Math 311 Spring 2018 Dr. Hussein Awala

Day #13 Notes: Subsequences and Bolzano Weierstrass

February 19, 2018

Contents

1	How Subsequences Help Us	2
2	The Bolzano-Weierstrass Theorem	3
3	Conclusions	4

1 How Subsequences Help Us

Example 1 Consider a geometric sequence (b^n) , where 0 < b < 1. To what does it converge?

Proposition 1 Divergence Criterion $If(a_n)$ is a sequence and it has two subsequences which converge to different limits, then (a_n) diverges.

Example 2 $(-1)^n$

2 The Bolzano-Weierstrass Theorem

Theorem 1 Bolzano-Weierstrass *Every bounded sequence of real numbers has a convergent subsequence.*

Proof:

3 Cauchy sequences–worksheet

Definition: A sequence (a_n) is called a *Cauchy* sequence if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $m, n \geq N$, it follows that $|a_m - a_n| < \epsilon$.

- 1. How is the definition for a Cauchy sequence different from the definition for a convergent sequence?
- 2. [T/F] If a sequence $(a_n) \subset \mathbf{N}$ converges to an element of \mathbf{N} , then (a_n) is Cauchy.

3. [T/F] If a sequence $(a_n) \subset \mathbf{N}$ is Cauchy, then (a_n) converges to an element of \mathbf{N} .

4. [T/F] If a sequence $(a_n) \subset \mathbf{Q}$ converges to an element of \mathbf{Q} , then (a_n) is Cauchy.

5. [T/F] If a sequence $(a_n) \subset \mathbf{Q}$ is Cauchy, then (a_n) converges to an element of \mathbf{Q} .

6. [T/F] Every Cauchy sequence in **R** is bounded.

7. [T/F] Every bounded sequence in **R** is Cauchy.

8. [T/F] Every Cauchy sequence in **R** is monotone.

9. [T/F] Every monotone sequence in **R** is Cauchy.

10. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ converges to an element of \mathbf{R} , then (a_n) is Cauchy.

11. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ is Cauchy, then (a_n) has a convergent subsequence.

12. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ is Cauchy, then (a_n) converges to an element of \mathbf{R} .

4 Conclusions

Today we learned about:

- 1. Bolzano Weierstrass Theorem
- 2. Cauchy Sequences

Wednesday we will learn about:

1. Series

Upcoming Deadlines:

- 1. Next Wednesday Feb 21, 2018 H.W 4
- 2. Next Wednesday Feb 21, 2018 rewrites for H.W. 2