Math 311 Spring 2018

Dr. Hussein Awala

Day #3 Notes: The Axiom of Completeness

January 24, 2018

Contents

1	The Triangle Inequality	2
2	Induction	4
3	Statement and Some Definitions	5
4	Conclusions	11

1 The Triangle Inequality

Complete today's worksheet in groups and we will go over the answers.

1. [T/F] For every pair of real numbers a and b, $|a+b| \le |a| + |b|$.

2. [T/F] For every pair of real numbers a and b, $|a+b| \le |a| - |b|$.

3. [T/F] For every pair of real numbers a and b, $|a - b| \le |a| + |b|$.

4. [T/F] For every pair of real numbers a and b, $|a - b| \le |a| - |b|$.

5. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for every $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

6. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for every $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

7. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for some $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

8. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for some $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

2 Induction

Proposition 1 Let $y_1 = 3$ and $y_n = \frac{3y_n+4}{6}$. Show that y_n is decreasing and that $y_n \ge \frac{4}{3}$ for all $n \in \mathbb{N}$.

3 Statement and Some Definitions

How shall we distinguish \mathbb{R} from \mathbb{Q} ?

What does it mean to say that \mathbb{R} is complete?

Axiom 1 Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound.

What does this mean?

Definition 1 For a set $A \subset \mathbb{R}$, we say

- A is bounded above if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A.
- $a_0 = \max(A)$ if $a_0 \in A$ and $a_0 \ge a$ for all $a \in A$ We might also say a_0 is the maximum of A.
- A real number s is the least upper bound (or sometimes, we use the Latin word supremum) for a set $A \subset \mathbb{R}$ if s is an upper bound for A and if for every upper bound b of A, we have $s \leq b$. If s exists, we use the notation $s = \sup(A)$.

Here are some questions to orient us to the idea:

1. If $A = \{\frac{n}{n+1} \mid n \in \mathbb{N}\}$, then which if any of these numbers are an upper bound for $A: \frac{1}{2}$, 1, 5?

2. [T/F] An upper bound for $A \subset \mathbb{R}$ is necessarily an element of A.

3. [T/F] A least upper bound for $A \subset \mathbb{R}$ is necessarily an element of A.

4. [T/F] A set $A \subset \mathbb{R}$ has at least one maximum.

5. [T/F] A set $A \subset \mathbb{R}$ has at most one maximum.

6. [T/F] A set $A \subset \mathbb{R}$ has at least one upper bound.

7. [T/F] A set $A \subset \mathbb{R}$ has at most one upper bound.

8. [T/F] A set $A \subset \mathbb{R}$ has at least one least upper bound.

9. [T/F] A set $A \subset \mathbb{R}$ has at most one least upper bound.

10. When does $\max(A) \neq \sup(A)$?

4 Conclusions

Today we learned about:

- 1. Triangle Inequality
- 2. Induction
- 3. The Statement of the Axiom of Completeness
- 4. Some related definitions and properties

Friday we will learn about:

1. Some Consequences of Completeness

Upcoming Deadlines:

• Wednesday January 31, 2018: Homework 1

Questions?