was correct both possible colourings would be identical. Because
of this we can take the mean squared difference in their intensity as an indication of
the sensor’s alignment. Minimising this error should result in the correct lidar camera

offset.

While in this simple form the metric will operate well in many scenarios to increase its
reliability, several changes are made. First a Gaussian blur is applied to the image.
In its original form, when there is a sharp edge of an object, a misalignment of a
single pixel can result in no correlation between the intensities at this point. However
when a Gaussian blur is applied, the error for small misalignments will be roughly
proportional to the misalignment. This results in a smoother search space increasing

an optimiser’s likelihood of correctly converging to the true offset.

The second change is made to help minimise the impact that occlusions will have
on the image. As the two images used are taken from two different perspectives,
occlusions will impact the alignment. These occlusions will also occur due to the
difference in the location of the lidar and camera. While a ray-tracing process could
be implemented to calculate which points are likely to be occluded at each estimation
step, this is a computationally expensive process. Instead we opt for a simple strategy
that pre-emptively removes points that will have a high chance of becoming occluded
during the sensor calibration. In this process we first project the points onto a sphere
and use a kd-tree to find the 50 closest neighbours for each point. The neighbouring
point closest to the camera is found and the distance between these points is found.
This distance is than divided by the distance from the sensor to the points. If the
final value is greater then a threshold (in our case set to 0.1) the point is rejected as
having a high probability of being occluded. An example of the results of this process

are shown in Figure 5.9.

The final and most significant change is to operate on a gradient image. By using a

gradient image the importance of a metric correctly aligning the boundaries between
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Figure 5.9 — A Velodyne scan filtered to remove points that have a significant chance
of being occluded by others. The occluded points, shown in red, will be removed
before the appearance-based alignment proceeds.

objects is significantly increased. It also allows us to remove regions of low texture
by removing points with a gradient of 0. Removing these points prevents the metric
from attempting to align the entire scan with a low texture region of the image, such

as the sky.

The metric also allows for an estimation of its accuracy. This is done by once again
making use of the delta method on the optimisation of the metric, with the variance
of the motion used to find the variance in the output parameters. This estimation
ignores several possible sources of error such as the noise in the camera intensities,
noise in the lidar points, errors in the intrinsics and motion/changes in the observed
scene. The justification for ignoring these effects is that in most cases the impact
of these parameters will be orders of magnitude less than the motion error being

considered.

The method also assumes that the correct global maxima has been found. This is

a serious concern for appearance-based metrics, as was discussed in Section 4.1. In
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our processing we assume that the constraining of the search space in combination
with the aggregation of scans has been sufficient for this to be a valid assumption. To
improve the convexity of the search space and the reliability of the delta method in
these situations, a slight modification is made. Only points that are projected onto
the image for all steps of the finite difference approach are used. This smooths the

metric and increases the robustness of the estimate.

5.7.2 Lidar-Camera Optimisation

When optimising these methods we wish to make use of both the estimated solution
and its associated variance provided by the motion estimation process. As we are
operating with an appearance metric we also wish to make use of a global optimiser,
as while significantly constrained, the metric may still have multiple optima within
the feasible search space. To meet these requirements we make use of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) optimisation technique [23]. This
technique randomly samples the search space using a multivariate normal distribution
that is constantly updated. This optimisation strategy works well with our approach
as the initial normal distribution required can be set using the variance from the
estimation. This means that the optimiser only has to search a small portion of the

search space and can rapidly converge to the correct solution.

5.7.3 Camera-Camera Optimisation

If both of the sensors are cameras and they have overlapping fields of view, then
the calibration provided by the motion-based calibration may be refined using simple
mono-modal matching. This is done by detecting and matching SURF [7] features
present in the two cameras’ field of view. MAPSAC is then used to reject outliers
and the normalised transformation between the two cameras is found. The process of
forming a transformation estimate from the inliers is bootstrapped 100 times to give

an estimate of the transformational variance.
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5.7.4 Combining the Refined Results

The pairwise transformations calculated in the appearance-based refinement step will
not represent a consistent set of solutions to the transformation of the sensors. This
is due to each pair of sensors obtaining their appearance-based calibration indepen-
dently. This means, we again face the issue that if there are three sensors z, y and
z, then for the current estimates T;TY # T7. The camera-to-camera transformations

also contain scale ambiguity.

To correct for this and find a consistent solution, the transformations are combined.
This is done by using the calculated parameters to find a consistent transformation
that has the highest probability of occurring. We do this by first using the trans-
formations to the base sensor to generate an initial guess. The probability of this
solution occurring, given the transformation and variance of all the pairwise trans-
forms, is calculated and used as a cost function that is optimised using Nelder-Mead
Simplex optimisation. In this optimisation we make use of the seven-element trans-
formation vector [nz,ny,nz, s, rz,ry,rz] as the additional scale term allows the use
of the calculated camera-to-camera translation through setting the variance of the

scale parameter to oco.

5.8 Reducing the Uncertainty of the Final Cali-

bration

The accuracy of motion-based methods is dependent on the range of motion observed
and the accuracy of the motion generated by the sensors. In the case of a system
undergoing purely rotation motion, information about the translational offset between
the sensors can still be obtained. This is because the sensors will observe translation

that is proportional to their distance from the axis of rotation.

In the case of pure planar motion it is fairly simple to show that the offset perpen-

dicular to this plane is unobservable. At first glance this would appear to prevent
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the system from being used on most ground vehicles whose motion is typically ap-
proximately planar. However on most systems, factors such as defects in the surface,
the rocking of suspension and give in the tires result in sufficient motion to provide
an estimate of the perpendicular offset. However the accuracy of this measurement
is typically over an order of magnitude less accurate than the others. While we have
presented an appearance-based refinement step to help alleviate this issue, for systems
calibrating a GPS/INS system or without overlapping fields of view in its sensors, this
issue will remain. However, if a ground vehicle is being driven purely for the purpose

of calibration this issue can still be overcome.

An ideal situation would be to perform a series of tight turns over an uneven surface.
For example driving up a multi-storied parking lot or performing a three-point turn
over a speed bump would meet these requirements. The tight turns in combination
with the uneven ground would maximise the observed motion in each direction and
thus the accuracy. Accurate lidar- and camera-motion estimation also operate best
in static environments with a range of distinct objects in their view. Alternatively,
if the vehicle is small or the sensor array removable, simply holding and randomly
waving the system around by hand would yield an accurate calibration. In the case of
aerial systems, planar motion is less of an issue and simply performing banked turns

should be sufficient to allow accurate calibration.

The framework outlined can perform the calibration of a uni-modal system, albeit
with two limitations. The first, is that in systems consisting of only cameras, there
is no measure of absolute scale and so no translation parameters can be estimated.
The second, is that the framework makes limited use of uni-modal inter-sensor point
matching. This allows it to calibrate multi-modal systems, but in the uni-modal
case, means it does not fully utilise a possible source of alignment information. Due
to this limitation, the results of the calibration may be less accurate then if a process

designed specificity for the modality of interest is used.
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5.9 Summary

In this chapter we have explored the idea of calibrating a mobile system’s sensors
from the individually observed sensor motion. We have extended current hand-eye
calibration techniques by incorporating a measure of each readings uncertainty into
the process. This transforms the process of the sensor calibration from a pair-wise
least squares metric, to a probabilistic method that can reason about the value of
information and present an estimate of its confidence in the results produced. The

process also allows the possibility of simultaneously calibrating more than two sensors.

This motion-based approach has several advantages over appearance-based metrics.
It does not require any initial guess as to the sensors’ setup and can operate when
the sensors lack an overlapping field of view. It also gives a single unified approach

for aligning any type of sensor.

It has a distinct disadvantage however; it requires a large range of motions to give
accurate calibration results for all of the parameters considered. For vehicles that
operate on a roughly planar surface this can result in significant uncertainty about

the offset in the direction of the plane’s normal.

As this large uncertainty is typically only in one or two dimensions the motion result
can be used to constrain and guide an appearance-based alignment. This combines
the strengths of both approaches and eliminates the need for an accurate initial guess

that is typically one of the key limitations when using appearance-based methods.

In the next chapter, we evaluate the accuracy and applicability of all of the methods
described in this chapter and Chapter 3. This is done through a series of experi-
ments where the methods are utilised to calibrate sensors over a range of challenging

datasets.



Chapter 6

Experimental Results

6.1 Introduction

This chapter performed an experimental evaluation of the approaches proposed in this
thesis as well as comparisons to several state-of-the-art methods from the literature.

Briefly the experiments presented in this section examine the following areas;

e The alignment of lidar-scans with images using appearance-metrics.

e The alignment of multi-modal image data.

e The impact of using point distance or normals as features and the basin of
attraction of metrics during optimisation.

e The accuracy of motion-based calibration in finding the timing, rotational and
translational offset of various sensor systems.

e The impact that simultaneously calibrating more then two sensors has on the
resulting calibration

e The impact that using the motion-based solution to constrain appearance-based
optimisation methods has on the accuracy and robustness of the solutions.

e The overall accuracy and robustness of the system when all stages of the process

are combined and an evaluation of the estimated uncertainty:.
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6.2 Experimental Platforms

Over the course of the thesis a large range of experiments were performed utilising a
variety of sensor platforms. A brief description of each of these platforms is outlined

below.

6.2.1 KITTI Dataset Car

The KITTT dataset is a well known publicly available dataset obtained from a sensor
vehicle driving in the city of Karlsruhe in Germany [18]. The sensor vehicle is equipped
with two sets of stereo cameras, a Velodyne HDL-64E and a GPS/INS system. The
setup is shown in Figure 6.1. This system was chosen for calibration due to the ease
of availability and the excellent ground truth available due to the recalibration of its

sensors before every drive.

All of the results presented here were tested using drive 27 of the dataset. In this
dataset the car drives through a residential neighbourhood. Drive 27 was selected as
it is one of the longest of all the drives provided in the KITTI dataset, giving 4000

consecutive frames of information on which to test the calibration method.

6.2.2 Ford Campus Vision and Lidar Dataset Car

The Ford campus vision and lidar dataset is a second publicly available dataset. It
was produced by driving a Ford F-250 pick-up truck around Dearborn, Michigan in
the United States [60]. The car is equipped with a Ladybug spherical camera, a
Velodyne HDL-64E, two push broom forward-looking Rigel lidars and a GPS/INS

system. This setup is shown in Figure 6.2.

6.2.3 ACFR’s Shrimp

Shrimp is a general purpose sensor vehicle used by the ACFR to gather data for

a wide range of applications. Due to this it is equipped with an exceptionally large
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Velodyne HDL-64E Laserscanner

Figure 6.2 — The system used to gather the Ford campus vision and lidar dataset.
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Figure 6.3 — ACFR’s shrimp robot.

array of sensors. These sensors included a Ladybug spherical camera, Velodyne HDL-
64E lidar, Bumblebee XB3 stereo camera, thermal IR camera, two Sick lidar’s and a
Novetal GPS/INS system. The setup is shown in Figure 6.3. For our experiments the
shrimp vehicle was driven around a quadrangle outside the ACFR at the University
of Sydney. An extrinsic calibration between the system’s lidar and GPS/INS had
previously been generated using a target-based method. While a calibration also
existed between the lidar and cameras this had been obtained using an appearance-
based approach evaluated in this thesis. Because of the possible bias this lidar-camera

calibration may show, it was not used in evaluating any of our results.
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Figure 6.4 — ACFR’s autonomous light vehicle.

6.2.4 ACFR’s Autonomous Light Vehicle

The ACFR has a Toyota Hilux that has been converted for autonomous driving as
well as holding a suite of sensors. The sensors mounted depend on the application,
however it is generally equipped with two Sick lidars, Specim hyperspectral Visible
and Near InfraRed (VNIR) and Short Wave InfraRed (SWIR) cameras, a Rigel VZ-
1000 lidar and a Novetal GPS/INS system. The setup is shown in Figure 6.4.

6.2.5 RTCMA Tripod-Based Setup

The Rio Tinto Centre for Mine Automation (RTCMA) possesses high-resolution scan-
ning lidar systems in the form of the Rigel VZ-1000 and LMS-Z420i. These systems
can quickly be mounted onto a tripod and used to make a single high resolution scan
of an area. A camera that is either hand held or mounted to a separate tripod is then
used to take images of the same area. Over the course of the thesis a large range of
cameras have been used with this setup, ranging from scanning hyperspectral cameras
to smart phones. These include, but are not limited to, the Neo HySpex hyperspectral
camera, Specim VNIR camera, Specim SWIR camera, Cannon 5D, Cannon Power-

shot A720, Samsung Galaxy 3, Iphone 5, Sony Xperia Z1 and a Nokia Lumia 520. A
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Figure 6.5 — Tripod-based experimental setup used to gather a dataset of several cliff
faces in a mine site.

typical setup is shown in Figure 6.5

6.2.6 Ground Truth

In all of the following experiments the methods used are compared to existing calibra-
tion values that were provided with the datasets and taken to be the ‘ground truth’
The nature of how these ground truth values are generated depends on the sensor
and dataset, however most will have been generated using a marker-based method
overseen and verified by an expert. This should in most instances yield a highly ac-
curate solution, however any estimate to the actual accuracy of this ground-truth is

typically unknown.

In our results the inaccuracies present in this ground-truth will, in most cases detri-
mentally affect the perceived accuracy of the tested methods. Inspite of this we have
chosen to compare our results to these pre-existing calibration values rather than
simply reporting the precision of the method. This choice was made as the given
precision can, in some cases, greatly overestimate the accuracy of a method and fails

to correctly capture any bias a technique may exhibit.
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6.2.7 Implementation

The majority of the code for testing the methods we have outlined was written in
Matlab, with Mex files written in C and C++ used to optimise bottlenecks in the code.
The most computationally expensive sections of the appearance-based techniques (the
transformation of the point cloud, interpolation of images and the evaluation of the
metrics) were further optimised by making use of Cuda to allow their evaluation on

a GPU.

All of the results were generated on a desktop outfitted with an i7-4770 Central Pro-
cessing Unit (CPU), 8 GB of system memory, a GTX760 GPU and 2 GB of graphics
memory. On this system the transformation, interpolation and GOM evaluation of a
Velodyne scan containing 80,000 points with a camera image requires roughly 4 ms.

The source code used in the generation of the results in this chapter is available at

84].

6.3 Appearance-Based Metrics

6.3.1 Metrics Evaluated

In this section, a series of metrics are evaluated on three different datasets. The

metrics evaluated are as follows:

e MI - mutual information, the metric used by [61] in their experiments on the
Ford dataset [60].

e NMI - normalised mutual information, a metric we had used in our previous
work on multi-modal calibration [85].

e The Levinson method [35].

e GOM - the gradient orientation measure presented in Chapter 3

e SIFT - scale invariant feature transform, a mono-modal registration technique
included to highlight some of the challenges of multi-modal registration and

calibration.
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For MI, NMI, GOM and the Levinson method, we wrote our own code and optimised
each one using the same optimisation process and parameters. The SIFT imple-
mentation was taken from code written by Vedaldi and Fulkerson [97] and the best
match was found using a RANdom SAmple Consensus (RANSAC) implementation.
The SIFT method was only applicable, and thus used, on the hyperspectral image
dataset.

6.3.2 Parameter Optimisation

For the evaluation of the appearance-based metrics we initialise the optimisation using
either the ground truth (when available) or a manually calibrated solution. We then
added a random offset to it. The random offset is uniformly distributed, with the
maximum value used given in the details of each experiment. This random offset is
introduced to ensure that the results obtained from multiple runs of the optimisation
are a fair representation of the method’s ability to converge to a solution reliably.
When particle swarm optimisation is used, the search space of the optimiser is set to

be twice the size of the maximum offset.

On datasets where no ground truth was available, the search space was always con-
structed so that the space was much greater than twice the estimated error of the
manual calibration, to ensure that it would always be possible for a run to converge to
the correct solution. All experiments were run 10 times with the mean and standard

deviation from these runs reported for each dataset.

6.3.3 Registration of a Single Image to a High-Resolution

Lidar Scan

ACFR’s Autonomous light vehicle was used to take four high-resolution lidar scans
and hyperspectral images of our building, from the grass courtyard next to it. The
scanner output gave the location of each point as its latitude, longitude and altitude.

The focal length of the hyper-spectral camera was adjusted between each scan. This
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Figure 6.6 — Hand labelled points for a section of ACFR scan 1 aligned by GOM.
The left image shows the lidar scan with three of the labelled points highlighted
in blue. The right image shows the camera image with the three corresponding
points highlighted.

was done due to the different lighting conditions and to simulate the actual data

collection process in the field.

This dataset required the estimation of an intrinsic parameter of the camera, its focal
length in addition to its extrinsic calibration. To test the robustness and convergence
of the methods, each scan was first roughly manually aligned. The search space was
then constructed assuming the roll, pitch and yaw of the camera were each within 5
degrees of the lasers. The camera’s focal length was within 40 pixels of correct (for
this camera focal length ~ 780) and the X, Y and Z coordinates were within 1 metre
of correct. These values represent a realistic range in which the sensors parameters

may lie.

No accurate ground truth is available for this dataset. To overcome this issue and
allow an evaluation of the accuracy of the method, 20 points in each scan-image pair
were matched by hand. An example of this is shown in Figure 6.6. An evaluation of
the accuracy of the method was made by measuring the distance in pixels between

these points on the generated images. The results are shown in Table 6.1.

For this dataset GOM significantly improved upon the initial guess for all four of the
tested scans. Scans 1 and 2 were however more accurately registered than scans 3 and
4. These last two scans were taken near sunset, and the long shadows and poorer light

may have played a part in the reduced accuracy of the registration. NMI gave mixed
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Table 6.1 — Accuracy comparison of different methods on ACFR dataset. All distances
in pixels.

results on this dataset, misregistering scan 1 by a large margin and giving results far
worse than GOM’s for scans 2 and 4. It did however outperform all other methods
on Scan 3. MI gave a slightly worse, but similar, performance. Levinson’s method

could not be evaluated on this dataset as it requires multiple images to operate.

6.3.4 Multi-Modal Image Registration

To test each method’s ability to register different modality camera images such as
IR-RGB camera alignment, two scenes were scanned with a hyperspectral camera.
Hyperspectral cameras capture images from a large number of light wavelengths at the
same time. This made them ideal for testing the method’s accuracy as the different
modality images are initially perfectly aligned, due to all the different wavelength
images being captured at the same time onto the same CCD. This removes any
difference in the camera intrinsics or extrinsics, and means that a perfect ground

truth exists and it is easy to quantify any error a registration method has.

For the hyperspectral camera images, bands near the upper and lower limits of the
camera’s spectral sensitivity were selected, so that the modality of the images com-

pared would be as different as possible, providing a challenging dataset on which to



6.3 Appearance-Based Metrics 103

Figure 6.7 — Images captured by hyperspectral camera. From top to bottom: 420nm
mine 1, 950nm mine 1, 420nm ACFR 1, 950nm ACFR 1.

perform the alignment. The bands selected were at 420 nm (violet light) and 950 nm
(near IR). The camera was used to take a series of three images of the ACFR building
and three images of cliffs at a mine site. An example of the images taken is shown in

Figure 6.7.

The search space for the particle swarm optimiser was set up assuming the X and
Y translation were within 20 pixels of the actual image, the rotation was within
10 degrees, the X and Y scale were within 10% and the X and Y shear were within
10%.

In addition to the GOM, MI and NMI methods that have been applied to all of
the datasets, SIFT features were also used. SIFT was used in combination with
RANSAC to give the final transform. To measure how accurate the registration was,
the average difference in position between each pixel’s transformed position and its

correct location was obtained. The results of this registration are shown in Table 6.2.

The images taken at the ACFR were 320 by 2010 pixels in size. The width of the
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1.601
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Table 6.2 — Error and standard deviation of different registration methods performed
on hyperspectral images. FError is given as the mean per-pixel error in position.
Note that the chart’s axis uses a log scale.

images taken at the mine varied slightly, but were generally around 320 by 2500 pixels

in size.

SIFT performed rather poorly on the ACFR dataset and reasonably on the min-
ing dataset. The reason for this difference was most likely due to the very different
appearance vegetation has at each of the frequencies tested. This difference in ap-
pearance breaks the assumption SIF'T makes of only linear intensity changes between
images, and therefore the grass and trees at the ACFR generate large numbers of
incorrect SIFT matches. In the mine sites that are devoid of vegetation, most of
the scene appears very similar, allowing the SIFT method to operate and give more

accurate results.

Looking at the mean values for each run MI, NMI and GOM gave similar performance
on these datasets, all achieving sub-pixel accuracy in all cases. There was little
variation in the results obtained using the multi-modal metrics, with all three methods

always giving errors between 0.2 and 0.8 pixels.
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Figure 6.8 — Example scan-image pair from the ford dataset. Top: Camera images.
Bottom: lidar scan coloured by the intensity of laser return.

6.3.5 Camera-Velodyne Calibration from Multiple Scans

The camera-Velodyne evaluation was performed on the Ford campus vision dataset
as it offers a variety of environments, and the Velodyne scanner used in this test has
been calibrated to account for the different return characteristics of each laser. An
example of the data is shown in Figure 6.8. The methods were tested on a subset of
20 scans. These scans were chosen as they were the same scans used in the results
presented by Pandey et al. [61]. Similarly, the initial parameters used were those
provided with the dataset. As all of the scan-image pairs on this dataset shared the
same calibration parameters, aggregation of the scans can be used to improve the
accuracy of the metrics. Because of this, each experiment was performed three times,

aggregating 2, 5 and 10 scans.

The Ford dataset does not have a ground truth. To overcome this problem we used
a measure of the calibration accuracy through the use of the Ladybug camera. The
Ladybug consists of five different cameras all pointing in different directions (excluding
the camera pointed directly upwards). The extrinsic location and orientation of each
of these cameras is provided by the manufacturer with respect to one another. This
means that if the calibration is performed for each camera independently, the error in
their relative location and orientation will give a strong indication as to the method’s

accuracy.

All of the cameras are calibrated independently. An example of the process of reg-

istering one of the camera’s outputs is shown in Figure 6.9. This calibration was
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Figure 6.9 — Camera and Velodyne scan being registered. The current estimate for the
extrinsic calibration has been used to project the Velodyne data onto the camera
image.
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Table 6.3 — Average error between two aligned Ladybug cameras. All distances are in
metres and angles are in degrees.

performed 10 times for each camera, using randomly selected scans each time. The

error in each camera’s relative position to each other camera in all trials was found

and the average error shown in Table 6.3.

In these tests GOM, NMI and MI gave similar results. GOM tended to give the most

accurate rotation estimates while MI gave the most accurate translation estimates.

For all three of these metrics, scan aggregation slightly improved the accuracy of an-

gles and position. Levinson’s method presented the largest improvement in accuracy

when more scans were aggregated, resulting, however in the largest error with 2 and

5 scans and giving similar results to the other methods with 10 scans.

In this experiment, any strong conclusion about which metric performed the best is
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difficult to draw as the difference between any two metrics for 10 aggregated scans
is significantly less than the variance in their values. In almost all of the tests,
the estimate of the cameras 7 position was significantly worse than the X and Y
estimates. This was expected, as the metric can only be evaluated in the overlapping
regions of the sensor’s fields of view. The Velodyne used has an extremely limited
vertical resolution (64 points, one for each laser). Thus making the parallax error that
indicates an error in the Z position difficult to observe. The narrow beam width of the
Velodyne is also why the yaw shows the lowest error, as there are more overlapping

points that can be used to evaluate this movement.

The actual error of a Ladybug-Velodyne system calibrated using all five cameras
simultaneously would give a far more accurate solution than the results obtained
here. There are several reasons for this. Individually the single camera systems have
a narrow field of view. Therefore, a forward or backward translation of the camera
is only shown through subtle parallax error in the position of objects in the scene.
This issue is significantly reduced in the full system due to the cameras that give a
perpendicular view that clearly shows this movement. In the single camera problem,
movement parallel to the scene is difficult to distinguish from a rotation. This is also
solved by the full system due to the very different effects a rotation and translation
have on cameras facing in significantly different directions. Finally the full system
also benefits from the increase in the amount of overlap between the sensors’ fields of

view.

6.3.6 Feature Comparison

In many lidar datasets, return intensity is not available. This may be due to the fusing
of uncalibrated scans, the sensor having a low number of intensity bits (many lidar
only have 3 bit return intensity) or the sensor returns tuned to detect corner reflectors
giving almost zero intensity for all other points. In these situations the alternative
features suggested in Section 3.3, that utilise either the normals or distance of the

points from the sensor, must be used. To test their accuracy the Ford dataset was
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Table 6.4 — Average error between two aligned Ladybug cameras for different 3D

features. All distances are in metres and angles are in degrees.

evaluated using these different features, with all other parameters kept the same and

10 scans aggregated for MI, NMI and GOM.

The results of these tests are presented in Table 6.4. For most of the results the

metrics gave values that were slightly worse, but otherwise similar to what had been

obtained using intensity information. The one exception to this was the yaw angle for

MI and NMI when using range as a feature, which showed considerably larger error.

While all of these results are worse than those obtained using the return intensity, they

are accurate enough to provide a viable option in circumstances where the intensity

information is not available.
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6.3.7 Basin of Attraction

It is preferable to be able to use a local optimisation technique to find the maximum
of a metric due to the substantially faster run time. However, as previously stated,
the optimiser will only converge to the correct maximum if the initial guess as to the
calibration is within its basin of attraction. The size of this region depends on the
metric, the number of scans being aggregated and the scene being observed. In an
effort to give an indication of the size of the basin for the different metrics, and how

scan aggregation affects it, an experiment was designed.

The maximum of a metric was first found by the same method used to test the
metrics’ accuracy in the Ford dataset. A predetermined error was then added to one
of the solution’s parameters, and the experiment was re-run using this point as the
initial guess. The difference between the initial solution found and the solution found
after the error was added, was recorded. This was performed for X, Y and Z errors
of 0.05, 0.2, 0.5 and 1.0 metres. Roll, pitch and yaw errors of 1, 5, 15 and 30 degrees
were also tested. These results were repeated for aggregating 2, 5 and 10 scans. Each

experiment was repeated 10 times with random scans.

The results of this experiment are presented in Tables 6.5 and 6.6. For the position of
the sensor, optimisation significantly reduced the initial error in almost all of the cases.
This implies that even when offsets as large as 1m are present, all four metrics provide
an indication of the direction of the correct alignment. However, for low numbers
of scans or large offsets, while the optimiser reduced the error it still converged to
solutions a significant distance from the previously located maximum. When using
2 scans, all X and Y positions showed large error and the 7 position required a
starting location only 0.05m from the maximum to converge. The accuracy of all of
the solutions increased significantly for 5 scans, and again for 10 scans. This meant,
in the 10 scans case both the GOM metric and MI metric provided accurate results
for all positions with starting offsets of 0.2m or less. They also gave accurate results
in X for all offsets tested. The Levinson method appeared to give the least consistent
results. For example, when 10 scans were used, it generally gave the most accurate

X positions. However, occasionally it converged to an incorrect location far from the
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Translation Error for 2 Scans
1.000
., 0.100
£
g
E
£
g
5
0.010
0.001
MY Mz NMI X
W0.05m 0.039 0.046 0.012 0.052 0.052 0.013 0.036 0.050 0.031 0.061 0.047 0.030
mo2m 0.052 0.137 0.056 0.132 0.159 0.109 0.141 0.189 0.068 0.333 0.211 0.120
mo5m 0.086 0.282 0.293 0.266 0.384 0.402 0.269 0.438 0.498 0.419 0.316 0.319
mlm 0.443 0.563 0.390 0.652 0.751 0.940 0.696 0.560 0.784 0.532 0.624 0.992
Translation Error for 5 Scans
1.000
» 0.100
£
£
E
£
g
&
0.010
0.001
MY Miz NMI X
m0.05m 0.038 0.046 0.010 0.031 0.051 0.008 0.031 0.052 0.008 0.025 0.050 0.216
mo2m 0.016 0.095 0.055 0.077 0.170 0.059 0.073 0.136 0.059 0.026 0.184 0.120
mo5m 0.024 0.046 0.171 0.176 0.216 0.378 0.130 0.177 0.344 0.196 0.125 0.197
mlm 0.307 0.248 0.374 0.664 0.272 0.712 0.197 0.391 0.800 0.599 0.445 0.519
Translation Error for 10 Scans
1.000
g 0.100
9
13
£
g
H
0.010
0.001
GOM X
m0.05m 0.021 0.050 0.008 0.029 0.050 0.008 0.023 0.051 0.010 0.011 0.047 0.074
m02m 0.018 0.038 0.014 0.032 0.123 0.005 0.045 0.087 0.031 0.058 0.075 0.020
mo.5m 0.009 0.038 0.205 0.024 0.224 0.177 0.083 0.182 0.176 0.011 0.061 0.347
mlm 0.018 0.133 0.792 0.013 0.233 0.614 0.139 0.375 0.350 0.013 0.083 0.026

Table 6.5 — Mean translation error in
All distances in metres. Note the chart axis uses a log scale.

optimisation for different levels of initial offset.
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Rotation Error for 2 Scans

10.000
g
® 1000
3
£
§
g

0100

0010 . - - .

GOM Roll | GOM Pitch MIPitch | MIYaw NMIRoll | NMI Pitch LevRoll | LevPitch

mldegree | 0480 0532 0052 0798 0800 0.063 0807 0923 0075 1278 0.908 0451
W5 degrees | 0550 1972 2435 2853 3330 1.304 3133 3.639 0.049 1563 2.068 6.089
W15 degrees| 15.493 22.957 14.223 15.610 16.223 6.889 14.165 9.494 5314 7.713 11.265 10.026
m30degrees| 31822 | 29107 | 31818 31806 | 31852 | 33219 30623 | 20231 | 22090 28480 | 27167 | 26.857

Rotation Error for 5 Scans

10.000
g
4
» 1.000
3
£
§
3
0.100
0.010
GOM Roll | GOM Pitch | GOM Yaw MI Pitch MI Yaw NMI Roll NMI Pitch NMI Yaw Lev Roll Lev Pitch Lev Yaw
W1 degree 0.395 0.462 0.039 0.757 0.544 0.046 0.778 0.655 0.071 0.841 0.599 0.029
W5 degrees 0.476 1.109 0.790 2931 1.709 0.031 2.516 1.036 2.501 0.771 1.035 1.684
@15 degrees 16.379 10.806 21.333 14117 14.019 2.649 15.008 11.480 2.617 5.973 7.691 10.949
W30degrees| 33.842 33.059 28.591 30.668 28.044 36.437 31.533 22.751 24.118 21.927 29.144 27.973
Rotation Error for 10 Scans
10.000 I T-
® 1000
3
£
g
&
0.100
0.010
GOM Roll | GOM Pitch | GOM Yaw M Roll MI Pitch NMI Roll NMI Pitch NMI Yaw Lev Roll Lev Pitch Lev Yaw
W1 degree 0.244 0.240 0.028 0.565 0.470 0.046 0.572 0.583 0.057 1.041 0.486 0.031
W5 degrees 0.251 0.210 0.026 0.382 1.425 0.059 0.704 2228 0.037 0.672 0.499 0.031
m15degrees, 11.748 10.811 10.510 11.423 14.813 4.572 16.305 11.213 1.239 10.106 5.012 15.905
W30 degrees 35.801 28.743 37.806 31.507 25.614 29.736 31.618 27.798 16.240 26.458 20.902 14.358

Table 6.6 — Mean rotation error in optimisation for different levels of initial offset. All

angles in degrees. Note the chart axis uses a log scale.



6.4 Motion-Based Metrics 113

initial point giving the larger error for the 0.2 m starting offset. Overall, the basin of
attraction for GOM and MI appeared to be similar in size, with the Levinson method

and NMI’s being slightly larger.

In rotation, starting offsets of 15 and 30 degrees often led to errors larger than before
optimisation. This implies that at these angles from the true rotation, the metrics
could not provide any strong indication as to the direction of the previously found
maximum, and therefore the metrics often converged to an incorrect local maximum
in a random direction. While scan aggregation reduced this issue for the 15 degree
offset, it was present in all the 30 degree offset results. The 1 degree offset did not
significantly impede any of the metrics from obtaining an accurate result. However
using 10 scans, only the GOM solution obtained an accurate result for a 5 degree
offset for roll, pitch and yaw. For NMI and MI, significant error was always present

in the pitch, while the Levinson method generally had significant pitch and yaw error.

From these results, it can be concluded that all four metrics have a similar basin of
attraction, although GOM appeared to handle a slightly wider range of angles than
the other methods. In all cases, scan aggregation noticeably improved the results.
These results would suggest that for 10 scans on the Ford dataset, a metric must have
an initial guess within at least 5 degrees and 0.2m of the correct solution to obtain

reliable calibration results.

6.4 Motion-Based Metrics

6.4.1 Finding Timing Offset

We began the testing of motion-based metrics by looking at the method described
in Section 5.2.1, and its ability to compensate for timing offset in sensor data. In
this experiment the approach was used to correct for timing offset in the cameras of
the KITTI, Ford and Shrimp dataset. Only the cameras were made use of due to
the accurate ground truth available between these sensors. In the Ford and Shrimp

dataset, a Ladybug spherical camera, is used. This camera system uses a global
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shutter where all the cameras are triggered simultaneously. Similarly the KITTI
dataset uses a system that allows for near-simultaneous triggering of the camera
shutters. If any other sensors were to be incorporated we would be forced to rely
on the time stamping of the system’s which is of unknown quality in the KITTI and

Ford dataset, and known to result in a lag as large as 60 ms for the Shrimp dataset.

To test the system, random contiguous sections of the drives were taken ranging from
10 to 200 seconds in length in 10 second increments; the cameras then had a random
timing offset applied to them. The calibration was run and the mean absolute error
in the timing found. Three experiments were run; in the first experiment a random
timing offset between -0.1 seconds and 0.1 seconds was first applied to each of the
cameras. In the second experiment up to 1 second of random offset was applied; in
the final experiment 5 seconds of offset was used. Each experiment was performed

100 times. The results are shown in Figures 6.10, 6.11 and 6.12.

For all three datasets, several common trends appear. For the shortest time period
tested (10 seconds) the results are generally quite poor. In the case of 5 seconds of
random offset the results are comparable to random guessing. This is to be expected
as the method only operates on the overlapping regions of data and for short time
intervals there is a substantial chance that the vehicle will not exhibit any significant
rotational cues from which to estimate the offset. The accuracy of the method rapidly
improves over the next few timesteps. After this initial period of improvement, while
the robustness of the method continues to improve (seen through the reduction in

outlier points) the mean accuracy of the method does not change significantly.

The maximum error of the outliers tends to increase with the length of informa-
tion used. The reason for this is that the maximum possible error a frame can be

mismatched by is the length of the dataset used.

For 200 seconds of data and 1 second of initial offset the KITTI dataset gives a final
median error of roughly 6 ms with a worst case error of 40 ms. The Shrimp dataset
gives a median error of 2 ms with a worst case error of 9 ms and the Ford dataset
has a median of 70 ms and worst case of 370 ms. Given that the sensors used give

readings every 100 ms for the KITTI dataset and 120 ms for the other two datasets,
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Figure 6.10 — Error in estimated sensor timing offset in the KITTI dataset.
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Figure 6.11 — Error in estimated sensor timing offset in the Shrimp dataset.
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Figure 6.12 — Error in estimated sensor timing offset in the Ford dataset.
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Dataset | Median Rotation Speed (rad/s)
Kitti 0.0572

Shrimp 0.0649
Ford 0.0118

Table 6.7 — Median rotational speed for each dataset.

this level of error is acceptable for our application as in the vast majority of cases the
accuracy is sufficient to correctly provide the closest matching frames between two

SEensors.

The reason for the large difference in accuracy of the method on the three datasets
however bears further examination. Part of the reason for this difference is the differ-
ent vehicles, terrain and behaviour during the data collection. In the KITTI dataset
a car is driven through a series of winding side streets in a small city; the Shrimp
dataset has sensors mounted on a tall mast on a Segway vehicle driving back and
forth over a grassy park. Finally, the Ford dataset drives a large Ford pickup truck
around a single loop of a city block, travelling on wide main streets and stopping for

traffic lights at several points.

From the perspective of timing calibration we are interested in the affect these differ-
ences have on the rotational speed of the sensors. Figure 6.13 shows the rotational
speed of the GPS/INS system for each of the test systems. While the Shrimp dataset
does not undergo any tight turns that the other systems experience, moving over un-
paved terrain results in most timesteps experiencing a significant rotation. The Ford
dataset, on the other hand, only experiences 8 significant turns in its six minute run,
and it also remains stationary for over a minute waiting at a set of lights. The median
rotational speed for each dataset is shown in Table 6.7. The low median rotational
speed exhibited by the Ford dataset is the main reason for its poor performance in
comparison to the other two datasets, as the large sections of little rotation result in

insufficient features for an accurate alignment.
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Figure 6.13 — Rotational speed experienced by the GPS/INS sensor during each
dataset.

6.4.2 Aligning Two Sensors

To test the ability of the motion-based approach described in Chapter 5 to align
two sensors with no overlap in their field of view, two experiments were performed.
In these experiments the calibration between a GPS/INS system and a Velodyne
lidar was found. In the first experiment the calibration was performed on the KITTI
dataset. In the second experiment the Shrimp dataset was used. The results were
also compared with a least squares approach that does not make use of the reading’s
variance estimates. In the experiment a set of continuous sensor readings is selected
at random from the dataset and the extrinsic calibration between them found. This
is compared to the known ground truth provided with the dataset. The length of
information was set between 10 seconds and 300 seconds in 10 second increments.
For each time period the experiment was repeated 500 times with the mean reported.
While our method calculates the rotation in angle-axis format to allow for intuitive
understanding, we convert this to Euler angles when displaying the results. The
associated estimated standard deviation is also converted using a simple Monte-Carlo

method.

Figure 6.14 shows the absolute error of the calibration. For all readings our calibra-
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Figure 6.14 — The error in rotation in degrees and translation in metres for varying
numbers of sensor readings. The black line shows the least squares result, while
the coloured line gives the result of our approach. The shaded region gives one
standard deviation of the estimated uncertainty provided by our approach.
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tion significantly improves as more readings are used for the first few hundred scans,
before slowly tapering off. In rotation, yaw was the most accurately estimated. This
was to be expected as the motion of the vehicle is roughly planar giving less motion
from which roll and pitch can be estimated. For large numbers of scans the method
estimated the rotation in the KITTI dataset to within 0.5 degrees of error and in
the Shrimp dataset to within 2 degrees of error. Our method outperformed the least
squares method on the KITTI dataset while the least squares method gave similar
results on the Shrimp dataset. The reason for the smaller difference in performance
on the Shrimp platform was probably due to all the driving in this dataset occurring
within a single small courtyard. This meant that there was less variation in the accu-
racy of the lidar and GPS readings during the calibration then in the KITTI dataset.
Because of this, the least squares method not considering the sensors’ uncertainty
had less of an impact on the results. However, even in cases where our method does
not outperform the least squares approach it offers the advantage of providing an

estimate of the uncertainty in its values.

The calibration for the translation was poorer than the rotation. This is due to the
reliance on the rotation calculation and the sensors tending to give noisier translation
estimates. For translation our method significantly outperformed the least squares
method. The least squares method, in many instances, also began to perform more
poorly as the data used increased. The most likely explanation for this decrease
in performance is that the more data is used for the calculation, the higher the
probability an outlier will be present in the data. The largest difference in performance
can be seen when estimating the 7Z offset. This difference is due to the roughly planar
motion that makes the Z axis the most sensitive parameter to noise and outliers,

which the simple least squares method fails to account for.

The accuracy of the predicted variance of the result is more difficult to assess than
that of the calibration. However all of the errors were within a range of around
1.5 standard deviations from the actual error. Viewing the data suggests that the
estimated translation variance may be slightly conservative in its estimates. Overall

the method gives a consistent indication of the estimation’s accuracy.
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Figure 6.15 — The absolute error in rotation, in degrees, when calibrating 5 of Shrimp’s
cameras.

6.4.3 Calibrating Panoramic Camera Systems

To give a near-complete image of the surroundings many platforms make use of
panoramic camera systems. These systems fuse multiple images from cameras facing
in different directions into a single image. The cameras in these systems often have
little to no overlap in their views, making their calibration challenging. However,
our motion-based approach can still estimate calibration parameters for this type of

system.

To demonstrate this an experiment was run calibrating the five horizontally facing
cameras of the Shrimp platform’s Ladybug camera system. As only monocular camera
matching is performed, no sense of scale is present and so only the rotational offsets
can be estimated. This limitation does not significantly impede the use of multiple
cameras in forming a panoramic image, however as in most practical systems, the
cameras are placed in close proximity. This means that assuming no translation
between the cameras is usually valid. Even when the translation is known, panoramic
camera systems often make no use of it as the translation cannot be used to correct

the image panorama without some knowledge of the structure of the scene [81].

For the calibration process 30 seconds of continuous data was used and the process
was repeated 500 times. While in this case the cameras had a small amount of overlap
that could be used to refine the alignment, this was not utilised in this experiment.
The error in this calibration was found using the ground truth provided by the manu-

facturer to find the mean error between any combination of two cameras. The results



6.4 Motion-Based Metrics 123

&)

Figure 6.16 — Spherical panoramic image created from the 5 individual cameras. The
top image was created using the manufacturer’s values and the bottom with the
mean results from the experiment.

of this experiment are shown in Figure 6.15.

As in previous experiments, roll was the least accurately estimated due to the vehi-
cle undergoing roughly planar motion, limiting the observability of this parameter.
Overall the results gave a median error in roll of roughly 1.5 degrees and an error in
yaw and pitch of around 0.5 degrees. Once the calibration has been performed the
results can be combined with the sensor intrinsics to create a spherical panoramic

image.

While the accuracy of the above calibration could be improved by utilising more
data or making use of point matching in the small regions of overlap, this would
not significantly improve the appearance of the generated panoramic image. This is
because the inaccuracies in the lens distortion model and intrinsics have a significant
impact on the quality of the image. This is shown qualitatively in Figure 6.16 where
both the manufacturer’s ground truth and generated calibration values are used to
fuse the Ladybug’s images. For a human viewing these images it is challenging to

discern with any certainty which calibration is more accurate.
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6.4.4 Simultaneous Calibration of Multiple Sensors

An experiment was conducted to evaluate the effect that simultaneously calibrating
all sensors has on the results. This was done using the KITTI dataset and aligning
its Velodyne, GPS/INS unit and two of its cameras. The experiment was first per-
formed using 200 seconds of data to calibrate the sensor’s and combining all of the
readings. In a second experiment the sensors were again aligned, however this time
only the error with respect to the Velodyne sensor was optimised. The experiment
was repeated 100 times and the mean error in rotation and translation was found and
shown in Figure 6.17. From the figure it can be seen that the error with respect to
the Velodyne sensor was similar for both optimisations. The simultaneous calibration
generally resulted in slightly more accurate rotation estimates, however the transla-
tion estimates are roughly the same or marginally worse. The difference comes when
the error between the other sensors is considered. When the error with respect to
one of the cameras is considered, it can be seen that a significant reduction in error
is present. This is to be expected as simultaneously considering the error between
all sensors will result in a calibration that, while not necessarily more accurate for a

single sensor pair, will provide the most accurate solution for the system as a whole.
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tres, for combining sensor readings and performing separate optimisations. In the
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6.4.5 Constraining the Search Space of Appearance-Based
Metrics

To evaluate the use of motion-based calibration for constraining the search space
of appearance metrics, an experiment was performed. Initially 100 seconds of data
from the KITTI dataset was used to align the system’s Velodyne with its leftmost
camera. From this initial estimate appearance-based alignment of the sensors is then
performed. The search space for the problem is defined so that all rotations are
considered and the magnitude of the X, Y and Z offset of the two sensors is limited
to be under 1 metre. Note that, due to the offset between the sensors this results in

a maximum possible error in the calibration of 1.29m in X, 1.0lm in Y and 1.06m in

Z.

From this starting point a CMA-ES optimiser is first run considering the entire search
space. For this initial experiment we follow the advice of Hansen [22] that when no
other method of determining the starting variance is present, it should be set so the
correct solution lies within 20 of the initial estimate. Thus the initial multivariate

Gaussian is set to have a o that is 50% of the extent of our search space.

It should also be noted that in the optimisation the first point evaluated is the so-
lution provided by the motion stage. This means that any parameters output by
the CMA-ES optimisation will give equal or superior metric values to this initial

parameter.

Once this optimisation has been performed the approach is rerun, this time making
use of the variance estimate provided by the motion stage and using this information
to initialise CMA-ES’s Gaussian distribution. In the appearance stage 25 scan-image
pairs were used; these were randomly selected from the available data. The exper-
iment was repeated 50 times and the GOM, NMI, Levinson and IM metric were
evaluated. The results of this experiment are presented in Figure 6.18 and Table 6.8;

a depiction of some of the resulting calibrations is shown in Figure 6.19.
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Figure 6.18 — Box plot of error in alignment for appearance-based metrics. The
unconstrained results search the entire viable search space, whereas the constrained
results made use of the variance given by the motion-based calibration. Note the
axis of the constrained optimisation excludes several outliers; the number of these
outliers can be found in Table 6.8. All rotations are in degrees and translations in
metres.
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Figure 6.19 — Some typical results when the Velodyne and Camera in the KITTI
dataset are aligned. Each image shows the Velodyne projected onto a camera’s
image after the preprocessing steps of each metric have been carried out. The
initial guess, constrained solution and unconstrained solution, along with the metric
scores, are shown. While the unconstrained solution improves the metric scores
in all cases (GOM and IM scores are minimised, Levinson and NMI scores are
maximised) the solution found has little relation to the correct parameters. By
constraining the optimisation, only solutions that are likely under the motion-
estimation step are evaluated, thereby improving the robustness and accuracy of
the calibration.
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Initial | NMI | GOM | Levinson | IM
Full Search Space | 42% | 0% | 0% 2% 10%
Constrained 42% 82% | 8% | 96% 100%

Table 6.8 — Percentage of solutions whose parameters are within 0.3m and 2 degree of
the correct calibration.

For the case of the constrained optimisation, the Levinson method, GOM and the IM
metric all typically improved the calibration of the system. The one exception to this
was the yaw estimate which was already estimated by the motion-based calibration to
a high degree of accuracy. For many of the metrics, in some instances the optimisation
failed and the system converged to a result with significant error. The rate at which
this occurred for the different metrics is shown in Table 6.8. In this experiment the
constrained IM metric was the only method that did not suffer from these occasional

outliers.

For the case where the appearance metrics were optimised over the entire search
space, the results were exceptionally poor. In many cases metrics gave results similar
or in some cases worse then random guessing. As Table 6.8 shows, NMI and GOM
both failed to have a single result that was within what we considered an acceptable

range of 2 degrees and 0.3m of error in its solution.

These findings show the limitations of appearance metrics in regards to initialisation,
and the issues encountered when the metrics are applied without regard for them.
There are two issues that combine to give these poor results. The first issue is the
bias to sensor overlap that was discussed in Section 4.1. This can be seen in the
unconstrained results for the IM and NMI metric in Figure 6.19. In both cases
this issue causes a global optima in a location that does not correspond to the correct
calibration parameters. The second issue is when the system is simply unable to locate
the global optima. This issue occurs because the CMA-ES optimiser used has the
number of points it evaluates at each step given by the heuristic (4 + floor(3log(N))),
where N is the number of dimensions the data has (6 in this case). This means that
at each iteration the function is defined by 9 samples. These samples are unable

to capture the complex nature of the entire search space given by the appearance
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Roll | Pitch | Yaw | X Y Z
Full Search Space | 90.00 | 45.00 | 90.00 | 0.50 | 0.50 | 0.50
Constrained 0.24 1027 1026 |0.041|0.14 | 0.57

Table 6.9 — Mean standard deviation of the Gaussian used to initialise the optimisation.
All angles in degrees and distances in metres

metrics, causing these poor results.

Instead of using the motion-based methods solution and estimated variance, another
option to deal with the large search space problem would be to use more samples,
either with CMA-ES or an alternative optimiser. This however presents the issue of
the methods runtime. Depending on the metric used the evaluation of the appearance
metric on one lidar-image pair requires, on average, between 2 and 6 ms. Taking the
best-case option of 2 ms then to evaluate 25 images requires 50 ms. Using CMA-ES
with 9 function evaluations per step, the method typically requires around 200 steps
to converge, resulting in a run time of 90 seconds. Now we must examine how
many function evaluations must be made to truly represent the search space without
constraining it. If we were to sample the search space as densely as the solution that

makes use of the variance from the motion-based estimation, we would require:

evaluations =9 ﬁ tull; (6.1)

i=1 Tcon;
Where o¢,y, is the standard deviation of dimension 7 of the full search space and o,
is the standard deviation of dimension ¢ of the motion-based solution. For this exper-
iment the mean standard deviation of these search spaces is given by Table 6.9. This
means in this instance Equation 6.1 would give ~ 7,600, 000, 000 function evaluations
per step of the optimisation. Clearly this approach would be completely intractable

to evaluate in any sort of timely manner.
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Figure 6.20 — Five images from the upward-facing camera (camera 6) of the Ladybug
in the Shrimp dataset. Overexposure and few motion cues make this a challenging
sensor to register.

6.4.6 Impact of Noisy Inputs

While the Ladybug system is composed of six cameras, the sixth camera points di-
rectly upwards. Due to this positioning, in many applications this camera will only
give images of the sky and so is of limited use (The Ford Michigan dataset does not
even provide it). However the Shrimp dataset was gathered in a quadrangle with
some trees around the edge. This means that when the vehicle was near the edges
of the area, the camera was able to see parts of trees and the upper floors of some

buildings.

This camera provides a challenging test to evaluate our method’s robustness against
noisy observations. As was already mentioned, the most significant issue is that most
of the captured images only have a small number of objects near the edges of the
frame. A second factor that degrades the image quality is that during the capture of
this dataset, the sun was almost directly overhead. In the Ladybug camera system
the exposure time of all of the cameras is set to be equal. This means that when
this exposure is set to an ideal value for the horizontal cameras, the vertical camera
pointing at the sun has all of its images overexposed by a significant amount. These
images also experience substantial lens flare. A series of example images from the

camera is shown in Figure 6.20.

Due to the low quality of the images, the visual odometry gained from the camera is

exceptionally poor, with many missing frames and noisy readings. Figure 6.21 shows
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Figure 6.21 — The visual odometry result from the upwards-facing camera (blue)
compared to the RTK GPS unit (red) on the Shrimp dataset.

the path given by our camera transformation calculation step when the GPS unit is

used to provide absolute scale to its transformations.

To test the method’s ability to handle this challenging sensor an experiment was
run. A section of continuous data was randomly selected from the Shrimp dataset
and used to find the rotational offset between Shrimp’s front-facing and upward-facing
camera. This experiment was repeated for trimmed means that rejected 0% (standard
mean), 25% and 75% of the data, as well as data lengths of 20, 100 and 200 seconds.
The process was repeated 100 times. No accurate ground truth for the Ladybug’s
position with respect to the other Shrimp sensors exist, so it was not included in the
calibration. This limitation means that only monocular cameras were compared and

so no estimate of the translation between the sensors can be calculated.

The results of the experiment are shown in Figure 6.22. In this experiment the
rotational error rapidly decreases with the length of data used. However, using a

mean where no data is trimmed results in poor calibration results for all runs. This is
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Figure 6.22 — Alignment of Shrimp’s upward-facing camera for 20, 100 and 200 seconds
of data. Trimmed means rejecting 0%, 25% and 75% have been applied. The
estimated standard deviation is also provided. In this noisy dataset only the 75%
trimmed means robustly prevents outliers from affecting its estimate and standard

deviation.
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almost certainly due to the large impact outliers have on this dataset. The trimmed
means rejecting 75% and 25% give similar accuracy over the scans for this dataset.
The estimated standard deviations, on the other hand, displayed very different results.
For these sensors the 75% rejection trimmed means was the only measure that did not
consistently underestimate the true error in the resulting calibration by a significant

margin.

Two factors contribute to the increased o of the 75% trimmed means. The first is
that it utilises less data then the other two methods; however the impact of this
is not on the scale of the differences witnessed in this dataset. The second is that
any outliers that are included in the probability calculation will greatly increase the
method’s certainty in its results. This result would imply that, due to the extreme
noise unique to the motion of this upward-facing camera, the simple approach we
have utilised, of rejecting 25% of the worst fitting data, may be failing to remove all
of the outlier points. Because of this, either increasing the trimmed means rejection
ratio or another form of robust estimator is required in these extreme circumstances.
The results of the experiment show that if a robust framework is used, the calibration
pipeline still works even in very noisy conditions, though some care must be taken to

ensure the noisy readings are correctly identified.

6.4.7 Full Alignment of Multiple Sensors on the KITTI Dataset

To test how the entire process performs when applied to the calibration of a system,
all stages of the process—the timing estimation, motion estimation and refinement,
were used to align four cameras and the Velodyne scanner in the KITTI dataset. 100

seconds of contiguous data was taken for the test and the IM metric was used for

1

oo th of the image width was used for

refining the alignment. A Gaussian with a o
blurring the images in IM’s image preprocessing stage. The experiment was repeated
100 times. The results of those runs are presented in Figure 6.23 and the mean error

given in Table 6.10.
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Figure 6.23 — Plot of the resulting error when the full calibration method is used
to align the cameras and Velodyne lidar in the KITTI dataset. The mean error

between the sensors is shown for all 100 runs with error bars giving the estimated
standard deviation.

X Y 7 Roll Pitch | Yaw
0.0633 | 0.0747 | 0.0202 | 0.4384 | 0.4152 | 0.1540

Table 6.10 — Mean error when the full method is used to calibrate the Velodyne and
aaaaaaaaa the KITTI dataset. Distances in metres and angles in degrees.
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Figure 6.24 — Box plot of the number of estimated standard deviations the estimated
solution lies from the ground-truth

This process gave an accurate calibration in almost all cases. To give an indication of
the accuracy of the estimated variance our method returns, we analysed the number
of standard deviations this estimate placed between our calibration and the ground

truth. This information is shown in Figure 6.24.

If the parameters were Gaussian distributed with the estimated standard deviation,
we would expect 50% of the data to lie within 0.670 of the ground truth. From
viewing the results it appears that for this experiment the XY ,Z and yaw were slightly
conservative in their estimation predicting greater uncertainty than is present. Roll
and Pitch demonstrated the opposite behaviour slightly overestimating the confidence
in the results. In general, all confidence estimates gave an estimated uncertainty that
was sufficiently close to the true uncertainty to be of practical value in assessing the

performance of the calibration.

6.5 Summary

In this chapter we have presented a thorough evaluation of the algorithms presented
in previous sections of this thesis. Through experimentation using a rich number of
datasets, we have demonstrated the accuracy achievable via the techniques presented

in this thesis, as well as several state-of-the-art methods.
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We first examined appearance-based metrics and compared the performance of the
developed GOM metric to current approaches. Its performance in high resolution
lidar-camera registration, image-image registration and mobile lidar-camera calibra-
tion was assessed, and shown to be comparable or superior to other state-of-the-art
methods. We then performed experiments with methods for generating intensity in-
formation from 3D data and observed how this impacted the quality of the calibration
obtained. Finally, we examined the accuracy of the initial guess required to calibrate
a mobile system’s sensors, via an experiment that tested the size of the basin of

attraction of several methods.

After this we turned our focus to the motion-based metrics, first demonstrating that
for systems undergoing sufficient motion, our methods could accurately recover the
timing offsets between the sensors. The rotation and translation offset estimation
methods accuracy was then assessed, before an experiment was performed demon-
strating the improvement considering the offset between all sensors had on the re-
sulting estimates. We then examined the performance of a system that combined
both motion and appearance-based information in its calibration. This experiment
showed, that through the combination of our motion-based approach and our IM
metric, a robust and accurate calibration could be given. It was also shown that this
solution was only possible when the full motion-based approach was utilised to guide
the appearance-based refinement stage. We then examined the methods performance
under significant noise. Finally, we implemented all of the stages of our approach
(timing, rotation and translational offset estimation from motion, with appearance
based refinement) in a single experiment. This experiment accurately calibrated the
sensors of a vehicle, while also providing a believable indication of the uncertainty in

its values.



Chapter 7

Conclusion

The calibration of multi-modal sensors is typically a time consuming and challenging
process that must be performed by someone highly knowledgeable about the sensors’
operating principles. As the application of systems with multiple cameras, lidars,
GPS, INS and other sensors becomes more common, this calibration will become a
stumbling block for non-expert users that need to operate these systems. This issue
will also impact autonomous systems that need to operate without assistance for long
periods of time. Because of this, this thesis has focused on the development of auto-
matic extrinsic calibration techniques that make a minimal number of assumptions
about the system they are calibrating. Initially the focus of our research was on high-
resolution lidar and their fusion with camera systems. To this end the GOM metric
was developed. It was then found the metric was also suited to 3D lidar-camera cal-
ibration for mobile vehicles. The calibration approach however is limited due to the
challenging optimisation that is experienced by all metrics that only make use of the

appearance of the surrounding environment.

To overcome these issues we looked to other cues of alignment and found that on
ground vehicles, motion provides a rich source of calibration information. From this,
a motion-based approach that could operate on any number of cameras, 3D-lidar and
GPS/INS systems, was developed. The system was also able to correct for timing

offsets between the sensors. It was found that this system can be combined with
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the appearance-based approaches and assisted in reducing the difficulties of their
optimisation by constraining the feasible search space within which a solution could
lie. It was also found that by utilising both appearance and motion cues, a new
metric (the Intensity-Motion metric) could be developed for use in calibrating 3D
lidar-camera systems for mobile vehicles. Finally, throughout all of the motion-based
calibration, careful consideration of the variance in each estimate was made to allow
the final approach to give an estimate of the confidence in any calibration it obtained.
A qualitative demonstration of the results obtainable via the methods developed are
shown in Figure 7.1. Further images and videos demonstrating the procedure can

also be found in [83].

7.1 Contributions

The specific contributions of this thesis are as follows:

e The development of a new multi-modal appearance-based metric, the Gradient
Orientation Measure (GOM). This metric operates by aligning the gradients
present in sensor modalities. The metric was designed for use with aligning
single, high-resolution lidar scans with images of the same scene without any
markers, a task most existing metrics are unable to perform. The metric has
also been shown to perform well on other tasks such as IR-RGB alignment
and the calibration of low-resolution lidar with a camera via the aggregation of

multiple frames. Further details of the metric are presented in Section 3.4.

e The examination of the issues surrounding appearance-based metrics, including
the difficulty of their optimisation and accuracy estimation. The details of this

are outlined in Section 4.1.

e The extension of hand-eye calibration techniques into a framework that allows
for the estimation of the timing, rotational and translational offset between any

number of sensors. The method operates on observations provided by a mobile
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Figure 7.1 — Top: The University of Sydney’s Great Hall. A camera image was
projected onto a high-resolution lidar scan after alignment with GOM. Bottom: A
section of the KITTI dataset where the Velodyne has first been coloured using the
leftmost camera. The calibration was performed using our motion-based approach
and IM metric. The Velodyne’s motion was then used to project all the 3D points
onto a single image.
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platform moving through an arbitrary environment and does not require any
calibration aids or even overlap in the sensors field-of-view. The technique also
considers the variance of the sensor readings at each stage and reasons about
the given information in a probabilistic manner. The details of this approach

are given in Section 5.2.

e The estimation of the uncertainty present in the calibration results found. These
estimates are generated utilising statistical techniques that are presented in

Section 4.2.

e The combination of the strengths of both appearance-based and motion-based
calibration. This is done by using the motion-based calibration to remove the
requirement for an accurate initial guess to the calibration, that is typically
a feature of appearance-based metrics. We are unaware of any other approach
that combines both types of sensor information. The details of this combination

are given in Section 5.7.

e The development of a second new multi-modal metric, the Intensity Motion
(IM) metric for aligning lidar with cameras. This metric is designed for use with
mobile vehicle-based systems and utilises both appearance- and motion charac-
teristics in its refinement. The use of both of these calibration cues allows for
an indication of the sensors’ alignment while only making mono-modal compar-
isons. This is an advantage over previous methods as mono-modal matching will
typically be more robust then multi-modal matching. This robustness is due to
the simpler relationship between mono-modal sensor readings. The details of

this metric are outlined in Section 5.7.1.

e Evaluation of all of the proposed metrics and methods described above on real-
world datasets. The methods are also compared to techniques present in the
literature and are all compared with known ground truth where available. The

evaluations carried out are given in Chapter 6
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7.2 Future Work

There are five promising areas via which this research could be continued. The
first is the use of sensors that are only able to observe 2D and 1D transformations.
Currently, the method has only been applied to sensors that are able to observe the
full 3D transformation of the surrounding environment. However, this limitation is
not a requirement for any stage of the approach as, if the sensor transforms are given
infinite variance in directions where the motion is unobservable by the sensor, the
methods may operate in their current form. The issue here, and the reason why this
area requires further research, is that this limited observability will tend to result
in exceptionally large variance in the calibration process and a fairly uninformative
resulting calibration. The addition of extra environmental constraints or assumptions
would likely be required before these sensors could accurately be calibrated to work

with the system.

The second area would be to look at placing this framework into a real-time structure.
This would allow a user to see the estimated calibration as the vehicle was collecting
the data and assess how accurate the current calibration was, and what motions or

observations would be required to improve it further.

The third area would be the inclusion of all of the sensor-intrinsic parameters in
the optimisation. Currently we assume that all of the sensors have a known internal
calibration, however for the system to be used in plug-play sensing where a non-expert
users can change sensor configurations, the system will need to be robust to uncertain
initialisation.

The fourth area is the examination of other outlier rejection techniques. The analysis
of different robust estimation options was beyond the scope of this thesis and the
trimmed means was chosen based on empirical testing that found it to be a simple,
robust and effective means of outlier elimination. However, it discards the value
of the readings for a significant portion of the provided data. This means that it is
possible that a detailed analysis of the problem would yield a more efficient estimation

technique.
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Finally, the code aspect of this work is currently not in a form that would be user
friendly to someone with limited programming knowledge. Work could be done to
improve the approachability of the code through the development of a graphical user

interface to allow non-expert users to make use of the system.
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Appendix A

Applications

During the development of this thesis the approaches formulated have been used to
provide accurate data alignment for a large range of systems and situations. Many of
these applications have no form of ground truth against which to evaluate the results,
and so have not been included in the main section of this thesis. However as they
still demonstrate real-world applications of the method, they have been included in

this appendix.

The problems examined in this appendix are as follows:

A.1 Mine Face Classification

A.2 Sydney Opera House Registration

A.3 Tllumination Invariant Dataset

A.4 TR-RGB Image Alignment for Almond Detection
A.5 Mine Site Visualisation

A.6 Line Scanner Mobile Rig Calibration

A.1 Mine Face Classification

Hyperspectral cameras detect a large range of spectral information which can be used

to classify the materials in a given scene [73]. In this application the camera was used
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to map clay minerals through the intensity of their response at different wavelengths
on the face of a mine pit. Our methods were used to find the transformation between
the hyper-spectral camera and a Riegl lidar scanner mounted on a separate tripod
nearby. The combination of the sensors facilitated the mapping of the mineral classi-
fication onto the geography of the face, allowing us to obtain surface area estimates

for each of the classified minerals. This work has been published in [50] and [51].

A.1.1 Registration

For this registration GOM was used as the alignment metric. The search space for
the optimiser was formed around a rough guess as to the alignment, from observing
the sensor outputs, and set to have a range of 10 degrees in roll, pitch and yaw, 10
metres in X and Z and 2 metres in Y. The focal length had a range of 100 pixels.
An estimate of the variance in this calibration was also generated. This was done by
bootstrapping the lidar data before registering it with the camera data. Using the
bootstrapping process the registration was performed 20 times with the results used

to estimate the variance of the estimated camera parameters.

A.1.2 Area Calculation

The area of the mine pit covered by each of the minerals was calculated in two separate
ways. First, a simple estimate of the area was made using the image alone. In the
second method the image was projected onto the registered lidar scan. To calculate
the area from the point cloud, the space each point covers was calculated by assuming
it was a square whose sides are the length of the median distance to the four closest
neighbours. Small changes in the camera’s position could have a large impact on
the location of classified minerals. To account for this, the estimated variance in the
camera parameters, previously calculated, was used to calculate a variance in the

classified area using a Monte-Carlo sampling approach.
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Wavelength position (nm)

L OO 0O [0 & B 1
2197 2202 2220 2233 2288 2306 2319

Figure A.1 — Minerals detected at each wavelength position on the cliff face.

Wavelength Position | Image Area (Pixels) | Face Surface Area (m?) | Image Area (%) | Face Surface Area (%) | Face Surface o (%)
Unclassified 466110 73461 72.3 67.0 1.0
2197 nm 54913 16351 8.5 14.9 0.3
2202 nm 29753 5867 4.6 5.4 0.3
2220 nm 6192 1251 1.0 1.1 0.3
2233 nm 18134 3007 2.8 2.7 0.2
2288 nm 39405 6318 6.1 5.8 0.4
2306 nm 17331 2329 2.7 2.1 0.2
2319 nm 12642 1053 2.0 1.0 0.1
Total 644480 109637 100 100

Table A.1 — Area of face classified as each material
A.1.3 Results

The mapping of the classified image onto the face is shown in Figure A.1. The area
covered by each of the minerals is shown in Table A.1. This table shows the two key
advantages of projecting the image information onto the lidar scan. The first, is that
it allows the quantification of the material in absolute units (in this case m?), the
second, is that it prevents the distance of the minerals from the camera effecting their
perceived abundance. For example the minerals at wavelength 2197 makes up 8.5%
of the minerals in the image but 14.9% of the minerals on the face. This is due to a

large amount of this mineral detected near the top of the cliff, far from the camera.
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Manual | Automated
X 263.2 256.2
Y 7.1 10.3
Z 200.9 248.0
Roll -173.1 -174.6
Pitch -1.9 -1.9
Yaw -91.7 -92.0
Focal X 5522 5797
Focal Y 5465 5701
Centre X 370 532
Centre Y 254 259

Table A.2 — Values found during registration, distances in metres and angles in degrees.
The registration was performed assuming no lens distortion.

A.2 Sydney Opera House Registration

To allow an unrelated experiment to take place, a Riegl lidar scanner was taken to
Sydney’s Circular Quay. During the downtime in this experiment a scan of the Sydney
Opera House was made. We decided to make use of this scan in demonstrating our
alignment method, as the Opera House is a far more interesting target than our usual
scans. However, no image of the Opera House had been taken and no one had made
note of where the scanner was when it recorded the scan. We decided to register the
Opera House with an image found on the internet [101]. This proved a challenging
problem as we had very little idea of the initial parameters and had to account for a
wide range of possible camera intrinsics as well as the possibility that the image had

been cropped.

An initial guess was made by hand matching 12 points in the image to the lidar scan.
Interior-point optimisation was then used to find the least squares error in the points’
positions when the lidar points were projected onto the image. Once this solution had
been obtained, the optimisation was performed using GOM. The results obtained for

the manual- and automated method can be seen in Table A.2 and Figure A.2
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Figure A.2 — Registration of the Opera House image. Top: the image with hand
matched points. Middle: the registration resulting from the matched points. Bot-
tom: registration after automated alignment. The differences between the manual-
and automated alignment can best be seen by looking at the far edge of the roof
or at the light poles by the waterfront.
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Figure A.3 — Image with cropped region shown in red assuming the focal point was
originally in the centre of the image.

The output of the manual and automatic alignment give very similar looking projec-
tions. This is despite some of the parameters used to generate these coloured point
clouds differing substantially (for example, the Z position). This is due to many
parameters giving similar effects. For example, in this case where we have a single
target in the distance, a change in the Z value or a change in the focal length will

produce near identical results.

This registration also allows us to infer some additional information about the photo.
If we assume that the camera’s focal point was roughly in the centre of the image
(a reasonable assumption for the majority of modern consumer cameras) we can see
that a large section must have been cropped from the top left of the original image,

as is shown in Figure A.3.
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Figure A.4 — Left: the original image. Middle: after combination with the lidar.
Right: after illumination invariance.

A.3 Illumination Invariant Dataset

A series of experiments were conducted for use in work by Ramakrishnan et al. [66].
In this work Ramakrishnan developed an approach to remove intensity changes due
to lighting variation via the utilisation of an areas 3D structure. The 3D structure
was given by making a high-resolution lidar scan of an urban area. Images of the area
were then taken at different times of day over several days. While some effort was
made to take each image from the same position, small variations in position needed
to be compensated for. This registration was done using GOM. An example of the

resulting registration after relighting can be seen in Figure A.4.

A.4 IR-RGB Image Alignment for Almond Detec-

tion

A multi-class image segmentation approach for automated fruit segmentation was
developed by Hung et al. [29]. The method utilised both RGB and IR bands in
its classification. The dataset of almond trees was made by taking a photo of an

almond tree, swapping the lens to one with an IR filter, and taking a second photo.
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This method of collecting the images meant there were some slight differences in the
position and focal length of the IR and RGB images. This was compensated for by
using an affine transformation and optimising its parameters using NMI. An example

of the resulting alignment is shown in Figure A.5.

A.5 Mine Site Visualisation

A mine site in Western Australia had an aerial photo taken of it. Several months later
a survey of the mine resulted in a high-resolution lidar scan of the mine being made.
For visualisation purposes the image was used to colour the mine lidar scan. This
presented several challenges; the aerial image was a combination of a large number of
images and the original images were not available. Similarly, the lidar scans were a
combination of a large number of scans with no reflectance information recorded. The
mine had also been active during the months between, with some areas undergoing
significant changes. To align the scans, an image was formed from the lidar scans
by using an orthographic projection along its 7 axis; the intensity of the resulting
image was coloured by its altitude. The rotation, translation and scale between the
two images was found using NMI and particle swarm optimisation. The resulting

coloured point cloud is shown in Figure A.6.

A.6 Line Scanner Mobile Rig Calibration

A vehicle for quickly scanning roadsides was set up with a side-facing camera and lidar
sensor to record a line scan that would be integrated with the navigation to generate
a 3D colour map. The lidar sensor was a standard high-resolution Rigel scanner
that could rotate. This, combined with the provided dimensions of the bracket both
sensors were mounted to, made the problem very simple to solve using the GOM

method. The results can be seen in Figure A.7
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Figure A.5 — One of the images before (left) and after alignment (right). RGB is shown
at the top, IR shown in the middle and alignment (two images superimposed) shown
at the bottom.
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Figure A.7 — Left: calibrated lidar and camera superimposed. Middle: an image
formed from the lidar scan Right: the camera image.



Appendix B

Accuracy Comparisons with

Existing Literature

In the field of markerless extrinsic calibration of 3D lidar and camera systems, several
methods such as MI, NMI and Levinson’s method have been tested by several inde-
pendent groups in a range of conference and journal papers. The claimed accuracy of
the methods between papers however varies substantially, often giving over an order
of magnitude difference for similar setups. Among these results our own findings are
some of the most pessimistic about the accuracy with which markerless methods are

able to calibrate a system.

In spite of the large range of results, we believe that all of the experiments we have
encountered by different authors testing these systems have been conducted in a
fair manner with the results giving an accurate assessment of the method’s abilities.
We believe the difference in results stems from subtle differences in the sensors, the
initial information provided to the systems and the assumptions the authors have
made about the system. The aim of this section is to briefly discuss the findings of
several prominent authors in the field and comment on some of the finer details that
contributed to the final estimated solutions they discovered. This section will mainly

focus on the work presented in [28, 35, 52, 61, 100].
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B.1 Influences on Calibration Accuracy

One of the largest influences on accuracy, especially relating to translational accuracy,
is the use of multiple cameras facing in different directions. In many instances the
authors have made use of spherical camera rigs ([35, 61, 100]) such as the Ladybug
camera. These setups house several cameras that have factory-calibrated extrinsic
and intrinsic parameters. When the camera outputs are combined these systems offer
a near complete panoramic view of the world. If the user is prepared to take the cal-
ibration between the cameras of this system as correct (usually a good assumption)
then these systems greatly improve the observability of most calibration parameters,
as was touched on in Section 6.3.5. This is due to three effects; firstly translations per-
pendicular to the camera direction have a far more pronounced effect on the camera’s
image than translations towards or away from the camera. In a panoramic system all
translations are perpendicular to part of the camera image and so are more clearly
observed. Secondly, for one camera some translations and rotations will affect the
output in a similar manner; these movements however would have a vastly different
effect on cameras facing in opposite directions. Finally, the use of a spherical system
alleviates the need to account for the bias a metric will exhibit due to differing overlap
in the field of view of the sensors. This is as a result of the spherical camera system
possessing a near-360-degree field, which results in all of the lidar points projecting

onto the camera image.

A second factor that will have a significant influence on the accuracy of calibrations
obtained by a system is the combination of the lidar with a pre-existing GPS/INS
system. The use of the pre-calibrated GPS/INS system allows for the movement of
the vehicle during the lidar scans to be accounted for and allows for, any timing offset
between the scan and the camera images to be overcome. In the case of [52] it also
allows a 2D lidar scan to be calibrated via the transformation into a 3D scan. This

system is used by [35, 61, 100].

The quality of the initial guess and restriction of the search space also affects the

quality of the obtained solution and the likelihood of converging to an erroneous
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solution. While the method of determining the initial conditions differed substantially,
with the exception of [35] and in some select experiments [61], all authors generally
provided the most accurate hand-calibrated solution as an initial starting point for

the system.

Finally, to compare the method’s accuracy you must first possess a correct ground
truth to the extrinsic calibration, something notoriously hard to come by. In our own
work we have typically used the ground truth provided by more manual methods, as
was covered in Section 6.2.6. This however relies on the reader understanding that
a portion of the error in the method they are seeing is due to the error in what has
been taken to be the "ground truth". For some authors the error this introduces is not
seen as acceptable and so, instead of reporting their method’s accuracy, they resort
to reporting its precision. That is, they run the method on a range of sections of
data and report its standard deviation. This approach, while understandable, will

underestimate any true error and not account for any bias the method may exhibit.

B.2 Presented Accuracy of Methods

Due to the possible combinations of sensors, initialisations, methods of measuring
error, assumptions and other details discussed above, the range of accuracies found
can show substantial variation. A summary of some of the most prevalent methods
is shown in Table B.1. In our own work we have placed a strong emphasis on the
calibration of sensors while making minimal assumptions. Because of this we have
never made use of any pre-calibrated extrinsic relationship between sensors. We have
also used search spaces that exhibit far more uncertainty in the initial parameters
than most authors consider. This, combined with our comparison of methods in
terms of their accuracy with respect to ground truth rather than their repeatable
precision, has led to results that tend to appear underwhelming when compared to
some of the results in Table B.1. We feel however that our results manage to capture
many of the issues that a general system may encounter if these methods were used

by non-experts.



Paper Method Error Type Dataset # of Scans | Roll ~ Pitch Yaw X Y 7
135] Hand Calibration o of precision Own 100 0.460 0.510 0.620 0.121 0.077 0.126
Levinson o of precision Own 100 0.014 0.028 0.010 0.006 0.006 0.006
162] MI o of precision Ford 40 0.050 0.050 0.100 0.030 0.010 0.010
Levinson o of precision Ford 40 0.400 0.700 0.200 0.050 0.040 0.090
[59] Marker-based o of accuracy Simulated 20 0.001 < 0.001 < 0.001 0.001 0.001 0.001
[52] Napier o of precision Own 20 0.380 0.390 0.440 0.045 0.052 0.046
[28] Heng Error wrt CamOdoCal ~ Own 500 0.004 0.003 0.009 0.002 0.002 0.002
[82] MI Error wrt KITTI KITTI 1 0.800 1.200 0.900 0.007 0.026 0.180
[100] MI Error wrt hand labelled  Own 10 Error given in pixels: 0.88 pixels
NMI Median error wrt KITTI KITTI 25 0.516 0.376 0.593 0.059 0.059 0.054
GOM Median error wrt KITTI KITTI 25 0.298 0.138 0.479 0.044 0.055 0.022
This Thesis Levinson Median error wrt KITTI KITTI 25 0.384 0.255 0.470 0.094 0.035 0.007
Motion Median error wrt KITTI KITTI 25 0.411 0.315 0.449 0.052 0.272 0.331
M Median error wrt KITTI KITTI 25 0.186 0.055 0.379 0.036 0.074 0.018

Table B.1 — A summary of some of the results found in the literature. For brevity only a single representative result with each
metric was taken from each paper. In several instances the results were only displayed graphically and in these instances
the exact values were estimated.
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Appendix C

Combining Sensor Information

Once the calibration of the system has been performed, the sensor information can
be combined to give a more complete representation of the world than any one sensor
could provide alone. This section briefly examines several of the practical issues en-
countered when combining cameras, 3D lidar and GPS/INS sensors to form a coloured

map of the world. An example of a section of one of these maps is shown in Figure C.1.

C.1 Image Noise

In creating visually pleasing coloured point clouds, an issue that is often encountered is
that the process of projecting an image onto a point cloud can enhance the visibility
of any image noise or artefacts present. This is best shown through an example.
Consider the white car shown in Figure C.2. On close examination the colouring of
the car in some regions of the Velodyne scan may appear unusual. For example, the
licence plate contains no white or black; instead this area is filled with patches of

bright orange and blue.

The reason for this odd colouring is apparent if we enlarge a small section of the
original colour image. This is done in Figure C.3. This figure shows that, although

the image taken as a whole displays a white license plate with black lettering, it is
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Figure C.1 — A section of a coloured 3D point cloud generated using the lidar, cameras
and GPS/INS systems of the KITTI system.

Figure C.2 — A Velodyne scan of a white car that has been coloured by a camera
image. The car contains significant regions of bright orange and blue colouring.
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Figure C.3 — The image of the white car where a small section of the image has been
enlarged. In this region the colour of the individual pixels differ significantly from
the perceived colour of the patch.

Figure C.4 — Left, a Velodyne scan of a white car coloured by a camera image. Right,
the same scan coloured by the image after a Gaussian blur with a standard deviation
of 2 was applied. The right-hand image maintains a more natural colouring with
fewer bright orange regions then the left-hand image.

actually composed of brightly coloured pixels of a range of hues. This means that
when the colours of individual pixels are taken and applied to the much sparser
Velodyne scan, the colour of individual points becomes far more noticeable leading

to the image appearing unnatural in some regions.

To correct for this we wish each Velodyne point to take on the perceived value of all
the pixels in a small region rather than a single pixel intensity value. In practice this
can be implemented by simply applying a slight Gaussian blur to the image before
projecting the Velodyne onto it. The result of this is shown in Figure C.4.
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C.2 Occlusions

As the cameras and 3D lidar are located at different points on the vehicle, the parts of
the scene that are occluded will be different for each sensor. Therefore, when it comes
to colouring a lidar scan using the cameras’ colour information, a naive approach of
simply projecting all of the lidar points onto the image and assigning them the colour
at that location, will give results such as those seen in Figure C.5. In this figure it
can be observed that several regions in the scan have been mis-coloured. The most
noticeable areas are the pole and car, which have been projected onto areas behind
the actual objects. It should be clearly noted here that this mis-colouration is not
due to the mis-calibration of the intrinsics or extrinsics of the system. It has occurred
as, from the camera’s perspective, the car and pole are occluding sections of the
background that the lidar is observing. This is then not accounted for in the camera
model, resulting in the camera assigning the same colour to any point that lies behind
any foreground objects. The closer an object is to the camera and the further the

camera is from the lidar, the more pronounced this issue will become.

To account for this issue we adopt a scheme similar to that used in Section 5.7.1
where points likely to be occluded were removed. To remove occluded points we first
project all points onto the image and record their image coordinates. We then find
the 10 closest neighbours to each point, if any of these neighbours is over 0.1 metres
in front of the point it is deemed to have a high likelihood of being occluded and is
not assigned a colour from the image. While this method has the potential to exclude
valid points when considering situations such as chain-link fences, it typically gives

good results in an efficient manner.

It should also be noted that the points which are excluded will depend on the position
of the camera. Therefore if we make use of multiple cameras in different positions,
the number of points that cannot be assigned colour information due to occlusion is

vastly reduced. Figure C.6 shows the results of our occlusion removal.
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Figure C.5 — A frame from the KITTI dataset where the left colour camera image has
been projected onto the Velodyne’s lidar scan. The difference in the perspective
of the sensors has resulted in some points in the background receiving the colour
of foreground objects; for example the sign post and edge of the car have been
projected onto the wall behind. Note, red is used to colour the scan where no
camera information exists.

C.3 Dynamic Objects

To combine the individual scans into a larger map, dynamic objects will need to be
removed. If this is not done the object may be placed into the scene many times,
giving a poor output. The detection of these dynamic objects from lidar scans is an
area that has seen significant attention [4, 46, 49]. However, the implementation and
use of these methods is beyond the scope of this thesis. In this area we simply wish to
note that in many cases we have found it sufficient to use simpler approaches, such as
defining a region in front of the vehicle, in which points do not contribute to the map.
Also if the purpose is simply to generate a 2D image of the map, simply overlaying

each new scan over the previous one tends to remove trails left by dynamic objects.
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Figure C.6 — From the top down, the first image is the view of the leftmost colour cam-
era of the KITTI vehicle. The second image shows the naive Velodyne colouring
approach where foreground points are projected onto the background in occluded
regions. In the third image, our occlusion-aware method has not assigned colour
values to the occluded regions of the image, thereby removing the errors seen in
image 2. Finally, in image 4 both the left and right colour cameras were utilised, re-
sulting in fewer regions where no colour information can be given due to occlusions.
In all images red is used to represent regions with no colour information.



Appendix D

3D Rotation Representation

A large number of methods for representing a 3D rotation exist [77], with each method

having a range of pros and cons.

The four most common representations are as follows:

D.1 Euler Angles

Euler angles are a compact representation that requires only three values. However,
they have the disadvantage of giving singularities when pitch is at 90 or -90 degrees.
They also provide a highly non-linear representation of the search space and different
combinations of Euler angles may result in the same rotation. An example of the
possible issues this representation can cause is best illustrated through a real-world

example. Consider the following two rotation matrices A and B:

0.0210  —0.0035 0.9998 0.0174 —0.0074  0.9998
A= 1-0.9998 0.0008 0.0210 |,B = [-0.9998 0.0035  0.0174 (D.1)
—0.0008 —1.0000 —0.0035 —0.0036 —1.0000 —0.0073
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A is the ground truth for the rotation between the Velodyne and leftmost camera
used in the KITTI dataset and B is the result obtained from our calibration. We
wish to quantify the difference between these angles in a way that is easy for the
reader to interpret. One possible method is to report the difference in the roll, pitch

and yaw of the two angles. Performing this action yields:

Apy = 1-9.6° —88.8° 99.50],Brpy=[23.0° —88.9° 67.20] (D.2)

|Arpy = Brpy| = {32.60 0.1° 32.30] (D.3)

This gives extremely large differences in the roll and yaw of the two rotations. Given
only this difference, a reader would be forced to conclude that the method had per-
formed poorly, when in fact the large difference has been caused due to pitch values
near the singularity at -90 degrees. To prevent this issue we must first find the

difference between the two rotation matrices AB~! then convert this to Euler angles

(AB™Y),,,| = 10.3° 0.2° 0.6° (D.4)

This gives a more accurate representation of the actual error in the method.

D.2 Rotation Matrix

The rotation matrix is an intuitive representation. It is also the only rotation system
that does not have multiple standard representations. However, as a 3D rotation can
be represented by just three numbers, the nine-element rotation matrix contains a
large amount of redundancy with significant constraints placed upon its elements.
These constraints make it an exceptionally poor choice for utilising in optimisation,

due to the need to ensure a matrix is consistent before it can be evaluated.
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D.3 Quaternions

Quaternions use a four-number representation of the angles. However, for a quater-
nion Q and constant ¢, Q = cQ = -Q. This allows the quaternion to be represented
by three elements by first normalising the Quaternion and ensuring its first element is
positive. This means that the first element is no longer required as it can be obtained
if the other three elements are known. This does have the disadvantage however of
constraining the remaining elements to ||[Q2,Q3,Q4]|| < 1. One advantage of the
quaternions is that for small differences in angle, linear interpolation provides an

intuitive and smooth angle.

D.4 Angle-Axis

Like the quaternion this gives a four-number representation of the angle, and like
the quaternion it can also be converted to a three-number representation. First, the
angle is constrained to be positive and the axis vector is normalised. Then the axis
is multiplied by the angle. Unlike the quaternions, no restrictions are placed on the
values that the elements of the vector can obtain and while there is the issue of wrap-
around for rotations greater than 27, it is often the best candidate for optimisation.
The axis form is useful in hand-eye calibration as it is in a form directly usable by the
Kabsch algorithm. It also has the advantage that all points on a rigid body will rotate
by the same angle, which makes the angle element useful in aligning timing offsets. For
these reasons it is our rotational representation of choice, when appropriate, during

this thesis.



Appendix E

Finite Differences

During the approximation of some variance calculations the 1st or 2nd derivative

of a function are often required. These functions, however, are commonly complex

algorithms with no simple analytical form and thus no tractable way of finding an

exact differential. Because of this we make use of the central difference formation [48]

which states that for a function f and variable x:

oo fa+ ) - fla—b)
f(@) = ;

with error O(h?).

This is trivial to extend to the case of the second differential via:

f”(ZL‘) ~ f($+h) —2];1(21’) —i—f(fL’—h)

and second order partial differentials:

(E.1)

(E.2)
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The choice of h is typically problem specific, however, as a rule of thumb we give it
the smallest value for which Equation E.1 is unlikely to be detrimentally affected by

the limited precision of the computer’s numeric representations.



Appendix F

Performance of Variance

Approximations

During this thesis a range of methods for approximating the variance of functions have
been utilised. In this appendix we will demonstrate the performance of the Monte
Carlo and delta method. These two techniques were chosen, as unlike the other
approaches they can be applied to ‘black box’ situations where the inputs are known,
but the process via which the outputs are generated is either unknown, or cannot
be represented by a simple analytical relationship. This situation is both challenging
and frequently encountered in the field of mobile robotics. In our implementation
the delta method uses finite differences in calculating the derivatives to allow it to

operate on any function.

The first experiment examines the performance of the Monte Carlo approach on the
simple function y = 10x + 5. While trivial in nature, it serves to highlight the trade-
offs this method exhibits in terms of accuracy and runtime. The experiment was
run using a range of samples (2! to 2%°) with the accuracy and runtime recorded.
The input value and standard deviation were both selected from a uniform random
distribution between 0 and 1, and the experiment was repeated 1000 times. The

results are show in Figure F.1.

As this simple experiment shows, the Monte Carlo method’s runtime is proportional
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Figure F.1 — The accuracy and runtime of the Monte Carlo method using a Matlab
implementation on the function y = 10z + 5

Delta Method

Monte Carlo
(2 Samples)

Monte Carlo
(22 Samples)

Runtime (seconds)

1.08 x 107°

3.38 x 107°

2.31 x 1072

Mean Absolute Error

4.20 x 10712

2.57

2.60 x 1073

Table F.1 — Performance of the delta and Monte Carlo Methods on the function

y=10x +5

to the number of samples, while its accuracy is inversely proportional to the square-

root of the number of samples. This means care must be taken when selecting how

many samples to use with the method so that the desired accuracy is achieved in a

practical time frame. The same experiment was conducted using the delta method

and compared to the Monte Carlo method in Table F.1.

In this situation the delta method outperforms the Monte Carlo method by a wide

margin. However, this is a special case. As the function has a single scalar variable

only 2 evaluations are necessary, allowing the fast runtime. The exceptionally low

error is also due to the nature of the function. As the equation only makes linear
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Figure F.2 — Estimated variance of y for given variance of z in the function y = sin(x)
atx =0

transformations to x, the linear assumptions made by the delta method are exactly
correct. This means the only error present is due to the limited precision of the

computer’s numeric representation.

The above experiment highlighted the strengths of the delta method, however the
method also has significant limitations as the following experiment demonstrates.
The function y = sin(z) was taken and the mean of x set to 0. The Monte Carlo and
delta method were then used to estimate the variance of y for given variances of x.
In this experiment 100000 samples were used for the Monte Carlo Method and the

results are shown in Figure F.2.

At x = 0 the derivative of sin(z) is 1. This means that in this case the delta method
will give the approximation that the variance in y is equal to the variance in x. For
small variance values the small angle approximation ensures that this is a reasonable
approximation and both methods give similar variance estimates. However, as the
variance increases the accuracy of this approximation quickly degrades due to the non-
linear relationship between x and y. This means that in this case, when z’s variance
is 1 the delta method’s estimate for the variance of y is more then double the true
value. For most non-linear functions this trend of the estimates quality degrading as

variance increases holds and must be kept in mind when applying the delta method.

The experiments above demonstrate the performance and some of the potential pit-
falls of the Monte Carlo and delta method. The merits of the other methods men-
tioned in Section 4.2 in terms of performance and application however also bear brief

discussion.
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Exact Covariance Calculation This method, by definition will always be the most
accurate and should typically also be the fastest. However, it can only be
applied when the operation modifying the inputs can be stated in an analytically
tractable manner, its effect on the variance is well understood and the resulting
distribution is of an appropriate form. These requirements prevent its use on
the vast majority of practical problems.

Approximate Analytical Variance The speed and accuracy of this method de-
pends on the approximations made. If a linear model is fitted it will behave in
a near identical manner to the delta method. The downside of this method is
it must be tailored to every situation.

Bootstrapping This method is only applicable when a large number of samples
have been gathered from a dataset. It shares many similarities with the Monte

Carlo method and has similar trade-offs between performance and runtime.



Appendix G

Outliers

In the field of robust statistics there are several popular methods for dealing with
outliers. While we saw this topic as beyond the scope of this thesis, we nevertheless
required a method to prevent outliers formed from inaccurate variance estimates from
adversely impacting our method. Due to this need, we implemented and examined

the range of simple estimation strategies presented below.

G.1 Median

By far the most common method, the value is found by taking the central element
after sorting. It has the advantage of being simple and robust to up to 50% of the
data being outliers. The disadvantage however, is that it ignores a large amount of
information provided by the data in the form of the exact value of the points. This
makes it very inefficient, requiring a large amount of additional data points to achieve

the same accuracy as taking the mean.
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G.2 Threshold

A simple strategy in which all data that falls outside the defined limits is discarded
and the mean of the result taken. This method works well when it is known with a
large degree of certainty what error any readings will take. This has the downside
that it generally needs to be tuned to fit any change in situation. The method also
has the disadvantage in that it is the only method presented here that does not make

use of all of the data when calculating its output.

G.3 Trimmed means

In trimmed means (also known as truncated means) the data is first sorted and a
predefined percentage of the data is removed or trimmed. Discarding no data will
result in it giving the mean, while discarding all but 1 point will give the median
function. Because of this it can be thought of as a balance between the two. As
the amount of discarded data increases so does its robustness, at the expense of its
efficiency. This makes the metric useful in cases where far less than 50% of the data

are outliers and the median is too extreme.

G.4 Heavy-tailed distributions

This encompasses any method where, while the weighting given to distant points is a
strictly increasing function, its gradient is less than that of the standard mean. For
example, norms in the range 0 to 2 fit in here. These methods tend to make good use
of all the data, however, unlike the other approaches they will suffer if the outliers

have a consistent bias to their values.
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Figure G.1 — The centre found by various robust mean methods on 100 points with
Gaussian noise plus 10 outliers points.

G.5 Optimisation

One of the most significant issues when deciding on a robust metric is how it impacts
the smoothness and convexity of the search space. Consider for example a sample of
2D positions made from sampling a Gaussian distribution with a mean of [0,0] and
standard deviation of [1,1] 100 times. Outliers are then added by sampling a second
Gaussian distribution with a mean of [5,5] and standard deviation of [1,1] ten times.
Each metric is used to find the centre of the data by minimising the distance to points

and the result is plotted in Figure G.1.

In this case all the methods examined perform significantly better than the standard
mean. However, to solve this optimisation a global optimiser had to be used. The

reason for this can be seen by examining the search space shown in Figure G.2.

While the mean, trimmed means, and 0.5 norm all remain smooth objective functions
with a single minima, the median and threshold now contain large numbers of local

minima. These local minima make the median and threshold methods poor choices
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Figure G.2 — The function values over the search space for each metric. Note the
jagged shape formed by the median and threshold metric.

when optimisation is required, as while these local minima will disappear as the
number of data points approaches infinity, for any practical dataset this will remain

an issue.

While it is also theoretically possible to construct problems in which the trimmed
means will have local minima (for example discarding all but 1 data point yields
the median), the situations are unlikely to occur if sufficient quantities of real data
are used. Thus, because of its resilience to biased outliers, simple optimisation and
the intuitive nature of the rejection percentage parameter, we have made use of the

trimmed means in our outlier rejection process.

In our work we found this simple metric to give good results. We acknowledge that
it will not be as efficient as an M-estimator, however, we saw the detailed analysis
of all possible M-estimators and their suitability as being beyond the scope of this
thesis. Instead, we will note that no part of our method relies on the exact nature of
the outlier rejection and any suitable metric could be substituted without impacting

the other steps in the approach.

In our work, we have set the trimmed means to reject 25% of the data. However, the
method is highly insensitive to the exact value used here as long as it is sufficiently
large to remove all outliers. In our testing, any value in the range of 5% to 90%
gave reasonable performance, though, as the amount of data rejected increases, the

variance of the output will increase due to less data being used in the estimation.
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