Math 311 Spring 2018 Dr. Hussein Awala

Day #7 Notes: Cardinality and More

February 2, 2018

Contents

1	Cardinality	2
2	And More: Infinite Series	5
3	Sequences	7
4	Limits	8
5	Conclusions	9

1 Cardinality

Complete the worksheet in class and we will go over it together:

Definition 1 Two sets A and B have the same cardinality if there exists a function $f: A \to B$ that is one-to-one and onto. In this case, we write $A \sim B$.

Definition 2 We say a set has cardinality n if $A \sim \{1, ..., n\}$. If $\exists n \in \mathbb{N}$ so that A has cardinality n, we say that A is finite. We say a set A is countable if $A \sim \mathbb{N}$. If A is neither finite nor countable, then we say A is uncountable.

1. [T/F] If $A = \{1, 2, 3\}$ and $B = \{e, \pi, \sqrt{2}\}$ then $A \sim B$.

2. [T/F] The even integers 2Z have the same cardinality as the integers; that is, $2Z \sim Z$.

3. [T/F] $\mathbb{Z} \sim \mathbb{N}$; that is, the integers are countable.

4. $[T/F] \mathbb{Q}$ is countable.

5. $[T/F] \mathbb{R}$ is countable.

2 And More: Infinite Series

What does $\sum_{i=1}^{\infty} \frac{(-1)^n}{2^n}$ equal?

What does
$$\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$$
 equal?

Are you sure?

How can you add up the following?

$$\begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \dots \\ 0 & -1 & \frac{1}{2} & \frac{1}{4} & \dots \\ 0 & 0 & -1 & \frac{1}{2} & \dots \\ 0 & 0 & 0 & -1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

What about $1 + (-1) + 1 + (-1) + 1 + (-1) + \dots$?

3 Sequences

What is a sequence?

Examples...

1. $(1, 2, 3, \ldots)$ 2. $\left(\frac{1}{n}\right)_{n=1}^{\infty}$.

3.
$$(a_n)$$
 where $a_n = \frac{1}{2^n} \forall n \in \mathbb{N}$.

4.
$$(x_n)$$
 where $x_1 = 1$ and $x_n = 3x_n - 1 \forall n \in \mathbb{N}$.

What is the difference between a sequence and a set?

4 Limits

What does it mean to say that $\lim_{n \to \infty} \frac{1}{n} = 0$?

Definition 3 Let (a_n) be a sequence of real numbers. We say that (a_n) converges to a real number a if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ so that, $\forall n > N$, $|a_n - a| < \epsilon$.

What's so great about this definition?

5 Conclusions

Today we learned about:

- 1. The Cardinality of \mathbb{Q} and \mathbb{R} .
- 2. A first look at the vagaries of infinite series.

Monday we will learn about:

1. More on Sequences.

Upcoming Deadlines:

• Wednesday Feb 7, 2018: Homework #2.