MST 112 - Exam 1 - Spring 2018

Calculus I1I
February 27, 2018

Instruction:
e You have 50 minutes to finish this exam.
e No Calculators, phones or laptops are allowed during this exam.

e It is expected that each student during this exam will conduct himself, herself or them-
selves within the guidelines of the WFU Honor Code. All academic work should be
done with the high level of honesty and integrity that the university demands.
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(I) (12pts) Consider the function g(z) = / f(t) dt with the graph of the function f given
1

below.
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We are given the areas : A=10, B=8, C=6 D =5.
a) Find ¢(1), ¢(3) and g(5).
Q=0  g»=-2 g=-3
b) Knowing that g(6) = —7 tghen find the measure of the area F.
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c¢) Find ¢'(4).
JW=0

d) At what value in [1,6] does the function g attain its maximum. What is the
maximum value?
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e) On what interval(s) is the function g increasing?

on (@32) amd (45)

f) On what interval(s) is the function g concave down?

on (1, 15), (&5,35) and (45, 55)
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(IT) (15pts, 5 each) Evaluate the following integrals:

a) /cos4(x) dr = /((0527_ );{X — \/(CQS(iX)J- /)lyx = L%f@ZQX) + Qs+ | du

= L j s+l dosex) + | Ix
Y 2

W) ., Qs + F I

i
%

:{‘_( gn() 4 @ +%_9 + C

21n(]n(x2) Dok w = W) = 9 M) e — wed
b)/ dx
" 2
L{
=1 J Dl S w= (i) w‘:__\u:
- Z UI: l V= W
y Y
w| — [Ludw
ol o

%( 4 D) — 2 Dna) — u];)

1
ya

( 9 Itz - @ dala) — (L\-;))

L(6m@-2) = 30ma) -1



u=0Cc

c) /1 ze® sin (er) dx du = &xe,);Lc:\o(
’ du = x& dx
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(III) (5pts) Let g(x) = /

z+1

sin(t) dt for 0 < x < 7/2.
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Use the Fundamental Theorem of Calculus to find the derivative ¢'(x). Simplify your

alnswer.
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(IV) (6pts) Consider the shaded area shown below, bounded by the function f(z) =
sin®(z)y/cos3(z) and the z — awis between z = 0 and z = 7/2. Find the volume
that is generated by rotating the shaded area around the z — axis.
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(V) (5pts) Find the area bounded between the graph of the function f(z) = —2%+ 322 —2x

®)

and the function g(x) = —sin(mz) for 0 < z < 2. (See the graphs of the functions in
the figure).
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(VI) (7pts) We want to find the volume of a solid whose base is half a circle (see the shaded
area), and the cross sections perpendicular to the y — azis are squares.

y
1.0
a) Find the area of each individual cross section.
(your answer might be in terms of = or y)
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b) Use part (a) to find the volume of this solid.

To Pmd dho Wume o G‘%ne@l
b onlgrati frm L 0 L, e oren 4

Jhe s sechon
1

_J"—Af% - 9 35]’}



