Math 311 Spring 2018 Dr. Hussein Awala

Day #21 Notes: Compactness and Connectedness

March 23, 2018

Contents

1	Compactness	2
2	Connectedness	4
3	Conclusions	7

1 Compactness

Theorem 1 A set $K \subset \mathbf{R}$ is compact if and only if every open cover of K has a finite subcover.

Relevant Definitions:

Proof:

2 Connectedness

Definition: Two nonempty sets $A, B \subset \mathbb{R}$ are *separate* if $\overline{A} \cap B = a \cap \overline{B} = \emptyset$. A set S is *disconnected* if it can be written as the union of two separated sets. A set S is *connected* if it is not disconnected. Examples: **Proposition 1** A set $A \subset \mathbf{R}$ is connected if and only if, whenever $a, b \in A$, then $c \in A$ for every $c \in (a, b)$.

Proof:

1. Classify the following sets

bounded	closed	(
		$\{5\}$
		(2, 4)
		$\{x \in \mathbf{R} : 2 \le x \le 4\}$
		\mathbf{Q}
		R
		$\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$
		$\{0\} \cup \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$
		\setminus C^*
C	bounded of	closed bounded of

* C here is the Cantor set.

- 2. $[T/F] \overline{\overline{B}} = \overline{B}.$
- 3. [T/F] If $B \subset \mathbf{R}$, then \overline{B} is closed.
- 4. [T/F] If a set $F \subset \mathbf{R}$ is closed, then every Cauchy sequence contained in F has a limit that is also an element of F.
- 5. [T/F] If every Cauchy sequence contained in $F \subset \mathbf{R}$ has a limit that is also an element of F, then F is closed.
- 6. [T/F] A set $A \subset \mathbf{R}$ is compact if it is closed and bounded.
- 7. [T/F] A set $A \subset \mathbf{R}$ is compact only if it is closed and bounded.
- 8. [T/F] A set $A \subset \mathbf{R}$ is connected if, whenever $a, b \in A$, then $c \in A$ for every $c \in (a, b)$.
- 9. [T/F] A set $A \subset \mathbf{R}$ is connected only if, whenever $a, b \in A$, then $c \in A$ for every $c \in (a, b)$.

3 Conclusions

Today we learned about:

- 1. More on Closed Sets
- 2. Compact Sets

Next Monday we will learn about:

1. Functions

Upcoming Deadlines:

- Next Wednesday: Test 2
- Wednesday April 4: Homework #7
- Wednesday April 4: Homework #5 Rewrites

Questions?