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1 Series
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Theorem 1 If Z a, converges to A and Z b, converges to B, and c € R, then
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2. (a, +b,) = A+ B.
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Proof:



Cauchy Convergence Theorem for Series:

Theorem 2 We have that Zan converges if and only if Ve > 0, AN € N such that
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Yn>m>N,
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Proof:

Divergence Test



Corollary 1 If Z a, converges, then a, — 0.
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Comparison Test

Theorem 3 If0 < a; < by for all k € N, then

1. Ifz b, converges, so does Z Qy,.
n=1 n=1

2. lfz a, diverges, so does Z b,,.
n=1 n=1

Proof:



Example 1 A geometric series has the form Zar". It converges if and only if |r| <1
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and, if so, it converges to T

Proof:



1.1 Absolute and Conditional Convergence

0 0
Theorem 4 If Z la,,| converges, then so does Z Q.

Proof:
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Definition 1 A series Zan converges absolutely if Z la,| also converges. If Zan

(0. @]

converges but a,| does not, we say that the series converges conditionally.
g
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Examples:



Alternating Series Test:
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Theorem 5 Suppose that a, is a nonnegative, decreasing sequence. Then Z(—l)”an

n=1
converges if a, — 0.



2 Conclusions

Today we learned about:

1. Series

2. Absolute vs. Conditional Convergence

Monday we will learn about:

1. The Cantor Set

2. Open and Closed sets
Upcoming Deadlines:

e Next Wednesday: Homework #4

e Next Wednesday: Homework #3 Rewrites
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