Math 311 Spring 2018 Dr. Hussein Awala

Day #16 Notes: More on Series

February 23, 2018

Contents

1	Series	2
	1.1 Absolute and Conditional Convergence	7
2	Conclusions	10

1 Series

Theorem 1 If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B, and $c \in \mathbf{R}$, then 1. $\sum_{n=1}^{\infty} (ca_n) = cA$, and 2. $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$.

Cauchy Convergence Theorem for Series:

Theorem 2 We have that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\forall \epsilon > 0$, $\exists N \in \mathbf{N}$ such that $\forall n > m \ge N$, $|\sum_{k=m+1}^n a_n| < \epsilon$.

Proof:

Divergence Test

Corollary 1 If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Comparison Test

Theorem 3 If $0 \le a_k \le b_k$ for all $k \in \mathbf{N}$, then

1. If
$$\sum_{n=1}^{\infty} b_n$$
 converges, so does $\sum_{n=1}^{\infty} a_n$.
2. If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$.

Example 1 A geometric series has the form $\sum_{n=0}^{\infty} ar^n$. It converges if and only if |r| < 1 and, if so, it converges to $\frac{a}{1-r}$.

1.1 Absolute and Conditional Convergence

Theorem 4 If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then so does $\sum_{n=1}^{\infty} a_n$.

Definition 1 A series
$$\sum_{n=1}^{\infty} a_n$$
 converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ also converges. If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ does not, we say that the series converges conditionally.

Examples:

Alternating Series Test:

Theorem 5 Suppose that a_n is a nonnegative, decreasing sequence. Then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges if $a_n \to 0$.

2 Conclusions

Today we learned about:

1. Series

2. Absolute vs. Conditional Convergence

Monday we will learn about:

1. The Cantor Set

2. Open and Closed sets

Upcoming Deadlines:

- Next Wednesday: Homework #4
- Next Wednesday: Homework #3 Rewrites