Math 311 Spring 2018 Dr. Hussein Awala

Day #6 Notes: More Consequences of Completeness

January 31, 2018

Contents

1	Density of \mathbb{Q} in \mathbb{R}	2
2	Existence of Roots	3
3	Cardinality	4
4	Conclusions	7

1 Density of \mathbb{Q} in \mathbb{R}

Theorem 1 If $x, y \in \mathbb{R}$ and x < y, then $\exists r \in \mathbb{Q}$ so that x < r < y.

Proof:

2 Existence of Roots

Theorem 2 There exists a real number whose square is 2.

Consider the set S= {a ER s.t. a2<2} **Proof:** we need to find $S \neq \phi$ since LES, and S is bounded above by 2. n>0,5.4. (s+1)<2 for any acts a <2 otherwise if a>2 => a2>4. Contradiction. $5^{2} + \frac{1}{2^{2}} + \frac{1}{2^{2}} < 2$ Hence S has a sup Let s= sup(S). claim: s² = 2, we will prove 52+25+1<2 this by contradicting the fact s2<2 and s2>2. $s^2 + \frac{2s+1}{2} < 2$ suppose 52<2, => 2-52>0 [5>1=> 25+1>0] $\underline{2s+1} < 2-s^2$ find n s.t. $\frac{2-s^2}{2s} > \frac{1}{n}$ $\frac{2s+1}{2s+2} < n$ $2-5^2 > \frac{2s+1}{n} \implies 2-5^2 - \frac{2s}{n} - \frac{1}{n} > 0$ $\frac{2-S^2}{2S+1} > \frac{1}{n}$ 2>52+22+1 $> s^{2} + \frac{2s}{n} + \frac{1}{n^{2}} = (s + \frac{1}{n})^{2}$ => S+ L E S but s< s++ contradiction => s2 >12 Suppose that: 52>2 we will find a s.t. (s-k)2>2 $s^2 - \frac{2s}{2} + \frac{1}{2} > 2$ 5-2> 25 - 1-3 5-2> 25 R $\frac{S^2}{2} \rightarrow 1$

3 Cardinality

Complete the worksheet in class and we will go over it together:

Definition 1 Two sets A and B have the same cardinality if there exists a function $f: A \to B$ that is one-to-one and onto. In this case, we write $A \sim B$.

Definition 2 We say a set has cardinality n if $A \sim \{1, ..., n\}$. If $\exists n \in \mathbb{N}$ so that A has cardinality n, we say that A is finite. We say a set A is countable if $A \sim \mathbb{N}$. If A is neither finite nor countable, then we say A is uncountable.

1. [T/F] If $A = \{1, 2, 3\}$ and $B = \{e, \pi, \sqrt{2}\}$ then $A \sim B$. define $f: A \longrightarrow B$ st. f(1) = e $f(2) = \pi$ $f(3) = \sqrt{2}$ f is injective.

2. [T/F] The even integers 2Z have the same cardinality as the integers; that is, $2\mathbb{Z} \sim \mathbb{Z}$. define the function: $f: \mathbb{Z} \longrightarrow 2\mathbb{Z}$ $\chi \longrightarrow 2\chi$ $f(\chi) = 2\chi$.

3. $[T/F] \mathbb{Z} \sim \mathbb{N}$; that is, the integers are countable. define the function: $f: \mathbb{Z} \longrightarrow \mathbb{N}$ $f(z) = \begin{cases} 2z+2 & \text{if } z \geq 0 \\ -2z-1 & \text{if } z < 0 \end{cases}$

4. [T/F] Q is countable. T
Creat the sets
An = { P , s.t. p,q∈IN, p+q=n and, pand q are coprime }
An ≤ are all finite , they cover Q, and An ∩ Am = Ø ¥ n ≠ m.

5. $[T/F] \mathbb{R}$ is countable.

4 Conclusions

Today we learned about:

1. Implications of the Axiom of Completeness, including:

- (a) The Density of the Rationals in the Reals.
- (b) The existence of roots.
- (c) The cardinality of \mathbb{R} .

Friday we will learn about:

- 1. More on cardinality
- 2. A start on sequences and series

Upcoming Deadlines:

• Wednesday, Feb 7, 2018: Homework #2.

Questions?