Math 311 Spring 2018 Dr. Hussein Awala

Day #19 Closed Sets and Limit point

March 19, 2018

Contents

1	Worksheet: Closed Sets	2
2	Limit points	6
3	Conclusions	9

1 Worksheet: Closed Sets

Definition 1 A set U is closed if it is the complement of an open set.

16. Is the empty set closed?
yes, because \$= IR.
and IR is open.
17. Is R closed?

Yes, because $\mathbb{R}^{c} = \emptyset$ and \emptyset is open.

18. Is
$$\mathbf{R} - \{5\}$$
 closed?
No, because $(\mathbb{R} - \{5\})^{c} = \{5\}$
and $\{5\}$ is not open.

19. Is $\{5\}$ closed? Yes, because $\{53^{C} = \mathbb{R} - \{5\}$ and $\mathbb{R} - \{5\}$ is open.

21. Is the interval
$$(2,4)$$
 closed?
No, because $(2,4)^{c} = (-\infty,2] \cup [4,\infty)$
That open
 $\Rightarrow (2,4)$ is not closed.

22. Is the interval [2,4] closed?

Yes, because
$$[2, 4]^{2} = (-\infty, 2) \cup (4, \infty)$$

open f open
 $\Rightarrow [2, 4]$ is closed.

23. Is the interval [2,4) closed? No, $[a,4)^{c} = (-\infty,2) \cup [4,\infty)$ 1 not gen $\Rightarrow [a,4)$ is not closed.

24. Name a non-empty, bounded, closed set that is not of the form [a, b]. $(a, 3) \cap (5,7)$

25.
$$[T/F]$$
 The union of two closed sets is a closed set.
 $zet A, B$ be two closed sets
 $(AUB)^{c} = A^{c} \cap B^{c} \leftarrow open$ since intersection of two open sets is open.
 $qen open$

26. [T/F] The union of finitely many closed sets is a closed set. TLet $A_1, A_2, ..., A_n$ be closed $(A_1 \cup A_2, ..., UA_n)^c = A_1^c, \cap A_2^c, ... \cap A_n^c \leftarrow open$ open open open

27.
$$[T/F]$$
 The union of infinitely many closed sets is a closed set. \vdash
 $Ze \vdash An = (-1, \infty) \leftarrow closed$
 $\int_{n=1}^{\infty} An = (0, \infty) \leftarrow open$

28. [T/F] The intersection of two closed sets is a closed set. $A, B \ closed \implies (AB)^{c} = A^{c} \cup B^{c} \leftarrow open$

29.
$$[T/F]$$
 The intersection of finitely many closed sets is a closed set. T
 A_1, A_2, \dots, A_n closed \Longrightarrow $(A_1 \cap A_2 \dots \cap A_n)^c = A_1^c \cup A_2^c \dots \cup A_n^c \leftarrow open$
for open for f_{pen}

30. [T/F] The intersection of infinitely many closed sets is a closed set. T $z \in I$ be infinite and $\{A_{\alpha}\}_{\alpha \in I}$ closed sets. $\left(\left(\bigwedge_{\alpha \in I} A_{\alpha} \right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c} \leftarrow \text{open} \text{ Union of open sets is always open} \right)$

2 Limit points

Definition 2 A point $a \in \mathbf{R}$ is a limit point of the set $A \subset \mathbf{R}$ if, for every $\epsilon > 0$, the ϵ -ball around a intersects A in a point other than a; that is, if $(A \cap B_{\epsilon}(a)) - \{a\} \neq \emptyset$.

31. [T/F] If a is a limit point of A, then $a \in A$. F2 in the above eq is a limit point of A but $2 \notin A$.

32. [T/F] If a is a limit point of A, then there is a sequence $(a_n) \subset A - \{a\}$ with $a_n \to a$. let a be a limit point of A then for each $n \in \mathbb{N}$ $B_k(\omega) \cap A - \{a\} \neq \emptyset$ claim $\lim_{n \to \infty} \Omega_n = \alpha$, let $\mathcal{E} > 0$ choose No st $\lim_{N_0} \mathcal{E}$ Choose $\Omega_n \in B_k(\omega) \cap A - \{a\}$ then for any $n \ge N_0$, $|a_n - \alpha| < \frac{1}{n} < \frac{1}{N_0} < \mathcal{E}$. 33. [T/F] If there is a sequence $(a_n) \subset A - \{a\}$ with $a_n \to a$, then a is a limit point of TA. for any $\mathcal{E} > 0$ \exists $\mathcal{N} \in \mathbb{N}$ St. $|a_n - \alpha| < \mathcal{E}$ and $a_n \in A - \{a\}$ $= \Rightarrow \alpha_n \in B_{\mathcal{E}}(\alpha) \cap A - \{\alpha\}$ so $B_{\mathcal{E}}(\alpha) \cap A - \{\alpha\} \neq \emptyset$.

34.
$$[T/F]$$
 If the set A is closed, then it contains all its limit points.
The act A^c, we want to show that a is not a limit point for A
since A is closed $\Rightarrow A^c$ is open
 $\Rightarrow \exists \epsilon > 0 \quad \text{st.} \quad B_{\epsilon}(a) \subset A^c$
 $\Rightarrow B_{\epsilon}(a) \cap A = p \Rightarrow B_{\epsilon}(a) \cap A - \{a\} = p \Rightarrow a$ is not a limit
 $35. [T/F]$ If the set B is open, then it contains all its limit points.
 $(2,4)$ 2 is a limit point but $2 \notin (2,4)$.

36.
$$[T/F]$$
 If the set C contains all its limit points, then it is closed. T
We want to show C^e is open. If $a \in C^e \Rightarrow a$ is not a limit point of C
So $\exists \epsilon > 0$ st. $B_{\epsilon}(a) \cap C - \{a\} = \emptyset$, since $a \notin C \Rightarrow B_{\epsilon}(a) \cap C = \emptyset$
 $\Rightarrow B_{\epsilon}(a) \subset C^{c}$ so C^{c} is open $\Rightarrow C$ is closed.

37. [T/F] If the set D contains all its limit points, then it is open. F [2,4] contains all its limit points but [2,4] is not open 38. [T/F] If the set E contains all its limit points, then it is not open. F R contains all its limit points and R is open.

3 Conclusions

Today we learned about:

- 1. Closed sets
- 2. Limit points

Wednesday we will learn about:

- 1. Isolated points
- 2. Compact sets

Upcoming Deadlines:

• This Friday: Homework #6

Questions?