Math 311 Spring 2018 Dr. Hussein Awala

Day #23 Notes: Continuity

April 2, 2018

Contents

1	Definition of a Functional Limit	2
2	Worksheet	3
3	Conclusions	8

1 Definition of a Functional Limit

Definition: Let $f : \mathbf{R} \to \mathbf{R}$ and $x_0 \in \mathbf{R}$. We say that $\lim_{x \to x_0} f(x) = L$ if, $\forall \epsilon > 0, \exists \delta > 0$ so that whenever $0 < |x - x_0| < \delta$, it follows that $|f(x) - L| < \epsilon$. **What does this mean?**

Definition: Let $f : \mathbf{R} \to \mathbf{R}$ and $x_0 \in \mathbf{R}$. We say that f is continuous at x_0 if, $\forall \epsilon > 0$, $\exists \delta > 0$ so that whenever $0 < |x - x_0| < \delta$, it follows that $|f(x) - f(x_0)| < \epsilon$.

2 Worksheet

1. Draw a picture of this definition. In Figure 1, demonstrate that f is continuous at x = 1. That is, let c = 1 and let $\epsilon = 0.25$. Draw dashed lines at $y = f(1) \pm \epsilon$, and then draw dashed lines for $x = 1 \pm \delta$, for an appropriate value of δ .

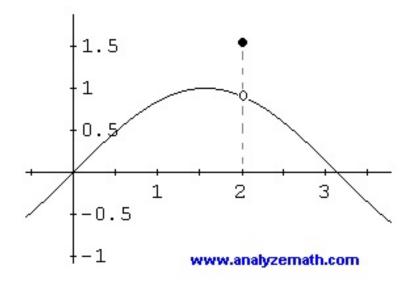


Figure 1: A function that is continuous at x = 1.

2. Draw another picture of this definition. In Figure 2, demonstrate that f is not continuous at x = 2. That is, let c = 2 and let $\epsilon = 0.25$. Draw dashed lines at $y = f(2) \pm \epsilon$, and then conclude that there is no corresponding appropriate value of δ .

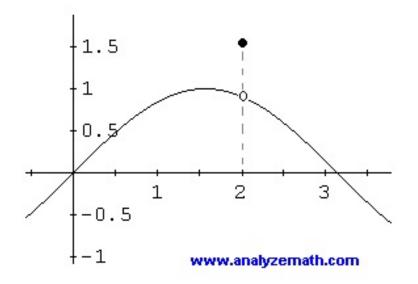


Figure 2: A function that is not continuous at x = 2.

3. [T/F] If
$$f(x) = 4x + 8$$
, then $\lim_{x \to 3} f(x) = 20$.

4. [T/F] If
$$f(x) = 3x - 5$$
, then $\lim_{x \to 2} f(x) = 20$.

5. [T/F] If
$$f(x) = 3x - 5$$
, then f is continuous at $x = 2$.

6. [T/F]
$$\lim_{x \to 2} (x^2 + x - 1) = 5.$$

7. [T/F] The modified Dirichlet function h given by

$$h(x) = \left\{ \begin{array}{ll} x & \quad x \in \mathbf{Q} \\ 0 & \quad x \not \in \mathbf{Q} \end{array} \right.$$

is continuous at x = 1.

8. [T/F] The modified Dirichlet function h is continuous at x = 0.

Proposition 1 Given $f : \mathbf{R} \to \mathbf{R}$ and let $c \in \mathbf{R}$. Then $\lim_{x \to c} f(x) = L$ iff $\lim_{n \to \infty} f(x_n) = L$ for every sequence $(x_n) \in \mathbf{R} - \{c\}$ with $x_n \to c$.

How is this useful?

1. Algebraic Limit Theorem

2. Divergence Criterion

3 Conclusions

Today we learned about:

- 1. Functional Limits
- 2. Continuity

Wednesday we will learn about:

1. More on Limits and Continuity

Upcoming Deadlines:

- Wednesday: Homework #7
- Wednesday: Homework #5 Rewrites

Questions?