Math 311 Spring 2018 Dr. Hussein Awala

Day #15 Notes: Series

February 21, 2018

Contents

1	Cauchy sequences–worksheet	2
2	Series 2.1 Absolute and Conditional Convergence	5 9
3	Conclusions	12

1 Cauchy sequences–worksheet

Definition 1 A sequence (a_n) is called a Cauchy sequence if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $m, n \ge N$, it follows that $|a_m - a_n| < \epsilon$.

1. How is the definition for a Cauchy sequence different from the definition for a convergent sequence?

2. [T/F] If a sequence $(a_n) \subset \mathbf{N}$ converges to an element of \mathbf{N} , then (a_n) is Cauchy.

3. [T/F] If a sequence $(a_n) \subset \mathbf{N}$ is Cauchy, then (a_n) converges to an element of \mathbf{N} .

4. [T/F] If a sequence $(a_n) \subset \mathbf{Q}$ converges to an element of \mathbf{Q} , then (a_n) is Cauchy.

5. [T/F] If a sequence $(a_n) \subset \mathbf{Q}$ is Cauchy, then (a_n) converges to an element of \mathbf{Q} .

6. [T/F] Every Cauchy sequence in **R** is bounded.

7. [T/F] Every bounded sequence in **R** is Cauchy.

8. [T/F] Every Cauchy sequence in **R** is monotone.

9. [T/F] Every monotone sequence in **R** is Cauchy.

10. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ converges to an element of \mathbf{R} , then (a_n) is Cauchy.

11. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ is Cauchy, then (a_n) has a convergent subsequence.

12. [T/F] If a sequence $(a_n) \subset \mathbf{R}$ is Cauchy, then (a_n) converges to an element of \mathbf{R} .

2 Series

Theorem 1 If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B, and $c \in \mathbf{R}$, then

- 1. $\sum_{n=1}^{\infty} (ca_n) = cA$, and
- 2. $\sum_{n=1}^{\infty} (a_n + b_n) = A + B.$

Cauchy Convergence Theorem for Series:

Theorem 2 We have that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\forall \epsilon > 0$, $\exists N \in \mathbf{N}$ such that $\forall n > m \geq N$,

$$|\sum_{k=m+1}^{n}| < \epsilon.$$

Proof:

Divergence Test

Corollary 1 If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Comparison Test

Theorem 3 If $0 \le a_k \le b_k$ for all $k \in \mathbf{N}$, then

1. If
$$\sum_{n=1}^{i} nftyb_n$$
 converges, so does $\sum_{n=1}^{\infty} a_n$.

2. If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$.

Example 1 A geometric series has the form $\sum_{n=0}^{\infty} ar^n$. It converges if and only if |r| < 1 and, if so, it converges to $\frac{a}{1-r}$.

2.1 Absolute and Conditional Convergence

Theorem 4 If $\sum_{n=1}^{\infty} |a_n|$ converges, then so does $\sum_{n=1}^{\infty} a_n$.

Definition 2 A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ also converges. If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ does not, we say that the series converges conditionally.

Examples:

Alternating Series Test:

Theorem 5 Suppose that a_n is a nonnegative, decreasing sequence. Then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges if $a_n \to 0$.

3 Conclusions

Today we learned about:

- 1. Cantor Diagonalization
- 2. Convergence of Series
- 3. Absolute vs. Conditional Convergence

Friday we will learn about:

- 1. The Cantor Set
- 2. Open and Closed sets

Upcoming Deadlines:

• Wednesday: Homework #5 and Rewrites #3.

Questions?