Math 311 Spring 2018 Dr. Hussein Awala

Day #4 Notes: Consequences of Completeness

January 26, 2018

Contents

1	Characterization of Least Upper Bounds	3
2	Consequences of Completeness	5
3	Conclusions	9

Axiom 1 Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound.

What does this mean?

Definition 1 For a set $A \subset \mathbb{R}$, we say

- A is bounded above if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A.
- $a_0 = \max(A)$ if $a_0 \in A$ and $a_0 \ge a$ for all $a \in A$ We might also say a_0 is the maximum of A.
- A real number s is the least upper bound (or sometimes, we use the Latin word supremum) for a set A ⊂ ℝ if s is an upper bound for A and if for every upper bound b of A, we have s ≤ b. If s exists, we use the notation s = sup(A).

1 Characterization of Least Upper Bounds

Complete the worksheet and we will go over the answers:

In the problems below, assume s is an upper bound for A and that $A \neq \emptyset$.

1. [T/F] Then $s = \sup(A)$ if for every $\epsilon > 0$, there exists $a \in A$ such that $s - \epsilon < a$.

2. [T/F] Then $s = \sup(A)$ only if for every $\epsilon > 0$, there exists $a \in A$ such that $s - \epsilon < a$.

3. [T/F] Then $s = \sup(A)$ if for every $\epsilon 0$, there exists $a \in A$ such that $s - \epsilon > a$.

4. [T/F] Then $s = \sup(A)$ only if for every $\epsilon > 0$, there exists $a \in A$ such that $s - \epsilon > a$.

5. [T/F] Then $s = \sup(A)$ if for every $\epsilon > 0$, there exists $a \in A$ such that $s + \epsilon > a$.

6. [T/F] Then $s = \sup(A)$ only if for every $\epsilon > 0$, there exists $a \in A$ such that $s + \epsilon > a$.

2 Consequences of Completeness

Theorem 1 (Nested Interval Property) Suppose that $(I_n)_{n \in \mathbb{N}}$ is a nested sequence of closed intervals. That is, $\forall n \in \mathbb{N}$, $I_n = [a_n, b_n]$ and $\forall n \in \mathbb{N}$, $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$. Then $\exists x \in \mathbb{R}$ so that $x \in \bigcap_{n=1}^{\infty} I_n$.

Proof:

(continued)

Theorem 2 (Archimedean Property) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ so that } n > x, \text{ and } \forall y > 0, \exists m \in \mathbb{N} \text{ so that } y > \frac{1}{m}.$

Proof:

What does this mean? Why is it useful?

Density of \mathbb{Q} in \mathbb{R} :

3 Conclusions

Today we learned about:

1. Implications of the Axiom of Completeness, including:

(a) The Nested Interval Property

(b) The Density of the Rationals in the Reals.

Monday we will learn about:

- 1. More Consequences of Completeness
- 2. Cardinality

Upcoming Deadlines:

Homework 1 due on Wednesday January 31, 2018