Math 311 Spring 2018 Dr. Hussein Awala

Day #9 Notes: More on Limits

February 7, 2018

Contents

1	Worksheet	2
2	Properties of Limits	6
3	Conclusions	9

1 Worksheet

Complete the worksheet and we will go over it together:

1. Fill in the holes in the proof below.

Proof. Let "_____", and choose $N \in \mathbb{N}$ such that _____. Suppose _____. Then

$$\begin{aligned} \left|\frac{n+1}{n} - 1\right| &= |____| & \text{(simplify this algebraically)} \\ &< ____ & \text{(convert from } n \text{ to } N) \\ &< \epsilon. & \text{(use your choice of N to draw this conclusion)} \end{aligned}$$

Therefore, if n > N, we have $\left|\frac{n+1}{n} - 1\right| < \epsilon$, as desired. \Box

2. Prove that $\lim_{n\to\infty} \sin(n^2)/n^2 = 0$.

3. Complete the statement: To show $\left(\frac{n+1}{n}\right)$ does not converge to -37, we must show that ...

4. Prove that $\left(\frac{n+1}{n}\right)$ does not converge to -37.

5. If (a_n) converges to a real number a and also (a_n) converges to a real number b, then a = b.

2 Properties of Limits

Definition 1 A sequence is bounded if $\exists M > 0$ so that $\forall n \in \mathbb{N}, |a_n| < M$.

Proposition 1 Every convergent sequence is bounded.

Theorem 1 Suppose that (a_n) and (b_n) are sequences and $a, b, c \in \mathbb{R}$. Suppose $a_n \to a$ and $b_n \to b$. Then:

1. $(ca_n) \rightarrow ca$ 2. $(a_n + b_n) \rightarrow a + b$ 3. $(a_n b_n) \rightarrow ab$ 4. If $b \neq 0$, $(\frac{a_n}{b_n} \rightarrow \frac{a}{b})$.

Proof:

(continued)

3 Conclusions

Today we learned about:

1. Limits and Their Properties

Friday we will learn about:

1. More Properties of Limits

Upcoming Deadlines:

• Wednesday, Feb 14, 2018: Homework #3