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Preliminaries

Let X be a Banach space and T : X — X be a linear and bounded
operator. The spectrum of T on X denoted by o (T, X) is given by:

o(T,X):={\eC | M—T isnotinvertible on X} .

For K € L'(R) define the operator K, : LP(R) — LP(R) by setting

(Kou)(x) == /_oo K(x —y)u(y)dy  VuelP(R)

It is straightforward that for each K, K* € L'(R) there holds
Kl oK? = (K!(K?)), and oK'+ BK?=(aK'+ BK?).,

for each «, 5 constants.
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Preliminaries

Recall that if K € L'(R) the Fourier transform of K (denoted by f() is
given by: N 00 .
R(e) = / K(x)e dx, ¢eR.

Let k be a measurable function on (0, o0). The Mellin transform of k,
denoted by k is given by:

k(z) = /0 " k(s)s*"ds

where this is defined on a subset of C on which the integral is
absolutely convergent (typically a vertical strip).

Young’s Inequality for Convolutions : | Let p, g, r € R>1 such that
1+1= ,1) + 15' Then for f € L9(R") and g € LP(R") we have :
fxgeL(R")
1 gllr < 119llp - Ifllq
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Wiener Lemma and Consequences

Lemma (Wiener)

Let K € L'(R) and suppose that \ € C is such that:
@ \#0
° \#£K() VEER

Then there exists Ay € L'(R) such that

(M= KA, =K

Let K € L'(R), then the spectrum of K, as an operator on LP(R)

satisfies

o (K., LP(R)) C {A € C | A= K(¢) forsome ¢ € R}.
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Proof of Corollary

Consider A e Csuchthat \ ¢ {\ e C | A = R(g) for some ¢ € R}.
Our goal is to show that A € o (K, LP(R)).

The assumption on \ together with the Riemann-Lebesgue Lemma
ensure that ) satisfies the conditions of Wiener's lemma. Hence:

3 A, € L'(R) suchthat \- A, — K.A, =K

Using the basic properties of the convolution operator and the fact that
KAy, = —K + )\A, one obtains

(X (+AW)) o (M= K.) =T and (A= K.) o (AT (1+ A)) =

Thus M\ — K, is invertible on LP(R) so \ ¢ o (K., LP(R)), as desired.
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Lemma 2

Lemma (2)

Let1 < p < oo, and consider K € L'(R) satisfying:
/ IXK(X)|dx = M < co. (%)
Then foreach : € R and o > 0 3 € LP(R) such that:

lusellp =1 and |(K(E) — K.) uscllp = O(9),

uniformly in ¢ € R.
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Proof of Lemma

Given ¢ > 0 and ¢ € R define the function »; - by setting

S o
]/(5_L(X):/ e Xdp = 27X . SNUX) e R,

- X
E—0

Then ;. has the following properties:

() wseelP(R) Vpe(1,00)
1

. A=

(i) Nvsello=0" Pl ellp

where (/) is due to the fact that v - is bounded near zero, and at infinity

‘e—igx _sin(9x) l
XP

)
~
%

(if) follows from a change of variable (using the definition of the norm).
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Proof of Lemma (continued)
Moving on, »; - can be shown to satisfy:

40 PN
Kovse(x) = / e ™R (n)dn.

)

Indeed, writing down the left hand side using the definition of K. and
then interchanging the order of integration yields the desired equality.

Next, for each ¢ > 0, we consider the function E; - : R — C given by

~ &+0 . ~ ~
E; (%) = (R(€) - K.)vae(x) = / e~ (R(¢) — R(n))dn. (+%)

£E—6

Using (%), K is differentiable and its derivative (R)’ is bounded above
by some constant
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Proof of Lemma (continued)

This bound and the mean value theorem in (xx) yield on the one hand
|Es¢(x)] < M2,
On the other hand integrating by parts in (xx) gives:
|Ese(x)] < 4170x7
Thus:

/ |E5.(x)[Px < / (116%)Pdix +/ (4 ox NPdx = 0%
- \X|§% Ix|>3
1
p = O((jz_p).
Finally, for each p € (1,0), each ¢ € R, and each ¢ > 0 set:

Vs¢

and consequently | E;

lsellp

]
. s :
Using [[vscllp =0 Pl .c||p we get the desired result.
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A Spectral Theorem

LetK € L'(R), 1 < p < oo, and recall the convolution operator K..

Then

o(Kio, LPR)={NeC|A= K(¢) for some ¢ € R}

Remark: The inclusion

o(Kio, LPR) C{reC|A= K(¢) for some ¢ € R}

was proved in Corollary 1. Moreover, since the spectrum is a closed
set it suffices to show:

{AeC|A=K(¢) forsome &€ R} C o(K., LP(R)
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Proof of Theorem

Fix £ € R. To show f((f) € o(K,, LP(R)), start by considering for each
n € N the function K, € L'(R) given by

K(x) if |x]<n
K = R.
n(X) { 0 if |x|>n Xe

Then K, satisfies the hypotheses in Lemma 2. Consequently, applying
this with § := 15 there exists and M > 0 such that:

lunellp =1 (1)
| (KooKt v < (2.
p
Next, Young’s convolution inequality (with g = 1) and LDCT yields:

1(Kn)e = Kullp < 11Kn — K1 = / K(x)|dx — 0. (3)

|x\>n n—oo
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Continuation of Proof

Moreover, employing again LDCT,

Rol©) - K1 < [ |k - K()e

Moving on, we claim:

I(K« = K€ nellp — 0.

Indeed, for each n € N write
(K. — K()1)

iEx

n—oo

(%)

o

lo + I (Ka€) —

o+ Kn( ) —

< (K = Kne) Uncllp + |(Kne = Kn()1)
< |Ks = Knellp |Uncllp + [I(Kne — Kn(€)1)
—_— ——
by (3):—=0 by (1):=1 by (2):3%
—— 0.
n—oo
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(4)

K(€))
uu
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Continuation of Proof

Finally, by contradiction we assume that f(( ) € o(K, LP(R)). This
implies K(¢)I — K. is invertible on LP(R), and hence, there exists T. a
linear and bounded operator on LP(R), such that:

T.o (KE)I—K.) =1.

Thus, on the one hand

1= lluncllo = |7 o (R~ K2) June]|

On the other hand, using (x) and the boundedness of T, we obtain:

| (oo Ry -K))une]|, < 1Tl IR =Kol —— 0. 5%

n—oo
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Corollary 2

Corollary (2)
Letp € (1,00) and k be a measurable function on R, such that:

/ k(s)|s " ds < oo,
0
and consider the operator T defined by:
Th(t) = / K(s)f(ts)ds, V1 e LP(R,).
0

Then T is a bounded operator from LP(R.) into itself and

oT, LP(R)) = {K(§ +€) : € €R},

where q is such that 1 + 1 = 1.

Hussein Awala (Temple University) 14 /1



|
Proof of Corollary

Let K(x) = k(e=*) - e ' for x € R. A change of variable (s = e),
together with the hypothesis /Oo k(s)|s "ds < oo, imply % € L'(R).
Next, define the following oper(;tor Q: [P(Ry) — LP(R) given by
a(f)(x) = f(e")e””,  xeR.
The change of variable (f = €*) shows that Q is well defined, and
19() ey = 1l Py
Moreover Q has the inverse O~ ' : LP(R) — LP(R, ) where

o~ N(u)(x) = u(XI?/px)’ X €R,.

Hence Q is an isometry.
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Proof (continued)

In addition, we claim that Q satisfies
(QoToQ Nu=%X,u Yue LP(R).
Indeed, if u € LP(R) and x € R, then

(QoTo 0 Mu(x) = T(Q 'u)(e) - e¥/P = /Ook(s)(Q_‘u)(exs) ds - e*/P
0

_ /ook(s) u(In(eXs)) ds - ex/p
0

(exs)'?
e u(In(eXs))
= /o k(s)T ds.
Letting y = In(e*s) (thus s = ¢~ * and ds = €’ *dy), we obtain
uly) -
(QO TOQ / k ey X)We’v Xdy
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Proof (continued)

Consequently

(20To0 u() = [~ ke M) (e )" uy) oy

K(x—y)

= /OO K(x — y)u(y)dy = K.u(x)

Since Q is an isometry this implies
o(T,LP(R})) = o(Ky, LP(R)). (%)

However, using the earlier theorem:

(K., [P(R)) = {A € C | A=K(), where£ e R }. (%)
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Proof (continued)

Finally observe that K(¢) = F(% — i€). Indeed,

%(e) = [ x0)-e%ax= [ K)o ook [y e
—o© —o0 ——
dy=—e—Xdx

/k Y- 7y: (*—lf)

The conclusion of the corollary immediately follows now from this and

(%) = ()
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Hardy Kernels

Definition

Let k(-,-) : R4 x R — R be a Lebesgue measurable function s.t.

(x) k is homogeneous of degree —1

(i.e. forany te Ry k(ix,ty) = 1k(x,y) forall x,y € R+>
(=) [k, O dt = [5° k(s 1) ds < oo
Define the operator T : LP(R;) — LP(R,):
Tf(s) ::/ k(s,t)f(t)dt fora.e. seR..
0

Then k is called a Hardy kernel and T is called a Hardy-kernel
operator for LP(R.).
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Corollaries

Let1 < p < oo and T be a Hardy-kernel operator for LP(R..). Then

o(T, LP(R)) = { (K(, 1) +7¢) : ¢ € R}.

In the sequel we shall work in the matrix setting, i.e. when k = (kif)ij
with the entries kj; being Hardy kernels.

Corollary (4)

Consider k a Hardy kernel and T be a Hardy-kernel operator for
[LP(R})]?, 1 < p < oo, with kernel k as above. Then, for each A € C
the operator A\l — T is invertible on LP(R ), if and only if the following
holds:

det(Al — (kG 10)(E + i§)) £0 VeeR
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Applications to PDE

Let Q be a reasonable domain in R2. The Dirichlet problem with LP
data:

Au=0 in Q
.t
(D) u:m:feLP(aQ) 1<p< oo

N(u) € LP(0Q)

Via the layer potential method (D) is reduced to a BIE of the type
(31 + K)g = f, where K is a SIO of Calderén-Zygmund type. Indeed,
let I be such that AT = ¢ as distributions in R?,
M(X)=,-InX|, VXeR?\{0}.
Introduce the double layer potential:
0

DY(X) = ., W[F(X - Q)9(Q)do(Q), X eR?\ Q.
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Applications to PDE - continued

The principal value harmonic double layer potential operator is given by
—pv / gy (P~ Qo(@de(@).  foro-ae. Peon

and it satisfies the jump relations (for g € LP(0Q)):
Dg|ha(P) = (31 +K)g(P), o—ae. PedQ

Thus, the solvability of (D) can be recast as a spectral problem,
namely matters reduce to showing

—% ¢ o(K, LP(59)).

Key Observation: When Q is an infinite sector in R?, then K can be
naturally identified with a Hardy kernel operator- thus the earlier
technology applies.
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Application: 2 infinite sector

The problem is rotation invariant , so Wlog assume 2 is an upright

sector symmetric w.r.t. y-axis. Denote by (0Q2)1 and (09), the left and
the right side of 992, resp. . Concretely, one can write: 1

(0Q)1 == {(-ssin§,scos§): se Ry} |

(09Q)2 == {(ssin§,scos §): se R }.
Hence, via the mapping:
(02); > P— [Pl € Ry,
for j=1,2 and for all p € [1, 0) one can identify:
(0Q); with Ry and LP(0Q) with LP(R;) & LP(R4).

Moreover,

1 < ’ V( )>
) _ . P’ , P
X(P.Q) =5 ::| : : P‘f VP,Qe0Q,P#Q
Hussein Awala (Temple University)
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Continuation

Going further, K can be regarded as a kernel on R, x R,. Specifically
the function K(-,-) on 90 x 92 shall be identified with the following
2 x 2 kernel matrix .7 : Ry x Ry — Moy »(R) given by

0 __ssin(0)
H (8, 1) = zi < ssin9) s2+12—2stcos(0) > ,
S+ P—2stcos(d) 0
The Mellin transform of 7’(-, 1) is given by:

N 1 0 wsig_(n((w—?)z)
~, INn(mwz
H (5 1)(2) = 5= | msin((x-0)2) .

sin(rz) 0
Hence 3/ + K is invertible on LP(9Q) iff V¢ € R and for z = T + i€
1

1 1sin((7—0)z) 2n=6  for § < (0,n)
det 2 2 sin(nz) £0 < p# 4 ’
( 1sin((r—0)z) 1 0 for 6 € (w, 27

2 sin(nz) 2
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|
Spectrum for K

Consequently, based on the earlier discussion, given p € (1, c0) the
spectrum o(K, LP(0Q)) is explicitly characterized as the set

_ A Alb,z) \ 1
{AeC.det(A(ejz) \ >_0forsomeze(C Rez_p}.

where A6, z) = — 1SWT=02) ‘Thig in turn implies A = +A(0, 2).

2 sin(nz)
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Spectrum for K

The L2 Spectrum of K on a sector of angle m/5
Laplace
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|
Spectrum for K

2
The L~ Spectrum of KLaplace on sectors of angles k*n/5, k=1,...4
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|
Spectrum for D

The L2 Spectrum of KLap . on angles k*mn/15; k=1,...,15

lac

0.15
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Application: Mixed Boundary Value Problem

Let ©2 be as above. The boundary value problem with mixed Dirichlet
and Neumann type boundary conditions with LP data, p € (1, ), is
formulated as follows.

((Au=0 in Q

n.t.
u  =felfD) on D

n.t.

N =geLP(N) on N

D
ou

v
[ N(Vu) € LP(59Q)

(MBVP,)

The same kind of analysis applied above can be carried again here.
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Mixed Boundary Value Problem Result

Theorem

Let Q an sector in R? with apretue theta € (0,27r), then (MBVPp) has a
solution if:

(20 if 6¢c(0,7/2)
2n—f 26 if ¢ (r/2,7)
s if 6¢ (m,31/2)
P#9 2L, 2 if 6€(3n/2,2n)
3 if 0=m/2
3/2 if §=23r/2
2 if 60=r.
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Graph of critical indexes in Main Theorem for MBVP

The invertibility of the operator T the case of sectors

50

[ [} W w = IS
=] 23] =] 5] o o

critical integribility exponents

aperture of sector in radians
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E—
Spectrum for MBVP,

MBVP Spectrum for p=3 and Theta = pi10
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E—
Spectrum for MBVP,

MBVP Spectrum for p=3 and Theta = pi/10, 2pi/10,...,5pi/10
0.8 T T T T T

0.6

0.4r

08 . . . . .
0.4 0.2 o 0.2 0.4 0.6 0.8

Hussein Awala (Temple University) 33/1



TH NK YOU

Hussein Awala (Temple University) 34 /1



