Math 311 Spring 2018 Dr. Hussein Awala

Day #10 Notes: Properties of Limits

February 9, 2018

1

Contents

1	Properties	of	Limits
---	------------	----	--------

2 Conclusions

 $\mathbf{2}$

1 Properties of Limits

Definition 1 A sequence is bounded if $\exists M > 0$ so that $\forall n \in \mathbb{N}, |a_n| < M$.

Proposition 1 Every convergent sequence is bounded.

$$\begin{array}{l} proof: \quad det \quad (a_n)_{n\in N} \quad be a \quad convergent \quad sequence \implies 3 \quad a \in \mathbb{R} \quad s.t. \quad \lim_{n \to \infty} a_{n=a} \\ so \quad fix \quad \epsilon = 1 \quad , \quad them \quad \exists \quad N \in \mathbb{N} \quad s.t. \quad \forall n \geqslant N \quad | a_{n-a}| < 1 \\ \\ Next \quad , \quad let \quad M = \max \left\{ |a_1|, \dots, |a_{N-1}|, \quad |a|+1 \right\} \\ clain \quad : \quad |a_n| \leq M \quad for \quad all \quad n \in N. \\ if \quad n \in \{1, \dots, N-1\} \implies by \quad def \quad lanl \leq M \\ if \quad n \geqslant N \implies | a_n - a| < 1 \\ \implies |a_n| - |a| < 1 \\ \implies |a_n| < |a|+1 \leqslant M \end{array}$$

Theorem 1 (Algebraic Limit Theorem) Suppose that (a_n) and (b_n) are sequences and $a, b, c \in \mathbb{R}$. Suppose $a_n \rightarrow a$ and $b_n \rightarrow b$. Then:

1.
$$(ca_n) \rightarrow ca$$

2. $(a_n + b_n) \rightarrow a + b$
3. $(a_n b_n) \rightarrow ab$
4. If $b \neq 0$, $(\frac{a_n}{b_n} \rightarrow \frac{a}{b})$.
Proof: det $\varepsilon > 0$ since an $\xrightarrow{n \to \infty} a$ and for $\varepsilon' = \frac{9}{c} > 0$
 $\Rightarrow \exists N \in \mathbb{N}$ s.t. for any $n \geqslant N$ we have $|a_{n-1}a| < \varepsilon' < \frac{9}{c}$
 $\Rightarrow \exists N \in \mathbb{N}$ s.t. for any $n \geqslant N$ we have $|a_{n-1}a| < \varepsilon' < \frac{9}{c} < \varepsilon' = \frac{1}{c}$.
Here for the same $N \in \mathbb{N}$ for any $n \geqslant N$ $|ca_{n-1}ca| = c|a_{n-1}a| < c\frac{9}{c} = \varepsilon$.
 $fhus find $Ca_n = Ca$.
2. $a_n + b_n \rightarrow a + b$
 $det \varepsilon > 0 \Rightarrow \frac{9}{c} > 0$
There exist $N_1 > 0$ s.t. $\forall n \geqslant N_1$, $|a_{n-2}| < \frac{9}{c} > 2$$

then take
$$N = \max \{N_1, N_2\}$$

then take $N = \max \{N_1, N_2\}$
then for any $n \ge N \implies |an-bn-a-b| \le |an-a|+|bn-b| \le \xi_2 + \xi_2$
 $= \varepsilon$.

(continued) (3) Hint: |anbn-ab| = |anbn-abn+abn-ab| < |bn||an-al + |a||bn-b| and we the fact that (bn)new is bounded. (continued)

Theorem 2 (Order Limit Theorem) Suppose $a, b, c \in \mathbb{R}$ and $(a_n), (b_n)$ are sequences of real numbers so that $a_n \to a$ and $b_n \to b$. Then

1. If $a_n \ge 0 \ \forall n \in \mathbb{N}, \ a \ge 0$.

2. If $a_n \leq b_n \ \forall n \in \mathbb{N}, \ a \leq b$.

3. If $c \leq b_n \ \forall n \in \mathbb{N}, \ c \leq b \ and \ similarly, \ if \ a_n \leq c \ \forall n \in \mathbb{N}, \ then \ a \leq c.$

Proof:

(continued)

2 Conclusions

Today we learned about:

1. Properties of limits

Monday we will learn about:

- 1. The Monotone Convergence Theorem
- 2. Infinite series

Upcoming Deadlines:

• Wednesday February 14, 2018: Homework #3