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History

Recall the celebrated Riemann-Zeta function:

ζ (s) :=
∞∑

n=1

1
ns , s ∈ C, Re s > 1.

introduced and studied by L. Euler in the first half of the eighteenth
century when s ∈ (1,∞);
in 1859 B. Riemann extended the Euler definition to complex
variables;
values of the Riemann zeta function at even positive integers were
computed by Euler;
in 1979 Apéry proved the irrationality of ζ (3) and much more is
known today;
big conjecture (106 dollar problems): the non-trivial zeros of ζ all
have real part 1/2.

Our Goal: - go over Euler’s argument for computing ζ (2s) for s ∈ N.
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Partial Fraction Expansion of the Cotangent

Tools

The first step (non-trivial!) is to establish that for each x ∈ R \ Z:

πcot (πx) =
1
x
+
∑
n∈N

(
1

x + n
+

1
x − n

)

= lim
N→∞

(
N∑

n=−N

1
x + n

)

Introducing the functions f ,g : R \ Z −→ R given by

f (x) := πcot (πx) and g (x) := lim
N→∞

(
N∑

n=−N

1
x + n

)

matters reduce to showing that f = g.
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Partial Fraction Expansion of the Cotangent

Domain of Definition

The functions f and g are both defined and continuous on R \ Z.
Indeed:

1 Since f (x) = πcot (πx) = π cos(πx)
sin(πx) , one can easily see that it is

defined and continuous on R \ Z.
2 Write

g (x) = lim
N→∞

(
N∑

n=−N

1
x + n

)
=

1
x
+ lim

N→∞

(
N∑

n=1

2x
x2 − n2

)
.This is

because 1
x+n + 1

x−n = 2x
x2−n2 .

It is enough to prove that the limit is uniformly convergent in a
neighborhood of x , ∀x ∈ R \ Z - both for the domain of definition
and for continuity of g.
We shall proceed point by point: let x ∈ R \ Z ∪ {0}, x ≥ 0 and let
ε > 0 be such that (x − ε, x + ε) ⊂ R \ Z ∪ {0}.
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Partial Fraction Expansion of the Cotangent

Domain of Definition - continued
The number of terms corresponding to n ∈ N such that
2n − 1 ≤ (x + ε)2 is finite – call this n0. Consequently we can bound

n0∑
n=1

2y
y2 − n2 uniformly for y ∈ (x − ε, x + ε).

Turning to the terms corresponding to n ∈ N such that
2n − 1 > (x + ε)2 notice that for each y ∈ (x − ε, x + ε) there holds

y2 < (x + ε)2 < 2n − 1,

This implies: n2 − y2 > n2 − 2n + 1 = (n − 1)2 and so
1

n2 − y2 <
1

(n − 1)2

And so the following bound on (x − ε, x + ε) holds :
∞∑

n=n0+1

2y
n2 − y2 <

∞∑
n=n0+1

2y

(n − 1)2 < (x + ε)
∞∑

n=n0+1

1

(n − 1)2
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Partial Fraction Expansion of the Cotangent

Domain of Definition - Continued

So back to our initial limit :

lim
N→∞

(
N∑

n=1

2y
y2 − n2

)
=

n0∑
n=0

2y
n2 − y2 −

∞∑
n=n0+1

2y
n2 − y2

So
N∑

n=1

2y
y2 − n2

is uniformly convergent on (x − ε, x + ε), making the limit well defined,
and continuous on (x − ε, x + ε).
A similar argument will work for x < 0.
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Partial Fraction Expansion of the Cotangent

Wish List for f and g

Assume for the moment that f and g satisfy the following properties :
i f and g are periodic with period 1.
ii f and g are odd functions.
iii f and g satisfy the property (?) for each x ∈ R \ Z:

(?) f
(x

2

)
+ f
( x+1

2

)
= 2f (x) and g

( x
2

)
+ g

( x+1
2

)
= 2g (x) .
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Partial Fraction Expansion of the Cotangent

Herglotz Trick

Define the function h : R \ Z −→ R given by h (x) := f (x)− g (x) and
recall that we want to show that h ≡ 0. Then:

h is continuous on R \ Z;
h is periodic of period 1 (by(i));
h is odd (by(ii));
h satisfies h

(x
2

)
+ h

(x+1
2

)
= 2h (x) for each x ∈ R \ Z (by(iii)).

Moreover by L’Hospital’s rule:

(??) lim
x→0

(
πcot (πx)− 1

x

)
= 0

So

lim
x→0

h (x) = lim
x→0

((
πcot (πx)− 1

x

)
−

( ∞∑
n=1

2x
x2 − n2

))
= 0

This is because for the first term we use (??), and the second term you
change the limit order since the Sum is uniformly convergent around
zero.Hussein Awala (Temple University) 10 / 1



Partial Fraction Expansion of the Cotangent

Herglotz Trick-continued

By Periodicity of h,
lim
x→n

h (x) = 0

for all n ∈ Z. In conclusion if we define h to be zero on Z, h will be
continuous on all of R. Now since h is periodic, and continuous on R,
we can find x0 such that h (x0) = M is the maximum of h on R. Finally
using the condition ? we get

2h (x0) = h
(x0

2

)
+ h

(
x0 + 1

2

)
This implies that

M = h
(x0

2

)
= h

(
x0 + 1

2

)
by iteration, and using continuity of h, we deduce that h (0) = M,
making h ≡ 0.
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Partial Fraction Expansion of the Cotangent

(i)f and g periodic of period 1
1

cos (π (x + 1)) = −cos (πx) & sin (π (x + 1)) = −sin (πx)

so
cot (π (x + 1)) = cot (πx)

This implies that f is periodic of period 1.
2

g (x + 1) =
∑
n∈Z

1
x + 1 + n

= lim
n→∞

(
i=n∑

i=−n

1
x + 1 + i

)

= lim
n→∞

(
i=n+1∑

i=−n+1

1
x + i

)
= lim

n→∞

((
i=n∑

i=−n

1
x + i

)
− 1

x − n
+

1
x + n + 1

)

= lim
n→∞

(
i=n∑

i=−n

1
x + i

)
= g (x)

which implies that g is also periodic of period 1.
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Partial Fraction Expansion of the Cotangent

(ii)f and g Odd Functions

1 f is odd, since sin (x) is odd and cos (x) is even.
2 As for g we let

gN (x) =
i=N∑

i=−N

1
x + n

gN (−x) =
n=N∑

n=−N

1
−x + n

=
n=N∑

n=−N

1
−x − n

=
n=N∑

n=−N

−1
x + n

= −
n=N∑

n=−N

1
x + n

= −gN (x)

So gN is odd, but
g = lim

N→∞
gN

So g is odd as well.
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Partial Fraction Expansion of the Cotangent

f and g Satisfy the Condition (?)

1

f
(x

2

)
+ f
(

x + 1
2

)
= π

cos
(
πx
2

)
sin
(
πx
2

) − sin
(
πx
2

)
cos

(
πx
2

)
= π

cos2 (πx
2

)
− sin2 (πx

2

)
sin
(
πx
2

)
cos

(
πx
2

) = 2π
cos (πx)
sin (πx)

= 2f (x)

So (?) holds for f
2

gN

(x
2

)
+ gN

(
x + 1

2

)
=

n=N∑
n=−N

1
x
2 + n

+
n=N∑

n=−N

1
x+1

2 + n

=
n=N∑

n=−N

2
x + 2n

+
n=N∑

n=−N

2
x + 2n + 1

= 2g2N (x) +
2

x + 2N + 1

taking the limit of N at infinity we conclude that (?) holds for g.
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Riemann’s Zeta Function at Even Non-Negative Integers

Application on the Riemann’s Zeta Function

After proving the partial fraction expansion of the cotangent, Euler few
years later used it to find the values of the Riemann’s Zeta function at
even integers.
so first let us review what we have proved so far :

πcot (πy) =
1
y
+
∞∑

n=1

2y
y2 − n2

So for |y | < π:

ycot (y) = 1− 1
π

∞∑
n=1

2y y
π

n2 −
( y
π

)2 = 1− 2
∞∑

n=1

y2

π2n2 − y2

= 1− 2
∞∑

n=1

y2

π2n2

1− y2

π2n2

= 1− 2
∞∑

n=1

( ∞∑
k=1

( y
πn

)2k
)

= 1− 2
∞∑

k=1

1
π2k

( ∞∑
n=1

1
n2k

)
y2k
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Riemann’s Zeta Function at Even Non-Negative Integers

Power Series Expansion for ycot (y)

So we proved so far that in the power series expansion of ycot (y) the
coefficient of y2k is equal to

−2
1
π2k

∞∑
n=1

1
n2k = −2

1
π2k ζ (2k)

So all is left is to find the power series expansion of the cotangent and
compare.

cos (y) =
eiy + e−iy

2
, sin (y) =

eiy − e−iy

2i
So

ycot (y) = iy
eiy + e−iy

eiy − e−iy
= iy

e2iy + 1
e2iy − 1

Let x = 2iy i.e. y = x
2i then

ycot (y) =
x
2i

cot
( x

2i

)
=

x
2

ex + 1
ex − 1

=
x
2
+

x
ex − 1
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Riemann’s Zeta Function at Even Non-Negative Integers

Bernoulli Numbers

Define:
x
2i

cot
( x

2i

)
− x

2
=

x
ex − 1

=
∞∑

n=0

Bn
xn

n!

The numbers Bn are called the Bernoulli numbers. Since ycot (y) is an
even function then : Bn = 0 for all n > 1 odd, and B1 = −1

2 Notice that

(ex − 1)

( ∞∑
n=0

Bn
xn

n!

)
=

( ∞∑
n=0

Bn
xn

n!

)( ∞∑
n=1

xn

n!

)
= x

And so for n 6= 1

`=n−1∑
`=0

B`
`! (n − `)!

= 0 and B0 = 1

And so we can calculate the Bernoulli numbers recursively.
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Riemann’s Zeta Function at Even Non-Negative Integers

Values of Riemann’s Zeta Function at Even Integers

Recall that for |y | < π we proved:

ycot (y) = 1− 2
∞∑

k=1

1
π2k

( ∞∑
n=1

1
n2k

)
y2k

and for x = 2iy

ycot (y) =
x
2
+
∞∑

k=0

Bk
xk

k !
= iy +

∞∑
k=0

Bk
(2iy)k

k !
=
∞∑

k=0

(−1)k 22kB2k

(2k)!
y2k

Hence:

1− 2
∞∑

k=1

1
π2k

( ∞∑
n=1

1
n2k

)
y2k =

∞∑
n=0

(−1)n 22nB2n

(2n)!
y2n

And so we have the identity:

ζ (2k) =
∞∑

n=1

1
n2k =

(−1)k−1 22k−1B2k

(2k)!
(π)2k
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Riemann’s Zeta Function at Even Non-Negative Integers

THANK YOU
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