Math 311 Spring 2018

Dr. Hussein Awala

Day #20 Notes: Compactness

March 20, 2018

Contents

1	Finishing Up Closed Sets	2
2	Compactness	3
3	Conclusions	7

1 Finishing Up Closed Sets

Definition: A point x in a set A is called *isolated* if it is not a limit point of A.

Example 1 $A = \{\frac{1}{n} : n \in \mathbb{N}\}.$

Definition: The *closures* of a set A is the union of A and its limit points.

Theorem 1 A set C is closed if and only if every Cauchy sequence in C converges to a limit in C.

2 Compactness

Definition: A set $K \subset \mathbf{R}$ is *compact* if every sequence in K has a subsequence which converges to a limit in K.

How is this different from being closed?

Examples?

Theorem 2 (Heine-Borel) A set $K \subset \mathbf{R}$ is compact if and only if it is both closed and bounded.

Theorem 3 If (K_i) is a sequence of compact sets and $K_i \supset K_{i+1}$ for all $i \in \mathbb{N}$, then $\bigcap_{i=1}^{\infty} K_i \neq \emptyset$.

Theorem 4 A set $K \subset \mathbf{R}$ is compact if and only if every open cover of K has a finite subcover.

3 Conclusions

Today we learned about:

- 1. More on Closed Sets
- 2. Compact Sets

Next Monday we will learn about:

1. Connectedness

Upcoming Deadlines:

- Next Wednesday: Homework #7
- Next Wednesday: Homework #5 Rewrites
- Next Wednesday: Chapter 2 project

Questions?