Math 311 Fall 2017 Dr. Hussein Awala

Day #6 Notes: More Consequences of Completeness

January 28, 2018

Contents

Theorem 1 If $x, y \in \mathbb{R}$ and x < y, then $\exists r \in \mathbb{Q}$ so that x < r < y.

Proof:

What about the irrationals?

1 Existence of Roots

Theorem 2 There exists a real number whose square is 2.

Proof:

2 Cardinality

Complete the worksheet in class and we will go over it together:

Definition 1 Two sets A and B have the same cardinality if there exists a function $f: A \to B$ that is one-to-one and onto. In this case, we write $A \sim B$.

Definition 2 We say a set has cardinality n if $A \sim \{1, ..., n\}$. If $\exists n \in \mathbb{N}$ so that A has cardinality n, we say that A is finite. We say a set A is countable if $A \sim \mathbb{N}$. If A is neither finite nor countable, then we say A is uncountable.

1. [T/F] If $A = \{1, 2, 3\}$ and $B = \{e, \pi, \sqrt{2}\}$ then $A \sim B$.

2. [T/F] The even integers 2Z have the same cardinality as the integers; that is, $2Z \sim Z$.

3. [T/F] $\mathbb{Z} \sim \mathbb{N}$; that is, the integers are countable.

4. $[T/F] \mathbb{Q}$ is countable.

5. $[T/F] \mathbb{R}$ is countable.

3 Conclusions

Today we learned about:

1. Implications of the Axiom of Completeness, including:

- (a) The Density of the Rationals in the Reals.
- (b) The existence of roots.
- (c) The cardinality of \mathbb{R} .

Monday we will learn about:

1. More on cardinality

2. A start on sequences and series

Upcoming Deadlines:

- Monday, September 11: Add Date.
- Wednesday, September 13: Homework #2.

Questions?