Math 311 Spring 2018 Dr. Hussein Awala

Day #2 Notes: More Preliminaries

January 22, 2018

1	The rationals	2
2	Preliminaries 2.1 Set Operations	3 3
3	Functions	4
4	The Triangle Inequality	5
5	Conclusions	7

1 The rationals

What are the properties of the rational numbers?

R is an Abelian group under + / The multiplication operation has the
 - Associative following properties.
 - Commutative / - Associative following properties.
 - Commutative / - Commutative / - L = identity
 - L = identity
 - L = identity
 - I = identi

- Consider the set:
$$X = \left\{\frac{m}{n} / m \in \mathbb{Z} \text{ and } n \in \mathbb{N}\right\}$$

consider the relation: $\sim : (m, n) \sim (p, q)$ iff $m, q = n \cdot p$
then $\mathcal{Q} = X/n$.

2 Preliminaries

* Set is a collection
of objects.
* These objects are called elements.

2.1 Set Operations

Intersection and Union: for two sets A and B: Intersection: ADB = {x, such that x ∈ A and x ∈ B} Union : AUB = {x, such that x ∈ A or x ∈ B}

Complement: for a set $A \subseteq Q$ The complement set $A^{c} := \{x \in Q, such that x \notin A\}$ (complement in Q) Infinite Operations: for sets $A_{i}, A_{2}, A_{3}, \dots$ $\bigcup_{i=1}^{n} A_{i} := \{x \in Q, such that \exists i \in \mathbb{N} \text{ and } x \in A_{i}\}$ $\bigcap_{i=1}^{n} A_{i} := \{x \in Q, such that \exists i \in \mathbb{N}, x \in A_{i}\}$

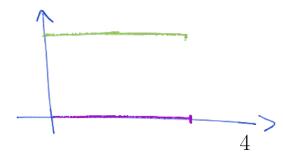
Example 1 $A_n = \{k \in \mathbb{N} : k \ge n\}$. Describe A_n and compute $\bigcup_{n=1}^{\infty} A_n$ and $\bigcap_{n=1}^{\infty} A_n$. $A_n = \{n, n+1, n+2, \cdots\}$ $\bigcup_{n=1}^{\infty} A_n = M$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$ $\begin{cases} \emptyset \text{ is the empty set.} \end{cases}$

3 Functions

What is a function?

A function is an operation that maps one set to another. To define a function you need $\begin{cases} -\text{domain } 2 \text{ they matter (they define the } 2 - \text{codomain } 2 \text{ they matter (they define the$

This is known as Dirichlet's function. What does it look like?



4 The Triangle Inequality

Complete today's worksheet in groups and we will go over the answers.

1. [T/F] For every pair of real numbers a and b, $|a + b| \le |a| + |b|$.

2. [T/F] For every pair of real numbers a and b, $|a + b| \le |a| - |b|$.

9:
$$a = 6$$
 $b = 1$
 $|6+1| = 7$
 $|6|-|1|=5$
3. [T/F] For every pair of real numbers a and b , $|a-b| \le |a|+|b|$. T
Apply 1 to a and $-b$

4. [T/F] For every pair of real numbers a and b, $|a - b| \le |a| - |b|$. a = 3 b = -1 |a| - |b||a - b| = 4 5 = 2. 5. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for every $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

6. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for every $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

7. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for some $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

8. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for some $\epsilon > 0$, it follows that $|a - b| < \epsilon$.

5 Conclusions

Today we learned about:

- 1. Functions
- 2. The triangle inequality
- 3. Induction

4. A start on the Axiom of COmpleteness Monday we will learn about:

1. MOre about Completeness

Upcoming Deadlines:

- September 6: Homework 1
- September 8: Project Preferences

Questions?