Math 311 Spring 2018

Dr. Hussein Awala

Day #8 Notes: Sequences and Limits February 5, 2018

Contents

1	Infinite Series	2
2	Sequences	4
3	Limits	5
4	Worksheet	6
5	Conclusions	10

1 Infinite Series

What does $\sum_{i=1}^{\infty} \frac{(-1)^n}{2^n}$ equal?

What does $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$ equal?

Are you sure?

How can you add up the following?

$$\begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \dots \\ 0 & -1 & \frac{1}{2} & \frac{1}{4} & \dots \\ 0 & 0 & -1 & \frac{1}{2} & \dots \\ 0 & 0 & 0 & -1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

What about $1 + (-1) + 1 + (-1) + 1 + (-1) + \dots$?

2 Sequences

What is a sequence?

Examples...

- 1. $(1, 2, 3, \ldots)$
- $2. \left(\frac{1}{n}\right)_{n=1}^{\infty}.$
- 3. (a_n) where $a_n = \frac{1}{2^n} \quad \forall n \in \mathbb{N}$.
- 4. (x_n) where $x_1 = 1$ and $x_n = 3x_n 1 \quad \forall n \in \mathbb{N}$.

What is the difference between a sequence and a set?

3 Limits

What does it mean to say that $\lim_{n\to\infty} \frac{1}{n} = 0$?

Definition 1 Let (a_n) be a sequence of real numbers. We say that (a_n) converges to a real number a if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ so that, $\forall n > N$, $|a_n - a| < \epsilon$.

What's so great about this definition?

4 Worksheet

Complete the worksheet and we will go over it together:

1. Fill in the holes in the proof below.

Proof. Let "_____", and choose $N \in \mathbb{N}$ such that _____. Suppose _____. Then

$$\left|\frac{n+1}{n}-1\right|=\left|\dots\right|$$
 (simplify this algebraically)
 $<\dots$ (convert from n to N)
 $<\epsilon$. (use your choice of N to draw this conclusion)

Therefore, if n > N, we have $\left| \frac{n+1}{n} - 1 \right| < \epsilon$, as desired. \square

2. Prove that $\lim_{n\to\infty} \sin(n^2)/n^2 = 0$.

3. Complete the statement: To show $\left(\frac{n+1}{n}\right)$ does not converge to -37, we must show that . . .

4. Prove that $\left(\frac{n+1}{n}\right)$ does not converge to -37.

5. If (a_n) converges to a real number a and also (a_n) converges to a real number b, then a=b.

5 Conclusions

Today we learned about:

- 1. Sequences
- 2. Limits

Wednesday we will learn about:

- 1. More on Sequence Proofs
- 2. Properties of Limits

Upcoming Deadlines:

 \bullet Wednesday, Feb 7, 2018 : Homework #2