Math 311 Spring 2018 Dr. Hussein Awala

Day #11 Notes: Properties of Limits and Monotone Convergence

February 12, 2018

Contents

1	Properties of Limits	2
2	Monotonicity	4
3	Conclusions	8

1 Properties of Limits

[: Order Limit Theorem] Suppose $a, b, c \in \mathbf{R}$ and $(a_n), (b_n)$ are sequences of real numbers so that $a_n \to a$ and $b_n \to b$. Then

- 1. If $a_n \ge 0 \ \forall n \in \mathbf{N}, a \ge 0$.
- 2. If $a_n \leq b_n \ \forall n \in \mathbf{N}, a \leq b$.
- 3. If $c \leq b_n \ \forall n \in \mathbb{N}$, $c \leq b$ and similarly, if $a_n \leq c \ \forall n \in \mathbb{N}$, then $a \leq c$.

Proof: 1) Let
$$an \ge 0$$

Suppose $a < 0 \Longrightarrow 9_2 < 0$
then for $\mathcal{E} = -9_2 > 0$, $\exists N \in \Pi V$ such that $\forall n \ge N$
 $|an - a| < -9_2$
 $\Longrightarrow an - a < -9_2$
 $\Longrightarrow an < -9_2 + a = 9_2 < 0$ contradiction
since $an \ge 0$ for
all $n \in IN$

(continued) 2) $an \leq bn \Rightarrow bn - an \geq 0$ $50 \quad \lim_{n \to \infty} bn - an \geq 0$ $\Rightarrow \quad \lim_{n \to \infty} bn - an \geq 0 \Rightarrow b \geq a$ 3) if $c \leq bn \Rightarrow bn - c \geq 0$ $\Rightarrow \quad \lim_{n \to \infty} bn - c \geq 0$ $\Rightarrow \quad b - c \geq 0 \Rightarrow b \geq c$.

Note: strict inequalities doesn't hold under limits $g_i: a_i = \frac{1}{h} > 0$ but lim $a_i = 0$.

2 Monotonicity

Worksheet:

Definition: A sequence (x_n) is *convergent* if there exists some real number x so that (x_n) converges to x.

Definition: A sequence (x_n) is *bounded* if there exists a real number M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$. We have seen this before.

Definition: A sequence (x_n) is *increasing* if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$ and *decreasing* if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence is *monotone* if it is either increasing or decreasing.

1. [T/F] Every bounded sequence is convergent.

$$\chi_{0} = \begin{pmatrix} 1+h & \text{if } n \text{ is even} \\ -1+h & \text{if } n \text{ is odd.} \end{pmatrix} \leftarrow try to show this is not convergent.$$

2. [T/F] Every convergent sequence is bounded. T We proved this before. 3. [T/F] Every monotone sequence is convergent.

4. [T/F] Every convergent sequence is monotone.

5. [T/F] If a sequence is monotone and bounded, then it is convergent.

Definition: Let x_n be a sequence. An *infinite series* is a formal expression of the form

$$\sum_{n=1}^{\infty} x_n = x_1 + x_2 + x_3 + \cdots$$

The corresponding sequence of partial sums (s_m) is given by $s_m = x_1 + x_2 + \cdots + x_m$, and we say the series $\sum_{n=1}^{\infty} x_n$ converges to S if the sequence (s_m) converges to S. In this case, we write $\sum_{n=1}^{\infty} x_n = S$.

6. [T/F] If (x_n) is a sequence of positive real numbers, then the partial sums for the series $\sum_{n=1}^{\infty} x_n$ form a bounded sequence.

$$\chi_{n=n} = \sum_{n=1}^{\infty} n$$
, then $S_N = \sum_{n=1}^{\infty} \chi_n$ is not bounded.

7. [T/F] If (x_n) is a sequence of positive real numbers, then the partial sums for the series $\sum_{n=1}^{\infty} x_n \text{ form a monotone sequence.}$ $S_{N} = \sum_{n=1}^{N} x_n \text{ Solution} S_{N+1} = \sum_{n=1}^{N+1} x_n = \sum_{n=1}^{N} x_n + x_{n+1}$ $= S_N + x_{n+1}$ $\geqslant S_N$ $6 \implies S_N \text{ is increasing.}$

8. [T/F] If
$$\sum_{n=1}^{\infty} x_n$$
 converges, then $(x_n) \to 0$. T
We will prove this next class.

3 Conclusions

Today we learned about:

- 1. Properties of limits and ordering
- 2. Monotone Convergence
- 3. A start on Series

Wednesday we will learn about:

- 1. More on Monotonicity and Series
- 2. Subsequences

Upcoming Deadlines:

- This Wednesday: Homework #3
- This Wednesday: Homework #1 Rewrites

Questions?