Spectral Properties of Hardy Kernel Operators and Application to Second Order Elliptic Boundary Value Problems

Hussein Awala

Temple University Philadelphia, US

Preliminaries

Let X be a Banach space and $T: X \longrightarrow X$ be a linear and bounded operator. The spectrum of T on X denoted by $\sigma(T, X)$ is given by:

$$\sigma(T,X) := \{\lambda \in \mathbb{C} \mid \lambda I - T \text{ is not invertible on } X\}.$$

For $K \in L^1(\mathbb{R})$ define the operator $K_* : L^p(\mathbb{R}) \longrightarrow L^p(\mathbb{R})$ by setting

$$(K_*u)(x) := \int_{-\infty}^{\infty} K(x-y)u(y)dy \qquad \forall u \in L^p(\mathbb{R})$$

It is straightforward that for each K^1 , $K^2 \in L^1(\mathbb{R})$ there holds

$$K_*^1 \circ K_*^2 = (K_*^1(K^2))_*$$
 and $\alpha K_*^1 + \beta K_*^2 = (\alpha K^1 + \beta K^2)_*$

for each α , β constants.

Preliminaries

Recall that if $K \in L^1(\mathbb{R})$ the Fourier transform of K (denoted by \widehat{K}) is given by:

 $\widehat{K}(\xi) := \int_{-\infty}^{\infty} K(x)e^{i\xi x} dx, \qquad \xi \in \mathbb{R}.$

Let k be a measurable function on $(0,\infty)$. The Mellin transform of k, denoted by \widetilde{k} is given by:

$$\widetilde{k}(z) = \int_0^\infty k(s) s^{z-1} ds$$

where this is defined on a subset of \mathbb{C} on which the integral is absolutely convergent (typically a vertical strip).

Young's Inequality for Convolutions: Let $p, q, r \in \mathbb{R}_{\geq 1}$ such that $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Then for $f \in L^q(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$ we have :

$$f * g \in L^r(\mathbb{R}^n)$$
$$\|f * g\|_r \le \|g\|_p \cdot \|f\|_q$$

Wiener Lemma and Consequences

Lemma (Wiener)

Let $K \in L^1(\mathbb{R})$ and suppose that $\lambda \in \mathbb{C}$ is such that:

- $\lambda \neq 0$
- $\lambda \neq \widehat{K}(\xi) \ \forall \xi \in \mathbb{R}$

Then there exists $A_{\lambda} \in L^1(\mathbb{R})$ such that

$$(\lambda I - K_*) A_{\lambda} = K$$

Corollary (1)

Let $K \in L^1(\mathbb{R})$, then the spectrum of K_* as an operator on $L^p(\mathbb{R})$ satisfies

$$\sigma(K_*, L^p(\mathbb{R})) \subseteq \{\lambda \in \mathbb{C} \mid \lambda = \widehat{K}(\xi) \text{ for some } \xi \in \mathbb{R}\}.$$

Proof of Corollary

Consider $\lambda \in \mathbb{C}$ such that $\lambda \notin \{\lambda \in \mathbb{C} \mid \lambda = \widehat{K}(\xi) \text{ for some } \xi \in \mathbb{R}\}.$ Our goal is to show that $\lambda \notin \sigma(K_*, L^p(\mathbb{R})).$

The assumption on λ together with the Riemann-Lebesgue Lemma ensure that λ satisfies the conditions of Wiener's lemma. Hence:

$$\exists \ A_{\lambda} \in L^{1}(\mathbb{R}) \ \text{ such that } \ \lambda \cdot A_{\lambda} - K_{*}A_{\lambda} = K$$

Using the basic properties of the convolution operator and the fact that $K_*A_\lambda = -K + \lambda A_\lambda$ one obtains

$$\left(\lambda^{-1}(I+A_{\lambda*})\right)\circ\left(\lambda I-K_*\right)=I \text{ and } \left(\lambda I-K_*\right)\circ\left(\lambda^{-1}(I+A_{\lambda*})\right)=I$$

Thus $\lambda I - K_*$ is invertible on $L^p(\mathbb{R})$ so $\lambda \notin \sigma(K_*, L^p(\mathbb{R}))$, as desired.

Lemma 2

Lemma (2)

Let $1 , and consider <math>K \in L^1(\mathbb{R})$ satisfying:

$$\int_{-\infty}^{\infty} |xK(x)| dx = M < \infty. \quad (\star)$$

Then for each $\xi \in \mathbb{R}$ and $\delta > 0 \exists u_{\delta,\xi} \in L^p(\mathbb{R})$ such that:

$$\|\mathbf{u}_{\delta,\xi}\|_p = 1$$
 and $\|(\widehat{K}(\xi)I - K_*)\mathbf{u}_{\delta,\xi}\|_p = \mathcal{O}(\delta)$,

uniformly in $\xi \in \mathbb{R}$.

Proof of Lemma

Given $\delta > 0$ and $\xi \in \mathbb{R}$ define the function $\nu_{\delta,\xi}$ by setting

$$u_{\delta,\xi}(x) = \int_{\xi-\delta}^{\xi+\delta} e^{-i\eta x} d\eta = 2e^{-i\xi x} \cdot \frac{\sin(\delta x)}{x}, \quad x \in \mathbb{R}.$$

Then $\nu_{\delta,\xi}$ has the following properties:

$$\begin{cases} (i) & \nu_{\delta,\xi} \in L^p(\mathbb{R}) \quad \forall \, p \in (1,\infty) \\ (ii) & \|\nu_{\delta,\xi}\|_p = \delta^{1-\frac{1}{p}} \|\nu_{1,\xi}\|_p \end{cases}$$

where (i) is due to the fact that $\nu_{\delta,\xi}$ is bounded near zero, and at infinity

$$\left|e^{-i\xi x}\cdot \frac{\sin(\delta x)}{x}\right|^ppprox \left|rac{1}{x^p}
ight|.$$

(ii) follows from a change of variable (using the definition of the norm).

Proof of Lemma (continued)

Moving on, $\nu_{\delta,\xi}$ can be shown to satisfy:

$$K_* \nu_{\delta,\xi}(x) = \int_{\xi-\delta}^{\xi+\delta} e^{-i\eta x} \widehat{K}(\eta) d\eta.$$

Indeed, writing down the left hand side using the definition of K_* and then interchanging the order of integration yields the desired equality. Next, for each $\delta > 0$, we consider the function $F_* \in \mathbb{R} \longrightarrow \mathbb{C}$ given by

Next, for each $\delta > 0$, we consider the function $E_{\delta,\xi} : \mathbb{R} \longrightarrow \mathbb{C}$ given by

$$E_{\delta,\xi}(x) := (\widehat{K}(\xi)I - K_*) \frac{\nu_{\delta,\xi}(x)}{\nu_{\delta,\xi}(x)} = \int_{\xi-\delta}^{\xi+\delta} e^{-i\eta x} (\widehat{K}(\xi) - \widehat{K}(\eta)) d\eta.$$
 (**)

Using (\star) , \widehat{K} is differentiable and its derivative $(\widehat{K})'$ is bounded above by some constant M.

Proof of Lemma (continued)

This bound and the mean value theorem in (**) yield on the one hand

$$|E_{\delta,\xi}(x)| < M\delta^2$$
.

On the other hand integrating by parts in $(\star\star)$ gives:

$$|E_{\delta,\xi}(x)| < 4M\delta x^{-1}$$

Thus:

$$\int_{-\infty}^{\infty}|E_{\delta,\xi}(x)|^pdx\leq \int_{|x|\leq \frac{4}{\delta}}({\color{blue}M}\delta^2)^pdx+\int_{|x|>\frac{4}{\delta}}(4{\color{blue}M}\delta x^{-1})^pdx=\mathfrak{O}(\delta^{2p-1})$$

and consequently $||E_{\delta,\xi}||_p = O(\delta^{2-\frac{1}{p}})$.

Finally, for each $p \in (1, \infty)$, each $\xi \in \mathbb{R}$, and each $\delta > 0$ set:

$$u_{\delta,\xi}:=rac{
u_{\delta,\xi}}{\|
u_{\delta,\xi}\|_{p}}.$$

Using $\| \nu_{\delta,\xi} \|_{\rho} = \delta^{1-\frac{1}{\rho}} \| \nu_{1,\xi} \|_{\rho}$ we get the desired result.

A Spectral Theorem

Theorem

Let $K \in L^1(\mathbb{R})$, $1 , and recall the convolution operator <math>K_*$. Then

$$\sigma(K_*, L^p(\mathbb{R}) = \{\lambda \in \mathbb{C} \mid \lambda = \widehat{K}(\xi) \text{ for some } \xi \in \mathbb{R}\}$$

Remark: The inclusion

$$\sigma(K_*, L^p(\mathbb{R}) \subseteq \overline{\{\lambda \in \mathbb{C} \mid \lambda = \widehat{K}(\xi) \text{ for some } \xi \in \mathbb{R}\}}$$

was proved in Corollary 1. Moreover, since the spectrum is a closed set it suffices to show:

$$\{\lambda \in \mathbb{C} \mid \lambda = \widehat{K}(\xi) \text{ for some } \xi \in \mathbb{R}\} \subseteq \sigma(K_*, L^p(\mathbb{R}))$$

Proof of Theorem

Fix $\xi \in \mathbb{R}$. To show $\widehat{K}(\xi) \in \sigma(K_*, L^p(\mathbb{R}))$, start by considering for each $n \in \mathbb{N}$ the function $K_n \in L^1(\mathbb{R})$ given by

$$K_n(x) := \left\{ egin{array}{ll} K(x) & \mbox{if} & |x| \leq n \ 0 & \mbox{if} & |x| > n \end{array}
ight.$$

Then K_n satisfies the hypotheses in Lemma 2. Consequently, applying this with $\delta := \frac{1}{n}$, there exists $u_{n,\xi}$ and M > 0 such that:

$$\begin{cases} \| \mathbf{u}_{n,\xi} \|_{p} = 1 & (1) \\ \left\| \left((K_{n})_{*} - \widehat{K_{n}}(\xi)I \right) \mathbf{u}_{n,\xi} \right\|_{p} < \frac{M}{n} & (2). \end{cases}$$

Next, Young's convolution inequality (with q = 1) and LDCT yields:

$$\|(K_n)_* - K_*\|_p \le \|K_n - K\|_1 = \int_{|x| > n} |K(x)| dx \xrightarrow[n \to \infty]{} 0.$$
 (3)

Continuation of Proof

Moreover, employing again LDCT,

$$|\widehat{K}_n(\xi) - \widehat{K}(\xi)| \leq \int_{-\infty}^{\infty} \left| \left(K_n(x) - K(x) \right) e^{i\xi x} \right| dx \underset{n \to \infty}{\longrightarrow} 0. \quad (4)$$

Moving on, we claim:

$$\|(K_* - \widehat{K}(\xi)I)u_{n,\xi}\|_{p} \xrightarrow[n \to \infty]{} 0.$$
 (*)

Indeed, for each $n \in \mathbb{N}$ write

$$\|(\mathbf{K}_* - \widehat{\mathbf{K}}(\xi)I)\mathbf{u}_{n,\xi}\|_p$$

$$\leq \|(K_{*} - K_{n*})u_{n,\xi}\|_{p} + \|(K_{n*} - \widehat{K_{n}}(\xi)I)u_{n,\xi}\|_{p} + \|(\widehat{K_{n}}(\xi) - \widehat{K}(\xi))u_{n,\xi}\|_{p}$$

$$\leq \underbrace{\|K_{*} - K_{n*}\|_{p}}_{by (3):\to 0} \underbrace{\|u_{n,\xi}\|_{p}}_{by (1):=1} + \underbrace{\|(K_{n*} - \widehat{K_{n}}(\xi)I)u_{n,\xi}\|_{p}}_{by (2):\leq \frac{1}{n}} + \underbrace{|\widehat{K_{n}}(\xi) - \widehat{K}(\xi)|}_{by (4):\to 0} \underbrace{\|u_{n,\xi}\|_{p}}_{by (1):=1}$$

Continuation of Proof

Finally, by contradiction we assume that $\widehat{K}(\xi) \notin \sigma(K_*, L^p(\mathbb{R}))$. This implies $\widehat{K}(\xi)I - K_*$ is invertible on $L^p(\mathbb{R})$, and hence, there exists T_{ξ} a linear and bounded operator on $L^p(\mathbb{R})$, such that:

$$T_{\xi} \circ (\widehat{K}(\xi)I - K_*) = I.$$

Thus, on the one hand

$$1 = \| \underline{u}_{n,\xi} \|_p = \left\| \left(T_{\xi} \circ \left(\widehat{K}(\xi) I - K_* \right) \right) \underline{u}_{n,\xi} \right\|_p.$$

On the other hand, using (\star) and the boundedness of T_{ε} , we obtain:

$$\left\|\left(T_{\xi}\circ\big(\widehat{K}(\xi)I-K_{*}\big)\right)\underline{u_{n,\xi}}\right\|_{p}\leq \left\|T_{\xi}\right\|_{p}\cdot\left\|(\widehat{K}(\xi)I-K_{*})\underline{u_{n,\xi}}\right\|_{p}\xrightarrow[n\to\infty]{}0.\ \ \text{\bigstar}$$

Corollary 2

Corollary (2)

Let $p \in (1, \infty)$ and k be a measurable function on \mathbb{R}_+ , such that:

$$\int_0^\infty |\textbf{k}(\textbf{s})|\textbf{s}^{-1/p} d\textbf{s} < \infty,$$

and consider the operator T defined by:

$$Tf(t) := \int_0^\infty k(s)f(ts)ds, \quad \forall f \in L^p(\mathbb{R}_+).$$

Then T is a bounded operator from $L^p(\mathbb{R}_+)$ into itself and

$$\sigma(T, L^p(\mathbb{R}_+)) = \overline{\left\{\widetilde{k}(\frac{1}{q} + i\xi) : \xi \in \mathbb{R}\right\}},$$

where q is such that $\frac{1}{p} + \frac{1}{q} = 1$.

Proof of Corollary

Let $\mathfrak{K}(x)=k(e^{-x})\cdot e^{-x/q}$ for $x\in\mathbb{R}$. A change of variable $(s=e^{-x})$, together with the hypothesis $\int_0^\infty |k(s)| s^{-1/p} ds <\infty$, imply $\mathfrak{K}\in L^1(\mathbb{R})$.

Next, define the following operator $Q: L^p(\mathbb{R}_+) \longrightarrow L^p(\mathbb{R})$ given by

$$Q(f)(x) = f(e^x)e^{x/\rho}, \qquad x \in \mathbb{R}.$$

The change of variable $(t = e^x)$ shows that Q is well defined, and

$$\|Q(f)\|_{L^{p}(\mathbb{R})} = \|f\|_{L^{p}(\mathbb{R}_{+})}$$

Moreover Ω has the inverse $\Omega^{-1}:L^p(\mathbb{R})\longrightarrow L^p(\mathbb{R}_+)$ where

$$Q^{-1}(u)(x) = \frac{u(\ln x)}{x^{1/p}}, \qquad x \in \mathbb{R}_+.$$

Hence Q is an isometry.

Proof (continued)

In addition, we claim that Q satisfies

$$(\mathfrak{Q} \circ T \circ \mathfrak{Q}^{-1})u = \mathfrak{K}_* u \quad \forall u \in L^p(\mathbb{R}).$$

Indeed, if $u \in L^p(\mathbb{R})$ and $x \in \mathbb{R}$, then

$$(\mathbf{Q} \circ T \circ \mathbf{Q}^{-1}) u(x) = T(\mathbf{Q}^{-1} u)(e^{x}) \cdot e^{x/p} = \int_{0}^{\infty} k(s)(\mathbf{Q}^{-1} u)(e^{x} s) ds \cdot e^{x/p}$$
$$= \int_{0}^{\infty} k(s) \frac{u(\ln(e^{x} s))}{(e^{x} s)^{1/p}} ds \cdot e^{x/p}$$

Letting $y = \ln(e^x s)$ (thus $s = e^{y-x}$ and $ds = e^{y-x} dy$), we obtain

$$\left(\underline{\mathsf{Q}}\circ T\circ\underline{\mathsf{Q}}^{-1}\right)u(x)=\int_{-\infty}^{\infty}k(e^{y-x})\frac{u(y)}{(e^{y-x})^{1/p}}e^{y-x}dy$$

Proof (continued)

Consequently

$$(\mathfrak{Q} \circ T \circ \mathfrak{Q}^{-1}) u(x) = \int_{-\infty}^{\infty} \underbrace{k(e^{-(x-y)})(e^{-(x-y)})^{1/q}}_{\mathfrak{K}(x-y)} u(y) \, dy$$
$$= \int_{-\infty}^{\infty} \mathfrak{K}(x-y) u(y) \, dy = \mathfrak{K}_* u(x)$$

Since Q is an isometry this implies

$$\sigma(T, L^p(\mathbb{R}_+)) = \sigma(\mathcal{K}_*, L^p(\mathbb{R})).$$
 (*)

However, using the earlier theorem:

$$\sigma(\mathfrak{K}_*, L^p(\mathbb{R})) = \overline{\{\lambda \in \mathbb{C} \mid \lambda = \widehat{\mathfrak{K}}(\xi), \text{ where } \xi \in \mathbb{R} \}}.$$
 (**)

Proof (continued)

Finally observe that $\widehat{\mathfrak{K}}(\xi) = \widetilde{k}(\frac{1}{q} - i\xi)$. Indeed,

$$\widehat{\mathfrak{K}}(\xi) = \int_{-\infty}^{\infty} \mathfrak{K}(x) \cdot e^{i\xi x} dx = \int_{-\infty}^{\infty} k(e^{-x}) \cdot e^{-x/q} \cdot e^{i\xi x} dx \qquad \underbrace{y = e^{-x}}_{dy = -e^{-x} dx}$$

$$= \int_0^\infty k(y) \cdot y^{(1/q)-i\xi} \frac{dy}{y} = \widetilde{k}(\frac{1}{q} - i\xi).$$

The conclusion of the corollary immediately follows now from this and $(\star) - (\star\star)$

Hardy Kernels

Definition

Let $k(\cdot, \cdot)$: $\mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}$ be a Lebesgue measurable function s.t.

- (*) k is homogeneous of degree -1 (i.e. for any $t \in \mathbb{R}_+$ $k(tx, ty) = \frac{1}{t}k(x, y)$ for all $x, y \in \mathbb{R}_+$)
- (*) $\int_0^\infty |k(1,t)| t^{-1/\rho} dt = \int_0^\infty |k(s,1)| s^{(1/\rho)-1} ds < \infty.$

Define the operator $T: L^p(\mathbb{R}_+) \longrightarrow L^p(\mathbb{R}_+)$:

$$Tf(s) := \int_0^\infty k(s,t)f(t)dt$$
 for a.e. $s \in \mathbb{R}_+$.

Then k is called a Hardy kernel and T is called a Hardy-kernel operator for $L^p(\mathbb{R}_+)$.

Corollaries

Corollary (3)

Let 1 and <math>T be a Hardy-kernel operator for $L^p(\mathbb{R}_+)$. Then

$$\sigma(T,L^p(\mathbb{R}_+)) = \overline{\left\{ \big(\widetilde{k}(\cdot,1)\big) \big(\tfrac{1}{p} + i\xi\big) : \, \xi \in \mathbb{R} \right\}}.$$

In the sequel we shall work in the matrix setting, i.e. when $k = (k_{ij})_{ij}$ with the entries k_{ij} being Hardy kernels.

Corollary (4)

Consider k a Hardy kernel and T be a Hardy-kernel operator for $[L^p(\mathbb{R}_+)]^2$, 1 , with kernel <math>k as above. Then, for each $\lambda \in \mathbb{C}$ the operator $\lambda I - T$ is invertible on $L^p(\mathbb{R}_+)$, if and only if the following holds:

$$det\Big(\lambda I - \big(\widetilde{k}(\cdot,1)\big)(\frac{1}{p} + i\xi)\Big) \neq 0 \quad \forall \xi \in \overline{\mathbb{R}}.$$

Applications to PDE

Let Ω be a reasonable domain in \mathbb{R}^2 . The Dirichlet problem with L^p data:

(D)
$$\begin{cases} \triangle u = 0 & \text{in } \Omega \\ u\Big|_{\partial\Omega}^{n.t.} = f \in L^p(\partial\Omega) & 1$$

Via the layer potential method (D) is reduced to a BIE of the type $(\frac{1}{2}I + K)g = f$, where K is a SIO of Calderón-Zygmund type. Indeed, let Γ be such that $\Delta\Gamma = \delta$ as distributions in \mathbb{R}^2 ,

$$\Gamma(X) = \frac{1}{2\pi} \ln |X|, \qquad \forall \, X \in \mathbb{R}^2 \setminus \{0\}.$$

Introduce the double layer potential:

$$\mathfrak{D}g(X) := \int_{\partial\Omega} \frac{\partial}{\partial\nu(Q)} [\Gamma(X-Q)] g(Q) \, d\sigma(Q), \qquad X \in \mathbb{R}^2 \setminus \partial\Omega.$$

Applications to PDE - continued

The principal value harmonic double layer potential operator is given by

$$\mathit{Kg}(P) := \mathit{p.v.} \int_{\partial\Omega} \frac{\partial}{\partial \nu(\mathit{Q})} [\Gamma(\mathit{P}-\mathit{Q})] \mathit{g}(\mathit{Q}) \, \mathit{d}\sigma(\mathit{Q}), \quad \text{ for σ-a.e. } P \in \partial\Omega,$$

and it satisfies the jump relations (for $g \in L^p(\partial\Omega)$):

$$\mathfrak{D}g\big|_{\partial\Omega}^{\mathrm{n.t.}}(P)=\big(\frac{1}{2}I+K\big)g(P),\quad\sigma-\mathrm{a.e.}\ P\in\partial\Omega.$$

Thus, the solvability of (D) can be recast as a spectral problem, namely matters reduce to showing

$$-\frac{1}{2} \not\in \sigma(K, L^p(\partial\Omega)).$$

Key Observation: When Ω is an infinite sector in \mathbb{R}^2 , then K can be naturally identified with a Hardy kernel operator- thus the earlier technology applies.

Application: Ω infinite sector

The problem is rotation invariant, so Wlog assume Ω is an upright sector symmetric w.r.t. y-axis. Denote by $(\partial\Omega)_1$ and $(\partial\Omega)_2$ the left and the right side of $\partial\Omega$, resp. . Concretely, one can write:

$$(\partial\Omega)_1:=ig\{(-s\sinrac{ heta}{2},s\cosrac{ heta}{2}):\ s\in\mathbb{R}_+ig\}$$

$$(\partial\Omega)_2:=ig\{(s\sin frac{ heta}{2},s\cos frac{ heta}{2}):\ s\in\mathbb{R}_+ig\}.$$

Hence, via the mapping:

$$(\partial\Omega)_j\ni P\mapsto |P|\in\mathbb{R}_+,$$

for j = 1, 2 and for all $p \in [1, \infty)$ one can identify:

$$(\partial\Omega)_j$$
 with \mathbb{R}_+ and $L^p(\partial\Omega)$ with $L^p(\mathbb{R}_+)\oplus L^p(\mathbb{R}_+)$.

Moreover,

$$\mathfrak{K}(P,Q) = rac{1}{2\pi} \cdot rac{\langle Q - P,
u(Q)
angle}{|Q - P|^2} \quad orall P, Q \in \partial \Omega, P
eq Q$$

Continuation

Going further, \mathcal{K} can be regarded as a kernel on $\mathbb{R}_+ \times \mathbb{R}_+$. Specifically the function $\mathcal{K}(\cdot,\cdot)$ on $\partial\Omega \times \partial\Omega$ shall be identified with the following 2×2 kernel matrix $\mathcal{K}: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathit{M}_{2 \times 2}(\mathbb{R})$ given by

$$\mathscr{K}(s,t) := rac{1}{2\pi} \left(egin{array}{ccc} 0 & rac{s\sin(heta)}{s^2+t^2-2st\cos(heta)} \ rac{s\sin(heta)}{s^2+t^2-2st\cos(heta)} & 0 \end{array}
ight),$$

The Mellin transform of $\mathcal{K}(\cdot, 1)$ is given by:

$$\widetilde{\mathscr{K}}(\cdot,1)(z) := rac{1}{2\pi} \left(egin{array}{cc} 0 & rac{\pi \sin((\pi- heta)z)}{\sin(\pi z)} \ rac{\pi \sin(\pi z)}{\sin(\pi z)} & 0 \end{array}
ight).$$

Hence $\frac{1}{2}I + K$ is invertible on $L^p(\partial\Omega)$ iff $\forall \xi \in \mathbb{R}$ and for $z = \frac{1}{p} + i\xi$

$$\det \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} \frac{\sin((\pi-\theta)z)}{\sin(\pi z)} \\ \frac{1}{2} \frac{\sin((\pi-\theta)z)}{\sin(\pi z)} & \frac{1}{2} \end{array} \right) \neq 0 \iff p \neq \left\{ \begin{array}{ccc} \frac{2\pi-\theta}{\pi} & \text{for } \theta \in (0,\pi) \\ \frac{\theta}{\pi} & \text{for } \theta \in (\pi,2\pi) \end{array} \right.$$

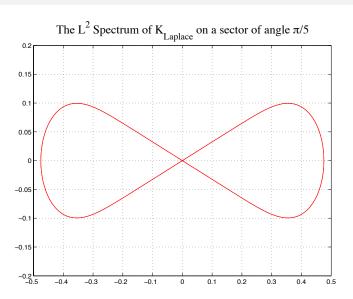
Spectrum for K

Consequently, based on the earlier discussion, given $p \in (1, \infty)$ the spectrum $\sigma(K, L^p(\partial\Omega))$ is explicitly characterized as the set

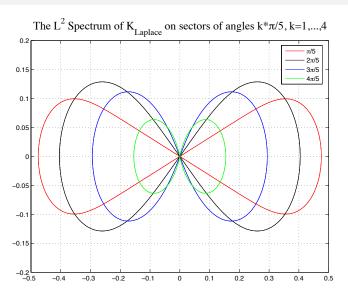
$$\overline{\left\{\lambda\in\mathbb{C}:\,\det\left(\begin{array}{cc}\lambda & A(\theta,z)\\A(\theta,z) & \lambda\end{array}\right)=0\,\text{ for some }z\in\mathbb{C}\,\,\operatorname{Re}z=\frac{1}{\rho}\right\}}.$$

where $A(\theta, z) := -\frac{1}{2} \frac{\sin((\pi - \theta)z)}{\sin(\pi z)}$. This, in turn implies $\lambda = \pm A(\theta, z)$.

Spectrum for K



Spectrum for K



Spectrum for D



Application: Mixed Boundary Value Problem

Let Ω be as above. The boundary value problem with mixed Dirichlet and Neumann type boundary conditions with L^p data, $p \in (1, \infty)$, is formulated as follows.

$$(\textit{MBVP}_p) \left\{ \begin{array}{l} \triangle u = 0 \quad \text{in} \quad \Omega \\ u \Big|_D^{n.t.} = f \in L_1^p(D) \quad \text{on} \quad D \\ \frac{\partial u}{\partial \nu} \Big|_N^{n.t.} = g \in L^p(N) \quad \text{on} \quad N \\ \mathcal{N}(\nabla u) \in L^p(\partial \Omega) \end{array} \right.$$

The same kind of analysis applied above can be carried again here.

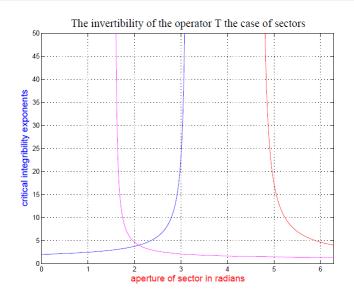
Mixed Boundary Value Problem Result

Theorem

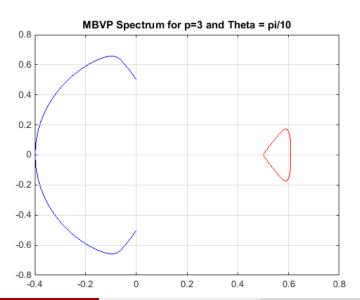
Let Ω an sector in \mathbb{R}^2 with apretue theta \in $(0,2\pi)$, then $(MBVP_P)$ has a solution if:

$$onumber egin{array}{lll} rac{2\pi- heta}{\pi- heta} & & ext{if} & heta\in(0,\pi/2) \ rac{2\pi- heta}{\pi- heta},rac{2 heta}{2 heta-\pi} & & ext{if} & heta\in(\pi/2,\pi) \ rac{2 heta}{2 heta-\pi} & & ext{if} & heta\in(\pi,3\pi/2) \ rac{2 heta}{2 heta-\pi},rac{2 heta}{2 heta-3\pi} & & ext{if} & heta\in(3\pi/2,2\pi) \ 3 & & ext{if} & heta=\pi/2 \ 3/2 & & ext{if} & heta=3\pi/2 \ 2 & & ext{if} & heta=\pi. \end{array}$$

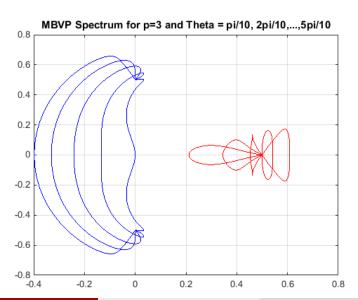
Graph of critical indexes in Main Theorem for MBVP



Spectrum for MBVP_p



Spectrum for MBVP_p



THANK YOU