Test-1 Sample

I) The graph of the function $f(x) = 5x - x^2$ on the interval [1,5] is shown below.

(a) You will need to estimate the area under the graph $f(x) = 5x - x^2$ from x = 1 to x = 5 using M_2 , i.e., using to rectangles and midpoint.

(i) Sketch and shade the approximating rectangles.

(ii) Find M_2 .

(b) Find the exact area under the graph of the function $f(x) = 5x - x^2$, $1 \le x \le 5$, using the Fundamental Theorem of Calculus.

II) Sketch the graph of the function $f(x)=2+\sqrt{4-x^2}, -2\leq x\leq$. Then evaluate the integral $\int_{-2}^2 (2+\sqrt{4-x^2})\,dx$ by interpreting it in terms of areas.

III) Let
$$F(x) = \int_0^{\sqrt{\sin(x)}} \frac{1}{\sqrt{1-t^2}} dt$$
, $0 \le x \le \frac{\pi}{2}$.

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative F'(x). Simplify your answer.

IV) Let $g(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown below on the interval [0,5]. Assume that the area of the regions A, B, and C are 4, 7, and 11 respectively.

- (a) Find g(3) and g(5). Show your work.
- (b) Find g'(1).

- 20 15 10 5 A -5 -10 B
- (c) On what interval(s) is g(x) increasing?
- (d) At what value on [0,5] does g(x) attain its absolute minimum? What is the minimum value?
- (e) At what value on [0,5] does g(x) attain its absolute maximum? What is the maximum value?
- (f) On What interval(s) is g(x) concave down?
- (g) Sketch the graph of g(x) on the interval [0,5].

V) Evaluate the integrals. Show your work.

(a)
$$\int t\sqrt{t+7}\,dt$$

(b)
$$\int_1^e \frac{\ln x}{x^2} \, dx$$

$$(c) \int (5-2x)e^{2x} dx$$

(d)
$$\int_0^{\frac{1}{2}} \frac{(\arcsin x)^2}{\sqrt{1-x^2}} dx$$

VI) Let $v(t) = \frac{t - 2\sqrt{t}}{t}$, t > 0 be the velocity (in centimeters per second) of a particle moving along a line (see graph at the right).

(a) Find the displacement Δs of the particle over the interval [1,16].

(b) Find the distance traveled by the particle during the time interval [1,16].

VII) The shaded region below is bounded be $y=\frac{1}{\sqrt{3}}\sec x\tan x$, y=2, and y-axis, for $0\leq x\leq \frac{\pi}{3}.$

(a) Find the area of the shaded region.

(b) Find the volume of the solid obtained by rotating the shaded region about x - axis.

VIII) The Shaded region below is bounded by the curves $y=x^{1/3}, y=x,$ and $0 \le x \le 1$. Set up the integral for the volume of the solid obtained by rotating the shaded region about x=1. (Don't evaluate the integral.)

IX) The base of a solid is the shaded region enclosed by $y = \sin x$, $y = \cos x$, for $0 \le x \le \frac{\pi}{4}$ and its cross-sections, perpendicular to the *x-axis*, are squares.

(i) Express A(x), the area of the cross-section as a function of x. ¹²[

(ii) Find the volume of the solid.