Math 311 Spring 2018

Dr. Hussein Awala

Day #10 Notes: Properties of Limits February 9, 2018

Contents

1	Properties of Limits	2
2	Conclusions	8

1 Properties of Limits

Definition 1 A sequence is bounded if $\exists M > 0$ so that $\forall n \in \mathbb{N}, |a_n| < M$.

Proposition 1 Every convergent sequence is bounded.

Theorem 1 (Algebraic Limit Theorem) Suppose that (a_n) and (b_n) are sequences and $a, b, c \in \mathbb{R}$. Suppose $a_n \to a$ and $b_n \to b$. Then:

- 1. $(ca_n) \to ca$
- 2. $(a_n + b_n) \rightarrow a + b$
- 3. $(a_nb_n) \to ab$
- 4. If $b \neq 0$, $\left(\frac{a_n}{b_n} \to \frac{a}{b}\right)$.

Proof:

(continued)

(continued)

Theorem 2 (Order Limit Theorem) Suppose $a, b, c \in \mathbb{R}$ and $(a_n), (b_n)$ are sequences of real numbers so that $a_n \to a$ and $b_n \to b$. Then

- 1. If $a_n \ge 0 \ \forall n \in \mathbb{N}, \ a \ge 0$.
- 2. If $a_n \leq b_n \ \forall n \in \mathbb{N}, \ a \leq b$.
- 3. If $c \leq b_n \ \forall n \in \mathbb{N}$, $c \leq b$ and similarly, if $a_n \leq c \ \forall n \in \mathbb{N}$, then $a \leq c$.

Proof:

(continued)

2 Conclusions

Today we learned about:

1. Properties of limits

Monday we will learn about:

- 1. The Monotone Convergence Theorem
- 2. Infinite series

Upcoming Deadlines:

- \bullet Wednesday February 14, 2018: Homework #3.
- Wednesday February 14, 2018: Homework #1 rewrite.