Math 311 Spring 2018 Dr. Hussein Awala

Day #13 Notes: Subsequences and Bolzano Weierstrass

February 16, 2018

Contents

1	Series	2
2	Subsequences	4
3	How Subsequences Help Us	6
4	The Bolzano-Weierstrass Theorem	7
5	Conclusions	8

1 Series

Example 1 $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Example 2 $\sum_{n=1}^{\infty} \frac{1}{n}$.

Theorem 1 (Cauchy Condensation Test) If b_n is a nonnegative, decreasing sequence of numbers, then $\sum_{n=1}^{\infty} b_n$ converges if and only if $\sum_{n=1}^{\infty} 2^n b_{2^n}$ converges.

Corollary 1 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

2 Subsequences

What is a subsequence?

How does subsequence convergence relate to sequence convergence?

3 How Subsequences Help Us

Example 3 Consider a geometric sequence (b^n) , where 0 < b < 1. To what does it converge?

Proposition 1 Divergence Criterion $If(a_n)$ is a sequence and it has two subsequences which converge to different limits, then (a_n) diverges.

Example 4 $(-1)^n$

4 The Bolzano-Weierstrass Theorem

Theorem 2 Bolzano-Weierstrass *Every bounded sequence of real numbers has a convergent subsequence.*

Proof:

5 Conclusions

Today we learned about:

- 1. Cauchy Condensation Test
- 2. Subsequences

3. Bolzano Weierstrass Theorem

Monday we will learn about:

1. Cauchy Sequences

Upcoming Deadlines:

- 1. Next Wednesday Feb 21, 2018 H.W 4
- 2. Next Wednesday Feb 21, 2018 rewrites for H.W. 2