

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

1

C
Programming

The Programmable Box!

with

Programming made fun

Ages 10+

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

2

Copyright © 2014, 2015 by Your Inner Geek™, LLC. All rights reserved. Except as permitted under the United States

Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written permission of the publisher.

The non-commercial, educational use of this material is permitted when used in conjunction with Geek Packs™

manufactured by Your Inner Geek™, LLC.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every

occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark

owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have

been printed with initial caps.

All trademarks or copyrights mentioned herein are the possession of their respective owners and Your Inner Geek™,

LLC makes no claim of ownership by the mention of products that contain these marks.

“Arduino” and “Nano” are trademarks of the Arduino Team. “Geek Pack™”, “Electronics N Programming Series™”,

and “Program-It Series™” are trademarks of Your Inner Geek™, LLC.

Information has been obtained by Your Inner Geek™, LLC from sources believed to be reliable. However, because of

the possibility of human or mechanical error by our sources, Your Inner Geek™, or others, Your Inner Geek™, LLC

does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors

or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and Your Inner Geek™, LLC and its licensors reserve all rights in and to the work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent.

You may use the work for your own noncommercial and personal use and educational institutions may use this
material in any non-commercial manner provided it is in association with Geek Packs™ manufactured by Your Inner
Geek™, LLC; any other use of the work is strictly prohibited.

THE WORK IS PROVIDED “AS IS.” YOUR INNER GEEK™, LLC, AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Your Inner Geek™, LLC and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither Your Inner Geek™, LLC.
nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom. Your Inner Geek™, LLC has no responsibility for the content of
any information accessed through the work. Under no circumstances shall Your Inner Geek™, LLC. and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages.
This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

3

1 CONTENTS

2 Welcome ... 5

2.1 The Geek Pack™: Electronics N Programming Series .. 5

2.2 Tools you will need while completing the Electronics N Programming Series 6

2.3 How this curriculum is structured ... 6

3 Learning objectives of this Geek Pack™ .. 7

3.1 C++ .. 7

3.2 Arduino ... 7

3.3 Electronics ... 7

4 Let’s get started .. 8

4.1 The Arduino Nano ... 8

4.2 Setting up the C++ development environment on your computer .. 8

4.3 Connecting your Arduino for the first time .. 9

5 Intro to C/C++ .. 12

5.1 Statements .. 12

5.2 Comments ... 12

5.3 Data types ... 13

5.4 Declaring variables .. 13

5.5 Assigning a value to a variable .. 14

5.6 C/C++ procedures and functions provided specifically for the Arduino 15

5.7 Chapter review .. 19

6 Understanding the Blink Program... 21

6.1 Line-by-line analysis of “Blink” .. 21

6.2 A simple modification to the Blink program ... 23

6.3 Using the “if” statement to modify the Blink program ... 24

6.4 Using the “if else” statements for more precise control .. 28

6.5 Chapter review .. 29

7 Assembling the Printed Circuit Board ... 31

7.1 Component layout on the PCB .. 31

7.2 Soldering the battery clip .. 31

7.3 Solder the resistors ... 32

7.4 Installing the On/Off Switch .. 32

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

4

7.5 Adding the momentary contact push button Switch .. 33

7.6 Determine the color of each LED .. 33

7.7 Soldering the LED’s ... 34

7.8 Installing the potentiometer and buzzer .. 35

7.9 Testing the board .. 35

8 Writing programs using the buzzer and push button switch .. 36

8.1 Schematic diagram for the buzzer and push button switch ... 36

8.2 Programming - How do we control the buzzer ... 36

8.3 Writing a program to play tones on the buzzer .. 37

8.4 Playing a musical scale on the buzzer ... 38

8.5 Constants vs. variables – using the #define compiler directive .. 41

8.6 Create a separate program to play the musical scale ... 44

8.7 Play the scale ONCE whenever we press the NO MC Switch (the Button) 46

8.8 Writing the switchPushed() function .. 50

9 Communications between your computer and the Nano .. 52

9.1 Having your programs write to your computer screen .. 52

9.2 Having your programs receive input from your keyboard ... 53

10 Programming the six colored Light Emitting Diodes (LED’s) ... 56

10.1 Starting to program the six colored LED’s... 58

10.2 Two Dimensional Array and Nested “for” loops ... 61

10.3 Three Dimensional Array and Button Push ... 64

11 Using the ultra-sonic range detector .. 68

11.1 Determine distance and print to screen ... 69

11.2 Using distance to create a bar graph with our six colored LED’s .. 72

12 Challenge Programs .. 76

12.1 Improving the switchPushed() function .. 76

12.2 Vary the intensity of the LEDs using Pulse Width Modulation (PWM) 77

13 Appendix: .. 79

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

5

2 WELCOME

2.1 THE GEEK PACK™: ELECTRONICS N PROGRAMMING SERIES
Thank you for purchasing this electronics and computer programming educational product. This is the

most “hands-on” of our two series of Geek Pack™:

 Electronics N Programming Series where you solder the electronic components to a Printed Circuit

Board (PCB) and then program the micro controller.

 Programming Series where the Programmable Box comes completely assembled and tested – no

soldering is required – just plug into your computer and start programming.

Your Geek Pack™ contains the following components:

 3D printed case + cover

 Printed Circuit Board (PCB)

 Arduino compatible Nano microcontroller

 Ultra-sonic range detector

 10K or 25K potentiometer, nut, knob

 Business card sized CD with manual and programs

 USB-mini USB cable

 9v battery clip with wires

 Single Pole Single Throw (SPST) toggle switch

 6 LEDs (white, green, blue, yellow, orange, red)

 Buzzer

 SPST Momentary Contact switch with round colored push button

 Two dual color (red-blue) LED’s

 8 x 470 ohm resistors

 24” solder

 6” solder wick

Contained in
anti-static plastic
bag

The microcontroller and

range detector come

soldered to the PCB

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

6

2.2 TOOLS YOU WILL NEED WHILE COMPLETING THE ELECTRONICS N PROGRAMMING SERIES
You really only need tow tools: small diagonal cutters and a soldering iron. We provide the solder, and

solder-wick (just in case you need to remove a device), and all the components requried to complete

construction and program.

2.3 HOW THIS CURRICULUM IS STRUCTURED
In the Electronics and Programming Series are going to move between four distinctly different activities:

1. Learning about electronics devices

2. Building circuits with our electronic devices (PCB assembly)

3. Learning about software design and the C/C++ programming language

4. Writing programs using the C++ language that can interact with the electronic we have

constructed.

We try to move from activity to activity fairly quickly so that before you can get bored, you are on to the

next activity. Concepts are introduced just before they are used so they can remain fresh in your mind.

For example, rather than introducing a long list of data types, we introduce integer (int) data type by itself

first, just prior to our using it in a program.

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

7

3 LEARNING OBJECTIVES

3.1 C++
 How to set up your C++ development library and connect to your device

 The basic components of every C++ Arduino program

 System functions vs. user defined functions

 Declaring and defining a function vs. executing a function

 Naming conventions that make things less confusing

 Constants and variables

 Declaring vs. initializing variables

 Return values and void

 Data types: Integer, BOOLEAN, long, void, volatile

 Control flow (if, else, for)

 Collecting input from the keyboard, printing output to a screen

 Arrays (one, two, and three dimensional arrays)

 Arithmetic operators, comparison operators

 Interrupts

3.2 ARDUINO
 Analog and digital pins

 Input and output pins

 Defining a pin as either input or output

 Setting the state of an output pin High or Low

 Reading the state of an input pin

 Sketches and shields

 Arduino functions: setup(), loop(), if, if…else, for, pinMode(), digitalWrite(), digitalRead(),

analogRead(), analogWrite(), tone(), noTone(), delay(), and more…

 How to enable and handle interrupts

3.3 ELECTRONICS
 Basic electricity concepts E=I/R

 Resistors, what they are and how to read their value

 LED’s – what they are, how to connect them

 Drawing and reading schematics

 How to wire switches to the Arduino so you can detect their state

 Connecting a miniature speaker/buzzer so you can play notes using your Arduino

 Ultra-sonic range detector: theory and practice, how to wire it and read distance

 Potentiometers: what they are and how to wire them to the Arduino so you can sense their

position

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

8

4 LET’S GET STARTED

4.1 THE ARDUINO NANO
The Arduino project has created an entire family of open sourced micro controller products as well as an

Integrated Development Environment (IDE) for that family. The entire project is open sourced which

means it is available to anyone and numerous manufacturers make Arduino compatible products so the

prices are very competitive. Two of the most popular Arduino boards are the Uno and the Nano. In order

to keep the size of the box small enough to hold in your hand, we chose the Nano as the processor for this

Geek Pack™.

4.2 SETTING UP THE C++ DEVELOPMENT ENVIRONMENT ON YOUR COMPUTER
The first thing we need to do is to download and install the Arduino Integrated Development Environment

(IDE). This is a visual environment which you will use to write and debug your code. You will also use this

environment to transfer your code – in Arduino readable form – to your Arduino microcomputer. In our

case, this will be the Nano processor.

After you transfer your code to the Nano, it will run (execute) on the Nano but you can use the IDE to have

your program write information to a screen on your computer. This will be useful in making sure that your

program is doing what you intended it to do.

 The Arduino organization (http://Arduino.cc/) has a wonderful website and with thousands of people all

over the world contributing programs, tips, and ideas for stuff to build, you will certainly want to spend

some time there. Complete, up to date, instructions for installing the Arduino IDE can be found on this

site but the process as of the time of this writing is as follows:

Once you navigated to the Arduino home page, you will see something like the screen below. Click on the

“Download” tab so that you can select and download the Arduino IDE.

Figure 1 Nano

Figure 2 Uno

http://arduino.cc/

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

9

After selecting “Download” you will be asked to choose between Windows, Mac OS X, or Linux

environments. Select your environment, download, and install the IDE.

4.3 CONNECTING YOUR ARDUINO FOR THE FIRST TIME
When the download is complete, plug one end of the USB cable into the Nano and the other end to a USB

port on your computer. Verify that the “power” LED is on (RED) and that the “pin 13 LED” is blinking on

and off. We ship the Nano pre-loaded with the blink program so this program will begin to run and blink

the LED as soon as power is applied via the USB cable.

Next, navigate back to the Arduino home page and select Learning->Getting_started and then click

“Arduino Nano” from the list of devices on the right hand side of the page. When following the instructions

found there, your device is the Nano 3.0/ATmega328. Depending on what operating system and what

version, you may not need to do anything except launch the Arduino IDE.

Launch the IDE using the Arduino icon and we are ready to begin.

Your IDE screen should look something like the image below (Windows).

Figure 3 Nano with power LED lit

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

10

Select Tools->Board->Arduino Nano w/ATmega328. Now select Tools->Serial Port and then select the

serial port you have plugged into.

Now the bottom right of your IDE screen should say something like “Arduino Nano w/ATmega328 on

Com5” or whatever Com port you connected to.

So now you should have:

 Your Arduino Nano plugged into your computer

 You should have the “Power LED” illuminated on your Nano board indicating it has power

 Your IDE is launched and is configured for the Nano and the correct USB port.

Before we start writing our own programs (called Sketches in Arduino land) let’s go through the steps to

get an existing program ready and uploaded to the Nano.

In the Arduino IDE, select Files->Examples->0.1_Basics->Blink. This program will blink the built in LED

contained on the Nano board ON for one second and then OFF for one second. This LED is connected to

pin 13 on the Nano and is sometimes called the pin 13 LED.

We will go over this program line-by-line shortly but for now we just want to go through the steps of

Compiling (called Verify in Arduino land) the code into a form that is understandable by the Nano and

then Uploading the resulting code to the Nano and running it.

This will give us positive confirmation that we were able to do all the steps required to successfully compile

(verify), upload, and execute our code on the Nano processor.

On the top left of the IDE screen you should see a “check mark”. If you hover your mouse over it a text

line should appear saying “Verify”. Clicking this Check Mark will compile (verify) your code into a form that

can be understood by the Nano.

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

11

Click the Check Mark now and the bottom window of the IDE should say something like:

If there had been any errors, they would be shown in this bottom window (in color) but since this is a

supplied program, there should be no errors.

Next to the Check Mark is a “Right Arrow”. Clicking on the “Right Arrow” will Compile (Verify) and then

Upload the Program (Sketch) to the Nano. Click the “Right Arrow” now and watch the LED’s on the Nano.

The Transmit and Receive LED’s should blink on and off as the

program is being Uploaded, the Power LED will stay on, and

after the program has been Uploaded, the LED to the Right

(or Below) the Power LED should blink ON for one second and

then OFF for one second.

Before we move on, let’s prove to ourselves that we really are running the Blink program on the Nano.

The way we will do that is by making a change to the program, uploading it to the Nano, and seeing the

change to the blinking LED.

Look at the Blink Program (Sketch) and find the two lines that say “delay(1000)”. The “delay(value)

function tells the Nano to wait (delay) 1000 milliseconds (ms). Since a ms is 1/1000 of a second, delaying

a 1000 ms is the same as delaying 1 second.

Let’s change both of those lines to say: delay(2000);

Click on the “Right Arrow” button to compile (verify) and Upload. And now the LED should blink ON for 2

seconds and the OFF for two seconds.

There, we did it! We made a change in the program, Uploaded and ran the program and it did what we

wanted. Now let’s learn some things about C++ and what each line of the Blink program is doing.

Receive

Transmit

Power

Pin 13 LED

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

12

5 INTRO TO C/C++

As we mentioned previously, the Arduino web site has a wealth of information. For example, if you go to

http://arduino.cc/ and then select Learning->Reference you will see the Arduino Language Reference.

Although it may appear somewhat intimidating at the moment, keep referring to it and in no time at all it

will make complete sense to you.

5.1 STATEMENTS
Programs (Sketches) in C++ are comprised of “digital sentences” called Statements. A statement in

computer language is like a sentence in English – there are grammar rules defining a proper English

sentence and likewise there are rules for writing a C++ Statement.

In English, a sentence ends with a period (.) and in C++ a statement must end in a semicolon (;). You can

continue a C++ statement on more than one line if you need to but you must end the statement with a

(;).

5.2 COMMENTS
It is quite helpful to add Comments to your code so that you or someone else can understand what you

were trying do if you come back to make changes later on. Comments are for humans – not for the

computer – they help humans read the code but the computer skips right over them.

In C++ you can start and end Comments in two different ways. If you insert a “slash asterisk” (/*) in your

code, then EVERYTHING after that is a Comment until the computer sees “asterisk slash” (*/).

For Example:

The second way to identify a Comment is with “slash slash” (//). This tells the computer that THE REST OF

THIS LINE is a Comment.

For Example:

A Statement must end with a semicolon (;)

/*

All of this is a comment

 */

Here is a statement; // this is a comment

http://arduino.cc/

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

13

5.3 DATA TYPES
In a computer, information is represented as Binary Digits (bits). A Binary Digit (Number) can only take on

one of two values: zero or one, high or low, +5 volts or zero volts. Data that can only take on two values

(HIGH/LOW, true/false, 1/0) are called “boolean” data type and CAN be represented with a single bit1.

The characters (char) that are on this page are generally represented in a computer using what is called

the ASCII code (American Standard Code for Information Interchange) which requires 8 bits to represent.

A collection of 8 bits is called a byte and is the most common unit of computer storage.

Although a single byte is all that is needed to represent a character (char), multiple bytes are required to

represent numbers. The more accurate we want the number to be, the more bytes will be required to

store and represent it.

A third very popular data type is the integer (int) data type. An integer is a whole number (1, 2, 5, 100)

not a real or floating point number (1.2, 5.6, 8 ½, 3.1415).

Before we can use a computer to store and manipulate data, we need to inform the computer what data

type we intend to use so that the proper amount of memory can be reserved to store our data. It takes a

lot more memory to store a high precision floating point number than it does to store a boolean variable

that can only take on two states: true and false.

In this Knowledge Pax, we will be using the following data types2:

This last type, void, is used to indicate that no memory needs to be reserved because we are not going to

store anything. (This will make more sense as we progress.)

5.4 DECLARING VARIABLES
Variables are the lifeblood of computer programming. We use variables anytime we need to keep track

of something that will change.

For example, if we want to do some task 10 times, we need a counter variable to keep track of how many

times we have already done the task. Since the value of such a counter would only need to take on values

of 1, 2, 3,…10 we would want the variable to be a int data type.

Before we can use this variable, we have to declare its name and that its data type is going to be int. We

do that as follows:

1 Although a boolean variable CAN be represented using a single bit, in most cases an entire 8 bit byte is used.
2 There are many more data types but these are the ones we will be using in this Knowledge Pax.

Data types: boolean, int, char, void

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

14

We should stop at this point and talk about “programming conventions”. Programming conventions are

not rules. Your program will still work fine if you don’t follow the conventions BUT other people will have

a harder time reading your code.

For example, convention says that a variable name should be descriptive and can use more than one word

if required with no spaces between the words.

Our variable “taskCounter” clearly tells people that it is a Counter and it is counting the number of times

a task is completed.

Convention also dictates that the first letter of all words except the first be Capitalized so that words stand

out. See how taskCounter is easier to read than taskcounter?

Likewise, if we wanted a variable to indicate that the task completed successfully or not we could declare:

The four data type names we just introduced (boolean, int, char, void) are called Language Keywords.

They are reserved words and can-not be used by the programmer for other purposes. Also note that CASE

MATTERS when using these words. These words are all lower case.

Convention also says that CONSTANTS are named using all CAPITAL LETTERS so BUZZERPIN would be

assumed to be a constant whereas buzzerPin would be assumed to be a variable that can change.

5.5 ASSIGNING A VALUE TO A VARIABLE
So far we have picked a name for some variables and determined what data type they should be but we

have not assigned a value to them. The compiler can reserve memory for them since it knows their type

and hence how much memory they require. And the compiler has assigned a name (our variable name)

for that memory location so it knows where to put a value when it gets one. Let’s look at how we can

assign a value to a variable.

In computer programming, it is important to assign an initial value to all variables. The act of Declaring a

variable and data type DOES NOT initialize the variable to any particular starting value.

// declare the variable taskCounter as an int

int taskCounter;

boolean success; // true or false

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

15

The easiest way to initialize a variable is to do so at the time of Declaration. For example3:

The first statement Declares that the variable named taskCounter is an int data type and ALSO Assigns the

value of 0 to it using the Assignment Operator “=”.

There is a very important distinction between the equals sign in math and the Assignment Operator (=) in

C++.

In math, the equation:

would not make any sense. There is no value of “i” where the statement would be true.

In C/C++ (and other programming languages), the statement:

makes perfect sense and is quite useful. In C/C++, this statement says:

“Perform the calculation on the right hand side of the Assignment Operator (=) and store the result in the

variable on the left hand side of the Assignment Operator.”

In other words, the computer will take the value in the memory location named “i”, add “1” to it, and put

it back in the same memory location named “i”.

5.6 C/C++ PROCEDURES AND FUNCTIONS PROVIDED SPECIFICALLY FOR THE ARDUINO
Before we move on to understanding each line of the “Blink” program, there are a few Arduino specific

items we need to cover.

Throughout this Geek Pack™, we will be referring to Procedures and Functions interchangeably. Both

contain one or more Statements, may require input variables/parameters, and may return a value when

they complete their execution. Although there are some subtle differences between a Procedure and a

Function, those distinctions will be covered in a more advanced Geek Pack™.

3 Note: Spaces, Tabs, white space are all ignored and can be used by the programmer to make the code more
readable.

int taskCounter = 0;

boolean success = false;

i = i +1

i = i + 1;

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

16

In Arduino C++, every Program (Sketch) must contain two Procedures:

The “setup()” procedure is used to do things that only need to be done once. For Arduino programmers,

setting up the I/O (Input/Output) pins as either Input or Output would be a good example of something

that only needs to be done once, at the start of the program.

The second procedure, “loop()” does just as the name implies; the microcontroller continuously executes

the statements contained within the “loop()” procedure. When the end of the “loop()” procedure is

reached, it starts over again at the top4.

We saw earlier that Variables need to be Declared and Assigned an initial value (initialized). In the case of

Procedures, they also have to be Declared and instead of initialized, they need to be defined (e.g. the

Statements that are to be executed within the Procedure need to be included as part of the Procedure

Definition. Although these two activities CAN be performed separately (e.g. you can Declare a Procedure

now and Define it later), in this Geek Pack™, we will stick to performing both operations in a single step –

much as we did for Declaring and Initializing our variables earlier.

In order to Declare a Procedure, the programmer must specify what if any value is returned (using the

Data Types we previously discussed), the name of the Procedure must be provided, and any input

Parameters must be specified. In the case of the two Procedures we are discussing (setup(), and loop()),

no values are returned (void) and no input Parameters are allowed. For example in order to Declare AND

Define the Procedure “setup()”, we could do the following:

4 It is possible to end the looping and Exit the program but we will consider that possibility in a future Knowledge
Pax.

setup() loop()

void setup() {

 /*

The Definition of “setup()” consists of all

the Statements between the two curly

braces “{“ and “}”

 */

 statementOne;

 statementTwo;

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

17

The name of this Procedure is “setup”. We can tell that it is a Procedure and not a Variable because after

the name is has an opening “(“ and closing “)” parenthesis, e.g. setup(). The fact that there is nothing

between the two parentheses indicates that this Procedure does not have any input Parameters.

The use of the Language Keyword “void” in front of the Procedure name indicates that it returns no value.

The Procedure Definition begins with the opening curly brace “{“ and ends with the closing curly brace

“}”. Notice that there is no semicolon “;” after the closing curly brace. This is because it is NOT a Statement.

This is a Procedure Declaration and Definition, not a statement.

If this was some other Procedure that we were Declaring and Defining, it could accept input Parameters

AND could return a value. For example:

Does the following;

 Declares the Procedure called “myProcedure”

 Indicates that myProcedure returns a boolean (true/false) value

 Accepts two input parameters: an int called parameter1 and a char called parameter2

In addition to setup() and loop(), there are a number of other definitions that are provided in the Arduino

version of C++ as indicated on the Arduino Language Reference discussed earlier.

(http://arduino.cc/en/Reference/HomePage)

You should bookmark this page in your browser and refer to it often. It lists all of the predefined key

words, internal functions and what parameters they accept/return and is quite valuable while writing your

code.

Let’s look at the center column “Variables”, the first item “Constants”.

Many times we either want to set the value of a variable equal to a constant such as HIGH, LOW, true,

false, or test to see if the variable has that value. For this reason, the Arduino version of C++ includes the

following Constants Definitions which the programmer can use simply by typing their name5:

5 The | symbol means “or” in this context.

boolean myProcedure(int parameter1, char parameter2) {

 statement1;

 statement2;

 statement3;

}

http://arduino.cc/en/Reference/HomePage

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

18

Notice the right hand column marked “Functions”. Since the Arduino microcontroller family contains

many specialized I/O (Input/Output) pins, Functions (Procedures) have been included to control these

pins. For the “Blink” program example, we will be using two of these hardware control functions: pinMode

and digitalWrite. The pinMode function is used to specify that a particular pin should be programmed to

act as an INPUT or OUTPUT (also INPUT_PULLUP to be covered later). The digitalWrite function is used to

write either a HIGH or LOW to a pin that has been previously been programmed to be a digital output pin.

pinMode(pin, mode)

where:

- “pin” can be any valid Digital pin number for the Ardunio microcontroller being used (pin = 13

specifies the internal LED)

- “mode” can be INPUT, OUTPUT, or INPUT_PULLUP which connects the input to an internal

pullup resistor tied to 5 volts

Since “LED_BUILTIN” is defined as part of the Arduino C++ language, we could accomplish the same thing

with:

Now let’s move on and cover the digitalWrite function:

digitalWrite(pin, value)

where:

-“pin” can be any valid digital pin number for the Ardunio microcontroller being used

 - “value” can be HIGH or LOW

HIGH | LOW // “1” or “0”, 5v or 0v

INPUT | OUTPUT | INPUT_PULLUP // INPUT_PULLUP will be

 // covered later in this

 // Geek Pack™

LED_BUILTIN // digital pin number for the built in LED = D13

true | false

int led = 13; // the internal LED connected to pin D13

pinMode(led, OUTPUT); // make pin D13 an output pin

pinMode(LED_BUILTIN, OUTPUT); // make pin D13 an output pin

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

19

5.7 CHAPTER REVIEW

5.7.1 Questions:

Q1. What does a Program consist of?

Q2. If you want to make a note within the code to make it easier to read later, what is that called

and how do you do that?

Q3. How would you declare and initialize a variable named “loopCount” that would only take on

the values 1, 2, 3 and initialize it to the value of 1?

Q4. How would you declare and initialize a variable called “success” that can only take on the

values “true” and “false” and initialize it to the value “false”?

Q5. How would you declare and initialize a variable called “firstInitial” and initialize it to the value

of ‘a’?

Q6. What are the two procedures that are required in every Arduino C++ program?

Q7. When you are defining a procedure, what specifies the start and end of the definition?

Q8. How would you declare and define a procedure named “myName” that accepts two input

parameters, a char named myChar and an int named myInt, and returns a boolean return

value?

Q9. How would you set pin 13 to be an OUTPUT pin and set it to the HIGH value?

pinMode(LED_BUILTIN, OUTPUT); // make pin D13 an output pin

digitalWrite(LED_BUILTIN, HIGH); // make pin D13 go to the HIGH state (5v)

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

20

5.7.2 Answers:

A1. A Program consists of a collection of digital sentences called Statements. Each Statement may

span one or more lines but must end in a semicolon (;).

A Statement can be Declaring a variable

int i;

or can be Assigning a value to a variable

i = i + 1;

or can be calling (invoking) a previously defined Function (Procedure)

letsCallThisFunction();

A2. Making a note within a program is called adding a Comment or Commenting. There are two

ways to do this in C++.

// the rest of this line is a comment

Or,

/*

Everything between the /* and the */ is a comment

*/

 A3. int loopCount = 1;

 A4. boolean success = false;

 A5. char firstInitial = ‘a’;

A6. setup(), and loop() are required in every Arduino C++ program. Neither procedure returns any

value (void).

A7. The start of a procedure definition is indicated by the open curly brace “{“ and the end is

indicated by the closed “}” curly brace.

A8. boolean myName(char myChar, int myInt) {

Statements;

}

A9. pinMode(LED_BUILTIN, OUTPUT);

digitalWrite(LED_BUILTIN, HIGH);

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

21

6 UNDERSTANDING THE BLINK PROGRAM

 Open the development environment by clicking on the Arduino IDE icon.

 Navigate to the blink program: File->Examples->01.Basics->Blink

6.1 LINE-BY-LINE ANALYSIS OF “BLINK”

We recognize the items that are in light grey text as all being comments so let’s focus on the actual code.

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:

void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:

void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

22

Just below the comment that talks about pin 13 being connected to an LED on the Arduino boards is the

Statement:

We recognize this as a Statement since it ends with a semicolon (;). We also know that this is Declaring

the Variable “led” to be a Data Type “int” and we see that in addition to Declaring “led” it is also Initializing

it to the value of 13.

Notice that the declaration of “led” is done OUTSIDE of any procedure. A variable that is declared outside

of any procedure is GLOBAL and can be used by any procedures within the program. If we had declared

“led” inside the setup() procedure, we would have received an error like the following when we tried to

compile (verify) because the loop() procedure would not be aware of the variable “led”.

Next we see (in addition to more comments) the Declaration AND Definition of the Procedure “setup”.

The Declaration part: void setup() declares that the procedure setup() returns no value (void) and accepts

no input parameters setup().

The setup() procedure definition only has one statement in its body (between { and }) and that this

statement sets the mode of pin 13 (the pin with the LED) to OUTPUT. Since this would only need to be

performed once, this statement is placed in the setup() procedure.

We know that every Arduino C++ program has at least two procedures: setup() and loop(). The next block

of code we encounter is declaring and defining the loop() procedure.

void setup() {

 pinMode(led, OUTPUT);

}

int led = 13;

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

23

This procedure simply turns on the LED attached to pin 13, waits one second, turns off the LED and waits

one second. This action is repeated indefinitely until power is removed from the Nano.

6.2 A SIMPLE MODIFICATION TO THE BLINK PROGRAM
Let’s make some modifications to this program before moving on. Let’s have the LED stay on a bit longer

each time the loop() procedure executes – say 1/10 of a second each time through the loop. The length

of time that the LED stays ON is governed by the first delay(1000); statement – the one right after

digitalWrite(led, HIGH);

In order to make that delay increase in value by 1/10 of a second each time through the loop, we need to

change the “1000” into a variable and then increment the value of that variable by 100 (1/10 sec) each

loop.

Lets name the variable onTime and we will need to declare and define it outside of any procedure so lets

add the following statement right after declaring “led”.

int onTime = 1000;

Now we need to add 100 to onTime every time through the loop. We could do this anywhere after we use

it the first time in the loop but let’s just have this be the last statement before we start the loop over

again:

onTime = onTime + 100;

Now our program would look as follows:

void loop() {

 digitalWrite(led, HIGH);

 delay(1000);

 digitalWrite(led, LOW);

 delay(1000);

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

24

Now verify and upload this sketch to the Nano using the “right arrow” on the IDE. Watch the pin 13 LED

and notice that it is staying ON for a longer and longer time. If we let the sketch continue to run, the LED

would continue to stay on longer and longer each time through the loop.

6.3 USING THE “IF” STATEMENT TO MODIFY THE BLINK PROGRAM
What if we wanted to modify the program such that:

- The LED starts by being ON for a period of time onTime = 1000ms

- The LED is always OFF for a period of time offTime = 1000ms

- Each time through the loop, the period of onTime is increased by increaseTime = 200ms UNTIL

onTime reaches a value of 3000ms. After reaching onTime = 3000ms and the LED has been on for

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
int onTime = 1000; // onTime variable will be used to modify the ON delay time

// the setup routine runs once when you press reset:

void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:

void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(onTime); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
 onTime = onTime + 100; // increase ON time by 1/10 of a second
}

Figure 4 Ch_6_2_blink_longer

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

25

3000ms, the next time through the loop, change onTime to 1000ms and start increasing onTime

all over again.

So how would we do this?

Give this some thought before continuing. Some of this you may already be able to do. For

example, from the text above we know we should add the following statements (outside of any

function).

But how do we determine when onTime = 3000ms? For this we need to introduce the concept of

Control Flow and one of the Control Structures that we can use to perform different actions based

upon the value of a variable.

The Control Structure we are going to learn first is the “if” statement and it’s close relative the

“if”, “else” statement.

The basic syntax for an “if” statement is as follows:

The “test” can take many forms. Since you are testing to see if the “test” is true, you can test a boolean

variable simply by placing the name of the boolean variable between the ().

If(test) {

// if the test is true, execute these statements

}

/* if the test is false, do not execute the statements

between { and }

*/

int offTime = 1000; // set offTime to 1 second

int OnTime = 1000; // initial value of onTime

int increaseTime = 200; // increment value of 200ms

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

26

You can also compare two variables and test if they are:

x == y (true if x is equal to y)
x != y (true if x is not equal to y)
x < y (true if x is less than y)
x > y (true if x is greater than y)
x <= y (true if x is less than or equal to y)
x >= y (true if x is greater than or equal to y)

Note that “==” is the TEST to SEE if two variables are equal. This is completely different than the “=”

assignment operator that ASSIGNES the value on the right to the variable on the left.

Let’s look at the code that turns the LED on and off:

Your completed code should look something like what is shown on the next page. Verify and upload your

program and confirm that the LED stays on longer and longer until it reaches three seconds and then starts

back at one second.

boolean success = true;

if(success) {

// execute these statements if success is true

}

digitalWrite(led, HIGH); // turn the LED on
delay(onTime); // wait for a onTime ms

digitalWrite(led, LOW); // turn the LED OFF
delay(offTime); // wait for a offTime ms

onTime = onTime + increaseTime; // increment onTime by increaseTime ms

// since we just incremented onTIme, if it had been 3000, it would now be > 3000

If(onTime > 3000) {
 onTime = 1000;
}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

27

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
*/

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

int onTime = 1000; // initial value of time to stay ON
int offTime = 1000; // initial value of time to stay OFF
int increaseTime = 200; // increase onTime by 200 ms each time through the loop

// the setup routine runs once when you press reset:

void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:

void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(onTime); // wait for onTime ms
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(offTime); // wait for offTime ms

 onTime = onTime + increaseTime; // increment onTime by increaseTime ms

 if(onTime > 3000) {
 onTime = 1000;
 };
}

Figure 5 Ch_6_3_blink_with_if

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

28

6.4 USING THE “IF ELSE” STATEMENTS FOR MORE PRECISE CONTROL
When using the “if” statement by itself (without the “else” statement), we can execute some code if the

“test” is true but we don’t have the ability to execute some other code only if the test is false. This is why

we had to increment onTime BEFORE we did the “if” statement and then test to see if we had gone too

far.

Sometimes what you really need is to execute one block of code if the “test” is true and a different block

of code if “test” is false. In this case, we need the “if”, “else” statements working together as follows.

Using the “if”, “else” control structure, we could re-write the test for 3000 ms as follows:

If(test) {

 trueStatement1; // execute these statements if the

 trueStatement2; // test is true

}

else {

 falseStatement1; // execute these statements if the

 falseStatement2; // test is false

}

digitalWrite(led, HIGH); // turn the LED on
delay(onTime); // wait for a onTime ms

digitalWrite(led, LOW); // turn the LED OFF
delay(offTime); // wait for a offTime ms

If(onTime == 3000) { // notice “==” NOT assignment “=”
 onTime = 1000;
}
else {
onTime = onTime + increaseTime; // increment onTime by
increaseTime ms
}

Figure 6 Ch_6_4_blink_with_if_else

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

29

Before we move on to other topics we should mention something about syntax. So far, we have always

used left and right curly brackets around the statements to be executed if “test” is true or false:

In the case where there is only ONE statement to be executed, that statement need not be bracketed by

curly braces. For example:

6.5 CHAPTER REVIEW

6.5.1 Questions

Q1. If we want to have a variable available for use within the “loop()” procedure, where would we

declare and initialize it?

Q2. What does the statement “onTime = onTime + 100;” do?

Q3. When will the statements contained within the curly braces be executed?

 if(test) {

 Statements;

 }

Q4. Do you always have to have curly braces when using the “if” and “else” control structure?

if(test) doThis();

else doThat();

if(test) {

 // test true statements

} else {

// test false statements

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

30

6.5.2 Answers

A1. You must declare and initialize it outside of any procedure. If we declare it inside setup() it will

NOT be available from within loop(). We could declare it inside loop() but if we initialize it

within loop() it will get re-initialized each time through the loop.

A2. The right hand side of the assignment operator “=” is evaluated (e.g. add 100 to onTime) and

the result is stored in the variable on the left hand side of the assignment operator (e.g.

onTime).

A3. When the evaluation of “test” is true. The test can be to see if a single boolean variable is true

or can compare two equations to see if they are equal, not equal, greater than, less than,

greater than or equal to, less than or equal to.

A4. No. If there is a single statement to be executed for either the “if” or the “else”, it can be placed

after the “test” without the use of the curly braces.

 if(test) doThis;

 else doThat;

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

31

7 ASSEMBLING THE PRINTED CIRCUIT BOARD

7.1 COMPONENT LAYOUT ON THE PCB
Hold the PCB so that the Nano processor is in the upper left corner and the ultra-sonic range detector is

on the right. The top center of the PCB will contain the 6 different colored LED’s and between each LED is

a resistor labeled R1 through R6. The on/off power switch is located in the lower left corner of the board

and the 2 dual-colored LED’s are located to the right of the on/off switch with resistors R7 and R8 between

them. In the center of the board is the potentiometer and to the right of the potentiometer is the

momentary contact switch. In the lower right corner is the buzzer and the right end of the board contains

the ultra-sonic range detector (already soldered to the PCB).

7.2 SOLDERING THE BATTERY CLIP
The 9v battery clip will be installed next. The battery clip leads are inserted from BENEATH the circuit

board with the RED lead inserted into the hole by the on/off switch labeled +9v and the BLACK lead being

inserted into the hold marked Gnd. Be sure to install the wire from the bottom of the circuit board and

solder the wires from the top of the board. This will enable the battery clip wire to be stored in the space

beneath the circuit board when you insert the board into the case.

Figure 7 Completed board showing component locations

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

32

7.3 SOLDER THE RESISTORS
Insert each of the 8 resistors into the locations marked R1 – R8 by first bending them into a “U” and

inserting the leads into the PCB from the printed side of the board. Spread the leads slightly on the back

of the board to keep the resistors from falling out before you solder them. To make the board look

professional, line up all the colors on the resistors the same way. Resistors are not directional so it will not

affect the operation of the board but it looks nice to have all the resistor colors the same direction.

After you solder in the 8 resistors, cut off the excess leads from the back of the board and make sure that

you don’t have any solder-shorts where the solder is bridging to another pad. Now we are ready to add

the LED’s.

7.4 INSTALLING THE ON/OFF SWITCH
The HEIGHT of all of the components that attach to the printed circuit board and

protrude through the top of the box is very important. The top has four stand-off

pins that serve to set the spacing between the circuit board and the top so that all

of the components are installed at the correct height.

When installing the on/off switch, you can either:

(1) Mount the switch to the top (photo to the right) with the nut tightened

just enough to come flush with the threaded shaft. Then place the

on/off switch pins into the circuit board and solder. The circuit board

will be held away from the top by the four stand-off pins.

(2) Solder the on/off switch into the circuit board with the pins just barely

flush with the bottom of the circuit board (see incorrect and correct

photos below). There will be a gap between the bottom of the switch

and the PCB when installed correctly.

Figure 8 Resistor location - top of board Figure 9 Bending resistor leads prior to
soldering - underside of board

Figure 10 Mount switch
to top so that nut is just

barely threaded
completely on

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

33

When you have soldered the switch in place, verify

that it is at the correct height by holding the PCB up to

the top with the switch protruding through the

mounting hole and verify that there is sufficient thread

for the nut to be screwed on.

7.5 ADDING THE MOMENTARY CONTACT PUSH BUTTON SWITCH
Locate the Normally Open Momentary Contact (NOMC) switch and notice that in one direction the pins

are spaced closer together than in the other direction. The narrow spaced pins are at the top and bottom.

Also notice that there is a small curve at the end of the switch pins. These pins are only pushed into the

PCB slightly – just until you reach the curve in the leads. Carefully insert the four pins slightly into the PCB

and solder from the TOP of the PCB. You want the NOMC switch as high as possible from the PCB so don’t

force the pins into the PCB.

7.6 DETERMINE THE COLOR OF EACH LED
In order to assist in determining the color of each LED, we are going to first load a hardware test program

into the Nano. On the web site or from the enclosed CD, locate the “LED-test-program” program, open it

with the Arduino IDE, and upload it to the Nano. One by one, insert the LED’s with two leads into a LED

location LED1 – LED6 on the PCB with the long lead to the RIGHT and the short lead to the LEFT. Note

what color the LED is and relocate it to the correct position on the PCB. The color of the LED that goes into

each location is printed on the PCB.

Figure 11 INCORRECT
- switch is too LOW

Figure 12 CORRECT -
note the gap between

the bottom of the
switch and the PCB.

The switch leads
should be flush with

the bottom of the PCB

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

34

Now take the two LED’s that have three leads (Dual-color LED’s) and insert

one into each location (LED7 & LED8) with the longest outside lead to the

RIGHT. All the LED’s may not stay lit constantly since they are not yet

soldered into place but if you wiggle the they should light up.

If you still have the PCB oriented with the Nano in the upper left corner,

the dual color LED’s should have the BLUE to the LEFT and the RED to the

RIGHT.

Your top row LEDs should be (from left to right) Blue, Green, White,

Yellow, Orange, Red. DO NOT SOLDER ANYTHING YET.

7.7 SOLDERING THE LED’S
Now that the LED are all in their correct positions, we are ready to solder

them once we get them at the right height. Place the top over the circuit

board so that the on/off switch, NOMC switch, and the 8 LEDs are all

protruding through the top. Hold the two pieces together with a rubber

band and turn the assembly upside down so that the top is facing down.

Press each of the LED’s firmly into place so that they are all pushed into

the top as far as they will go and then solder them in this position.

Follow the same procedure to solder the dual color LED’s in place flush with the top.

Figure 13 LED's all in correct
locations - BUT NOT SOLDERED

Figure 15 Hold top and PCB
together with rubber band

while soldering LED's

Figure 14 Push LED's until flush with TOP

Figure 16 Solder LED's flush with TOP

Figure 17 Dual color LED's flush
with TOP

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

35

7.8 INSTALLING THE POTENTIOMETER AND BUZZER
When installing the potentiometer, we want it to be as close to the circuit board as possible. Push the pins

on the potentiometer into the PCB until the narrow ends of the leads are as far into the PCB as they can

go. Solder the potentiometer in place.

The buzzer needs to be as HIGH as possible off the PCB. On the

front of the buzzer, locate the + sign (this is also the longest of

the two leads) and insert the buzzer into the PCB with the + lead

toward the edge of the PCB.

The short lead should only be about ½ way through the PCB so

that the buzzer stands off the PCB as much as possible. The

longer + lead will protrude through the PCB a bit. If the leads on

your buzzer a too short, use the pin extenders included in the

plastic bag to raise the buzzer up a bit. The two extenders come

connected as

shown in figure 19. Carefully cut them apart as shown in

figure 20 and solder them into the two buzzer pin

locations on the PCB. The buzzer pins will fit into those

extenders and raise the buzzer up a bit.

Before proceeding, place the top on the circuit board and verify that all of the components line up. The

NOMC switch should be free to be pressed and release and the buzzer should be aligned with the hole in

the top.

7.9 TESTING THE BOARD
Before we start programming the Nano, let’s run a test program to satisfy ourselves that everything is

working correctly. From either the web site or the enclosed CD, locate and open the file

“hardware_test_program”. Compile and upload the program into the Nano and verify the following:

- Plays do-re-mi on the buzzer from low to high notes, reverses sequence upon button push

- Speed of playing do-re-mi determined by distance detected by ultra-sonic detector

- Lights the 6 LED’s from Blue to Red, reverses sequence upon button push

- Speed of sequencing through the LEDs determined by distance detected by ultra-sonic detector

- Brightness of 6 LEDs determined by potentiometer

- Lights the dual-color LEDs Red, Red, Blue, Blue – speed determined by distance detected by ultra-

sonic detector

Figure 18 Completed board (ultra-sonic range
detector not shown)

Figure 19 Dual pin
extenders

Figure 20 Pin extenders
separated

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

36

8 WRITING PROGRAMS USING THE BUZZER AND PUSH BUTTON SWITCH

8.1 SCHEMATIC DIAGRAM FOR THE BUZZER AND PUSH BUTTON SWITCH
A schematic is a drawing that shows how your electronic components are wired up. Most electronics

components have an agreed to symbol that is used to represent them when drawing a schematic. For

example, this is the symbol for a Normally Open (NO), Momentary Contact (MC) switch.

The normally open part means that unless you push on the switch, the contacts are normally not

connected and so no electricity will flow. You can see from the symbol that as long as you hold the switch

button pushed in, the contacts will touch and electricity will flow – hence momentary contact.

For completeness, the symbol for a Normally Closed (NC) Momentary Contact (MC) switch is as follows.

The schematic symbol for a buzzer is:

8.2 PROGRAMMING - HOW DO WE CONTROL THE BUZZER
Before we proceed further, let’s talk about some good programming habits for this Geek-Pack course.

Whenever you are about to start writing a program, open up the IDE and create three sections:

(1) Some space before the setup() function for you to insert declarations for variables that you want

to be global,

(2) the setup() function (empty for now) and,

(3) the loop() function (also empty for now). This will give you a great framework for placing the

variables and statements in the proper location.

Now that we have this structure in our IDE, let’s get started making some noise with the buzzer.

// space for declaring global variables

void setup() {

// space to insert statements in the setup() function

}

void loop() {

// space to insert statements in the loop() function

}

Figure 21 Create a structure like this in the Arduino IDE for every program

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

37

8.3 WRITING A PROGRAM TO PLAY TONES ON THE BUZZER
Now that we are going to start writing programs to control the various Input/Output (I/O) devices in our

box, we are going to need to know what Input or Output port they are connected to on the Nano. The

Appendix shows all these connections and we can see that the buzzer is connected to the Digital pin D8.

Since the buzzer is connected to Digital pin D8 and since we need to send a signal OUT to the buzzer, we

know that we will need the following statements:

In order to supply a tone to the buzzer, we need to call the tone(digitalPin, frequency) function. The tone()

function requires two arguments: the digital pin number, and the frequency of the tone to be played. If

we wanted to play a tone of 1,000 Hz (1 Kilo Hertz) on the buzzer connected to pin D8, we would use the

following statement.

tone(buzzer, 1000);

The tone() function works by making the digital pin specified (in our case buzzer = 8, so D8) HIGH and then

LOW the number of times per second specified by frequency (in our case, 1000 times per second or 1 Kilo

Hz).

The tone() function will continue to play a tone until told to stop by using the noTone() command. In order

to not drive ourselves (and others) crazy, let’s just have our program play the tone for three seconds and

then stop – and not start again.

Here are the requirements for our program:

frequency = 1000 Hz

duration = 3 seconds = 3000 ms

buzzer on pin 8

only turn on the buzzer once for three seconds and then silence

int buzzer = 8; // the buzzer is on pin D8

 // define this outside of any function so that it is GLOBAL

void setup() {

 pinMode(buzzer, OUTPUT); // set the pin D8 as an OUTPUT pin

 // Any other setup statements

)

void loop() {

// space to insert statements in the loop() function

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

38

Give some thought to how to approach this. What variables or constants do we need to declare and

define? Where do we put statements that we want to only execute once not over and over?

Remember, so far we have learned about three places we can put statements: outside of any function,

inside the setup() function, and inside the loop() function. Based upon the above requirements, what

would we put outside of any function to make global? What should go in the setup() function to be

performed once? What do we want to do over and over again?

Try writing this program yourself and then check the code below for a way to do this. Compile and upload

your code to the Nano and see if your buzzer sounds for three seconds and then stops. If you get stuck,

then, from either our web site (www.Your-Inner-Geek.com) or the business card CD, load the program

Ch_8_1_Basic_buzzer_1KHz and run it on your Nano.

8.4 PLAYING A MUSICAL SCALE ON THE BUZZER
Now as cool as it is to play one tone for 3 seconds, how about we play a song or something more

interesting. In order to do that, we need to first introduce a new concept, an ARRAY.

// play a tone of 1000 Hz on the buzzer connected to pin 8 for 3 seconds and then silence

int buzzer = 8; // buzzer is on Digital pin 8

int frequency = 1000; // play frequency of 1000 Hz

int duration = 3000; // duration of 3 seconds

void setup() {

 pinMode(buzzer, OUTPUT); // set the pin D8 as an OUTPUT pin

 tone(buzzer, frequency) ; // apply tone of frequency “frequency” to pin “buzzer”)

 delay(duration); // play tone for time = duration ms

 noTone(buzzer); // stop playing the tone on pin “buzzer”

}

void loop() {

 // nothing to do over and over again

}

Figure 22 Ch_8_3_basic_buzzer_1khz

http://www.your-inner-geek.com/

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

39

An ARRAY is used to hold a group of objects. These can be characters, integers, or any other data type

that the programmer desires.

An array of 6 integers named myArray can be declared as follows:

To reference a particular item within the array myArray, we specify myArray[i] where i is the element we

are interested in.

We can initialize the values in an array in a number of ways, for example:

would store the value of 10 in the 4th location (remember, we start at zero) of myArray.

We can also declare AND initialize an array at the same time as follows:

Notice that in this case, we do not have to say the size of myArray[6]. The compiler will count the number

of items we initialized the array with and make that the size of the array. Handy!

So if we were to create an array where each entry in the array contained frequency for the next note in

the musical scale, then by sequencing through each entry of the array we could play the musical scale.

Let’s call our variables: Do, Re, Mi, Fa, Sol, La, Te, Do2 representing the notes of the scale and their values

are:

Do = 440, Re = 494, Mi = 554, Fa = 587, Sol = 659, La = 740, Ti = 831, Do2 = 880

We are going to store these variables in an array called toneArray[] and we are going to declare and

initialize this array at the same time.

Where and how would you declare and assign values to those variables? Using your Arduino IDE, do so

now – then continue and see how you did.

Note: arrays go from zero to one minus the size of the array so in our example, myArray[0]

through myArray[5] would reference the 6 different integers stored in myArray.

int myArray[6]; // declares an array myArray that has memory to store 6 integers

myArray[3] = 10;

int myArray[] = {2,4,6,8,10,12}; // declare myArray as an array of integers and

 // initialize it

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

40

One way you could have accomplished this would look like this:

Let’s start by writing the remainder of the program such that it plays the musical scale contained in

toneArray[] from the lowest note to the highest note, one time only and then silence (so don’t forget to

use noTone(buzzer) at the end).

What do we need to setup() in order for this to happen. Do we need to set any pins as INPUT or OUTPUT?

That would be the kind of thing to do in the setup() function.

After determining what setup() stuff you need to get done once you are ready to actually start sending

tones to the buzzer. What we need to do is FOR every integer value of i between i = 0 and i<8 (e.g.

0,1,2,3,4,5,6,7) we need to call the tone() function and send the frequency located at toneArray[i] to the

buzzer located on pin 8.

How do you think we should accomplish that? How about using the “for” statement as follows:

// declare and initialize outside of any function so they are global

int Do = 440;

int Re = 494;

int Mi = 554;

int Fa = 587;

int Sol = 659;

int La = 740;

int Ti = 831;

int Do2 = 880;

int toneArray[] = { Do, Re, Mi, Fa, Sol, La, Ti, Do2};

setup() {

// space to insert statements in the setup() function

}

loop() {

// space to insert statements in the loop() function

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

41

Since, in this example, we only want to play the scale once, let’s put this in the setup() function along with

any pin setup stuff (e.g. pinMode(buzzer, OUTPUT)).

8.5 CONSTANTS VS. VARIABLES – USING THE #DEFINE COMPILER DIRECTIVE
Before we continue with our buzzer programming, let’s catch our breath with a few style and good-

practice items. So far, we have declared global variables when we wanted to define items such as a pin

// declare and initialize outside of any function so they are global
int Do = 440;
int Re = 494;
int Mi = 554;
int Fa = 587;
int Sol = 659;
int La = 740;
int Ti = 831;
int Do2 = 880;

int toneArray[] = { Do, Re, Mi, Fa, Sol, La, Ti, Do2};

int buzzer = 8; // the buzzer is on pin 8

void setup() {
 pinMode(buzzer, OUTPUT);
 for(int i = 0 ; i < 8 ; i++) {
 tone(buzzer, toneArray[i]); // sent the frequency toneArray[i] to the pin “buzzer”
 delay(400);
 noTone(buzzer);
 delay(100); // play tone for one second

}
}

void loop() {

// space to insert statements in the loop() function

}

Figure 23 Ch_8_4_basic_musical_scale_array

for(int i = 0 ; i < 8 ; i++) {

 tone(buzzer, toneArray[i]); // sent the frequency toneArray[i] to the pin “buzzer”

}

noTone(buzzer); // stop the darn buzzer before we all go crazy…

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

42

number or a frequency or a delay time. Items such as frequency and delay time could truly be variables in

that we could really want to change their value during the execution of our program.

For example, every second, we could increase the frequency of the tone by 500 Hz or increase the delay

time. For items such as the pin number, this is probably NOT the case and these items are really constants

not variables.

There are three things that programmers consider when declaring variables and constants. The first is

memory use, the second is compiler type checking, and the third is called “scope”. We will explain all three

issues here but will not solve the scope issue until later in this curriculum.

When you declare a variable of a certain type (int, BOOLEAN, etc.) the compiler must reserve enough

memory so that the variable can be stored and accessed by the program. Sometimes, when you are

running on a small microcontroller like the Nano, memory space might be at a premium so you should

know that there is another way to declare items like pin numbers – constants – that do not take up extra

memory space.

The way to do this is with what is called a “compiler directive’’ and one of the most popular is the #define.

Using it will shed some lite on the situation.

Later in the program:

In this case, the compiler makes a list of the #defines and knows that “buzzer” gets replaced with “8”. No

memory is assigned for a variable. When the compiler comes across the statement

pinMode(BUZZER, OUTPUT);

it replaces it with: pinMode(8, OUTPUT);

The code is easier to read because you have all your #defines up front where you have your variable

declarations but you don’t use any extra memory.

Earlier, when we introduced the array toneArray[] we showed that we could specify the size as in

toneArray[6] or we could initialize the array and the compiler would count the items to compute the size.

What if we did the following:

int size = 6;

int toneArray[size]; // trying to compile this would give an error

#define BUZZER 8 // notice there is no “=” sign and no semicolon “;”

pinMode(BUZZER, OUTPUT);

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

43

The reason is that although “size” is an int, it is also a variable – it can change – and the compiler needs a

fixed size in order to allocate memory for toneArray[]. Using the #define construct, we could do the

following:

#define size 6

toneArray[size]; // this will work fine since “size” is an int and also a constant

In our previous example:

This Becomes this

int Do = 440; #define DO 440

int Re = 494; #define RE 494

int Mi = 554; #define MI 554

int Fa = 587; #define FA 587

int Sol = 659; #define SOL 659

int La = 740; #define LA 740

int Ti = 831; #define TI 831

int Do2 = 880; #define DO2 880

Int buzzer = 8; #define BUZZER 8

Program compiled to 2,834 bytes Program compiled to 2,660 bytes

Notice that when we changed from int to #define we also changed the punctuation to ALL CAPS. This is

the common convention (not required) for constants being declared and defined with the #define

directive.

If you make these changes to our previous program, you will see that it actually takes a bit less space.

The second reason NOT to call a constant a variable is what is called “type checking”. If you use:

#define BUZZER 8

And then later on in your program you say:

BUZZER = BUZZER + 1;

You will receive a compiler error since you are trying to change the value of a constant. Strong type

checking is very helpful in a language and can save the programmer a lot of headaches by not allowing

stupid mistakes like trying to change the value of a constant.

The third item is “scope”; that is, how widely known is the variable? Is it global – know by all

functions/procedures in our program or is it known only within the particular function where it is declared

and used? In general, we only want variables to be known by the actual function that uses them and we

really want to limit “global” variables to the minimum possible.

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

44

8.6 CREATE A SEPARATE PROGRAM TO PLAY THE MUSICAL SCALE
Now that we have our program successfully playing the musical scale, let’s package the part of the

program that actually plays the scale into a separate function/procedure/sub-routine. This way, we can

use this function in other programs as well.

Let’s name our new function playScale() and for now it will return no value (void) and take no parameters.

We can copy all the code in our setup() function EXCEPT the pinMode statement into our new function

playScale(). The reason we are going to leave the pinMode command is that (a) it really only needs to be

performed once, and (b) it is nice to have all the Input/Output (I/O) assignments in one place for easy

// declare and initialize outside of any function so they are global
#define DO 440
#define RE 494
#define MI 554
#define FA 587
#define SOL 659
#define LA 740
#define TI 831
#define DO2 880

#define BUZZER 8 // the buzzer is on D8

int toneArray[] = { DO, RE, MI, FA, SOL, LA, TI, DO2};

void setup() {
 pinMode(BUZZER, OUTPUT);
 for(int i = 0 ; i < 8 ; i++) {
 tone(BUZZER, toneArray[i]); // sent the frequency toneArray[i] to “BUZZER”

delay(400);
 noTone(BUZZER);
 delay(100);
 }
}

void loop() {

// space to insert statements in the loop() function

}

Figure 24 Ch_8_5_basic_musical_scale_array_define

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

45

reference for future programmers. We also have to “call” the playScale() function within the loop()

function, otherwise it will never get run.

So here is what our program could look like:

There are still several improvements we could make to this program. First, the statement:

int toneArray[] = { DO, RE, MI, FA, SOL, LA, TI, DO2};

is currently declared and initialized outside of any function so it is a global variable. It is probably not a

very good idea to let all the other functions have the opportunity to mess with the notes that are in that

array and for that reason it would be best to move that statement INTO the playScale function so that it

becomes a private, local variable that no other function can mess with.

Figure 25 Ch_8_6_basic_musical_scale_array_separate_function

#define DO 440 // declare and initialize outside of any function so they are global
#define RE 494 // later we will reconsider where these should be placed
#define MI 554
#define FA 587
#define SOL 659
#define LA 740
#define TI 831
#define DO2 880
#define BUZZER 8 // the buzzer is on D8

int toneArray[] = { DO, RE, MI, FA, SOL, LA, TI, DO2}; // probably move this to playScale function
 // so other functions can’t change the values
// --
void setup() {
 pinMode(BUZZER, OUTPUT);
}
// ---
void loop() {

playScale(); // call the playScale function to play the scale
}
// ---
void playScale() {
 for(int i = 0 ; i < 8 ; i++) {
 tone(BUZZER, toneArray[i]); // sent the frequency toneArray[i] to the pin “buzzer”
 delay(400);
 noTone(BUZZER);
 delay(100);
 }
}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

46

We could also consider moving the definition of the notes into the playScale function and perhaps even

reconsidering placing the pinMode statement into the playScale function but we will discuss that further

in this curriculum.

8.7 PLAY THE SCALE ONCE WHENEVER WE PRESS THE NO MC SWITCH (THE BUTTON)
Now we want to play the scale once every time we press the button. In this case, we don’t want to play

the scale when we first start our program, we want to wait until the button is pressed and then play the

scale once and wait for the button to be pressed again.

Since we already wrote a separate function called playScale() perhaps it would be a good idea to write a

new function that will read the switch and return the state of the switch. Let’s call our new function

switchPushed() and the two states could be true for pushed and false for not pushed. If we define our

function in this manner, it might be a useful function that other programs could use if they want to know

if the button is pushed or not.

So far, this is all we know about our new function switchPushed(). Notice several things. There is a new

statement “return” that we have not seen before. This is a control structure key word. If you use “return”

by itself, it simply returns (passes control) from a function to the previous function that called it. So if in

our loop function we called switchPushed, when the switchPushed function comes across the statement

“return”, it simply returns to the calling loop function.

But there is another way to use the return statement – that is with a constant or variable after the word

return. In this case, the value of the constant or variable is returned to the calling program. Since we

declared that the switchPushed function returned a boolean value, any boolean constant (true, false) or

any variable that was declared as a boolean variable could be returned to loop.

The reason we show the code returning false is we wanted to create what is called a “stub” function. Since

we don’t know how to write the switchPushed function yet, we just put a comment inside the function

reminding us what the function needs to do and returned a valid boolean value so we can test our loop

function even before we have written the switchPushed function. We can test our program for

switchPushed == false and then change the return value to true and test our program again. Writing stub

functions is quite useful so that you can test the main program ASSUMING that the other functions you

are going to write return known values and then write the stub programs to do their jobs.

boolean switchPushed() {

// returns true if pushed and false if not pushed

// no working code yet, just return a boolean value for now

 return false; // return false for now

}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

47

Within our main loop function, we know that we want to call switchPushed and IF the return value == true

(e.g. the switch is pushed) then we want to call the playScale function, otherwise we will do nothing. We

will keep calling the switchPushed function over and over again, and whenever it returns true, we will call

playScale one time.

We could program this as:

We really don’t need the new boolean variable “pushed”. We can call switchPushed and have the “if”

statement evaluate the return value directly as follows:

If you look at the code on the next page (Ch_8_7_musical_scale_if_switch_pushed_stub) you will notice

that, in addition to adding the switchStatus function declaration and definition, we have also move the

declaration and initialization of the notes into the playScale function, changed them back to integer

variables (rather than using #define) and put several other word (static, const) in front of the int

declaration.

Now that we are starting to use our playScale function in another program, it would be nice if it was self-

contained and did not require that the variables it uses be defined elsewhere. In addition, now would be

loop() {

boolean pushed; // declare variable to hold return value of switchStatus()

pushed = switchPushed(); // get switch status

if(pushed == true) { // if switch is pushed, play the musical scale, notice “==” not “=”

 playScale();

}

}

loop() {

if(switchPushed() == true) playScale();

}

/* if we only have a single statement to be executed, we don’t need the {} that are used to

include multiple statements. Having everything on one line makes it easier to read and

fewer lines of code

*/

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

48

a good time to start addressing “scope” and not letting other functions know anything about the variables

used by playScale. We can’t just move the #defines into the playScale function because #defines are

ALWAYS global no matter where you put them. So we will go back to declaring these as int,

By moving the declaration/definition of variables into the playScale function, these variables are not

known to any other function outside of playScale. If we simply move these variables into the playScale

function, they will only be known within the playScale function but they will also be “dynamic” – that is,

they will be created each time the playScale function is called and will disappear each time you exit the

playScale function.

There is a modifier, “static” that can be placed in front of a declaration/definition that tells the compiler

to create the variable only once and keep it around as long as the program is running. The scope remains

the same – that is, the variable is known ONLY within the playScale function but it acts as if it had been

created within the setup() function in that it is performed only once.

So now our declaration/definition of the buzzer pin would be: static int buzzer = 8;

This is nice and addresses the scope issue as well as the speed issue of only having to perform the

operation once, but what about the protection of not being able to change the constant that was provided

by the #define directive? For this, we use another modifier, “const”, which stands for constant. A variable

marked as “const” will give you a compiler error if you try to change it. We can use several modifiers at

once so now our declaration/definition of the buzzer pin is: static const int buzzer = 8;

Take a look at Figure 23 Ch_8_7_musical_scale_if_switch_pushed_stub and see how our program has
changed. Let’s make a few test to verify that the scope is really local to playScale() and that we have
protection against accidently trying to change the value of a constant.

To test scope, add something like the following to the setup() or loop() program:

int testScope = Do;

Try to compile and notice that you get an error that says Do is not defined within this function. Great,

that works!

Now, within the playScale() function, try to change the value of the buzzer pin number. For example,

add the statement: buzzer = buzzer + 1; and notice that you also get a compiler error saying you are

trying to change the value of a constant. Good to know that we have the protection we wanted!

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

49

Starting with our IDE (Integrated Development Environment) template from several chapters ago, we

have:

Compile and run this program with switchPushed returning false and then change the return value to true

and run it again. Does your program work as expected? You should only play the musical scale if return

== true and have nothing but silence if return == false.

// space for declaring global variables

void setup() {

// space to insert statements in the setup() function

}

// ---
void loop() {

if(switchPushed() == true) playScale();

}
// ---
void playScale() {
 static const int DO = 440;
 static const int RE = 494;
 static const int MI = 554;
 static const int FA = 587;
 static const int SOL = 659;
 static const int LA = 740;
 static const int TI = 831;
 static const int DO2 = 880;

 static const int BUZZER = 8; // the buzzer is on pin 8

 pinMode(BUZZER, OUTPUT);

 static const int toneArray[] = {DO, RE, MI, FA, SOL, LA, TI, DO2}; // moved this into playScale function

for(int i = 0 ; i < 8 ; i++) {
 tone(BUZZER, toneArray[i]); // send the frequency toneArray[i] to the pin “buzzer”
 delay(400);
 noTone(BUZZER);
 delay(100);

 }
}
// ---
boolean switchPushed() {

// returns true if pushed and false if not pushed

 return false; // return false for now

}

Figure 26 Ch_8_7_musical_scale_if_switch_pushed_stub

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

50

8.8 WRITING THE SWITCHPUSHED() FUNCTION
Now we are ready to actually write the switchPushed function and return the actual status of the switch

rather than always returning either true or false.

Looking at the Appendix, we see that the NOMC switch is connected to Digital pin D2 and since we are

going to read the value of the switch (open or closed) we are going to need to configure this pin as an

INPUT but if we were to follow the traces on the PCB we would find that one side of the switch is

connected to Nano D2 and the other side to ground.

There is something not quite right here. Where would any voltage come from? We have one side of the

switch connected to ground (0 volts) but the other side only goes to the Nano pin D2. If we simply read

the voltage, it will ALWAYS be zero volts.

This is where we are going to use the INPUT_PULLUP mode of the pinMode function. When we specify:

pinMode(pin, INPUT_PULLUP);

then the pin will be connected to +5 v through a resistor. Now when the switch is open, we will read/detect

5 volts but when the switch is closed we will read 0 volts.

 pinMode(2, INPUT); pinMode(2, INPUT_PULLUP);

Now that we have pin D2 programed to pull the switch up to 5v, all we need to do is perform a standard

digitalRead to determine if the switch is open or closed. But wait! The digitalRead will return HIGH if there

is 5v and LOW if there is 0v on pin D2 so we are going to need to convert LOW to true (since if the switch

is pressed, there will be 0v or LOW).

D2

Gnd

Nano

+5v

D2

Gnd

Nano

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

51

Now if you add the code above to replace the existing code within the switchPushed() function and

compile and upload it. Now your buzzer should be quiet until you press the push button switch and then

it should play the scale once.

boolean switchPushed() {

 static const int pushButtonSwitch = 2; // switch is on pin D2, declare as constant, hide from other functions

pinMode(pushButtonSwitch, INPUT_PULLUP); // put pin D2 in the INPUT mode and attach a PULLUP resistor

if(digitalRead(pushButtonSwitch) == HIGH) return false; // if 5v (HIGH) switch is NOT pushed

else return true; // if 0v (LOW) switch IS pushed

}

void setup() {

}

// ---
void loop() {

if(switchPushed() == true) playScale();

}
// ---
void playScale() {

static const int DO = 440;
 static const int RE = 494;
 static const int MI = 554;
 static const int FA = 587;

static const int SOL = 659;
static const int LA = 740;
static const int TI = 831;

 static const int DO2 = 880;

 static const int BUZZER = 8; // the buzzer is on pin 8

 pinMode(BUZZER, OUTPUT);

static const int toneArray[] = { DO, RE, MI, FA, SOL, LA, TI, DO2}; // moved this into playScale function
for(int i = 0 ; i < 8 ; i++) {

 tone(BUZZER, toneArray[i]); // send the frequency toneArray[i] to the pin “buzzer”
 delay(400);
 noTone(buzzer);
 delay(100); }
 noTone(BUZZER); //turn off buzzer at the end of playing scale
}
// ---
boolean switchPushed() {

 static const int pushButtonSwitch = 2; // switch is on pin D2, declare as constant, hide from other functions

pinMode(pushButtonSwitch, INPUT_PULLUP); // D2 INPUT mode and attach a PULLUP resistor

if(digitalRead(pushButtonSwitch) == HIGH) return false; // if 5v (HIGH) switch is NOT pushed

else return true; // if 0v (LOW) switch IS pushed

}

Figure 27 Ch_8_8_musical_scale_if_switch_pushed

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

52

9 COMMUNICATIONS BETWEEN YOUR COMPUTER AND THE NANO

9.1 HAVING YOUR PROGRAMS WRITE TO YOUR COMPUTER SCREEN
So far, once we have uploaded our programs to the Nano, we have no more contact from our computer.

The only thing we can do to see if our program is running the way we want it to look at our sensors and

Input/Output (I/O) devices. (e.g. is the buzzer buzzing or the pin 13 LED blinking)

As we write more complex programs, we really need to be able to have our program send back some

information to our computer screen so we can see if our program is acting the way we want it to. This

information could be a simple “I am here at this location in the program” message or a “I’m about to call

this function” message, or even the value of a variable like “I am about to play a tone of 2,000 Hz”.

These messages will be quite helpful as we debug our code.

Additionally, we may want to control the behavior of our program by using key strokes on our keyboard.

Fortunately, the Arduino family comes with support for just such communication between your

microcontroller board and your computer.

Go back to the Arduino reference page (http://arduino.cc/en/Reference/HomePage) and look at the far

right column, toward the bottom where it says “Communication”. Click on “Serial” and you will find a list

of the serial communications functions that are available. We are going to focus on the following

functions:

Serial.begin(speed); // configures the serial communications channel at the selected speed

Serial.println(value); // prints the variable or string with a “return” to start a new line

Serial.read(); // reads input from the keyboard

In order to access either the Serial.println or Serial.read, we must first set up the communications

channel using the Serial.begin function. If you are going to want to have access to these functions from

within your program, place the Serial.begin function in your setup() function as follows:

Later in your main loop function or any of your own functions, if you want to print the value of a variable

named “tone”, all you would do is the following:

Serial.begin(9600); // set up the serial communications channel at 9600 bits per second

Serial.println(tone);

http://arduino.cc/en/Reference/HomePage

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

53

Many times, just printing the value of a variable is not enough. You probably want to print something

like:

The value of tone is: 2000

In order to do that, you need to use two statements: Serial.print() and Serial.println(). The Serial.print()

does NOT generate a new line while the Serial.println() does.

No go back to your program “Ch_8_8_musical_scale_if_switch_pushed” and add the Serial.begin(9600)

to the setup function and add a Serial.print and Serial.println to the playScale function just before the

delay

Now compile and upload that modified program and press the button to hear the musical scale being

played. In order to see the messages on your computer screen, you need to open the Serial Monitor on

your desktop. To do that, click on the Serial Monitor button on the top right of your IDE screen – looks

like a magnifying glass.

This will open up a new window and you should see a line for each tone

saying: playing the following tone: 440 (440 will be replaced with each

separate tone as they are being played).

Now that we can get OUTPUT to our screen, let’s turn our attention to

having our program receive INPUT from our keyboard.

9.2 HAVING YOUR PROGRAMS RECEIVE INPUT FROM YOUR KEYBOARD
Now we want to be able to send input to our program while it is running on the Nano using our

keyboard on our computer. For this we will use two new functions: Serial.available() and Serial.read().

Serial.available() will return the number of characters that are available to read. So if we were to call this

function and the return value is > zero, then we know we have at least one character to read. We will

need a char variable to hold the value that we read so we will need to declare one. For this example, we

are going to look for either a capital or lower case P (for Play) and if we receive either of these

characters, we are going to call the playScale() function.

Serial.print(“The value of tone is: “);

Serial.println(tone);

tone(buzzer, toneArray[i]); // send the frequency toneArray[i] to the pin “buzzer”

Serial.print(“playing the following tone: “);
Serial.println(toneArray[i]);

 delay(1000); // play tone for one second

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

54

You are going to need a few other pieces of information before we proceed. First, in C/C++ there is a

huge difference between a single character and a string of characters. A single character can be

represented in a single 8 bit byte and would be represented by single quotes around the single

character. For example, ‘P’ is the single character capital P and ‘p’ is the single character lower case p. If

we want to represent a string of characters, for example “Play scale command received from keyboard”

we would enclose the string in double quotes “character string”.

One other item that will make our lives easier is the logical OR test. If we want capital OR lower case ‘p’

we can use the OR operator || (two pipe symbols, NOT !). For example:

if(inputChar == ‘P’ || inputChar == ‘p’) {

// do the following

}

Would be true for either capital P OR lower case p.

Try to work this on your own before you go to the next page. When you get the program to compile,

upload it and see if it works. Remember to open the Serial Monitor window so you can see what gets

printed. You have to enter either the P or the p and then hit “enter” in order to send the character from

your keyboard to the Nano.

Program Requirements:

Declare a char variable called inputChar to hold the character from the keyboard

Call the playScale() function IF you receive either a capital or lower case p

Make sure to initialize the serial channel to 9600 bits per second

Only try to read a character from the keyboard IF there is one AVAILABLE

When you receive either a ‘P’ || ‘p’, print the following character string “Play scale command

received from keyboard”

Make these changes to the program: Ch_8_6_Musical_scale_if_switch_pushed

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

55

// space for declaring global variables

void setup() {

 Serial.begin(9600);}

// ---
void loop() {

if(switchPushed() == true) playScale();

char inputChar;
 if(Serial.available() > 0) {
 inputChar = Serial.read();
 if(inputChar == 'p' || inputChar =='P') {
 Serial.println("Play scale command received from keyboard");
 playScale();
 }
 }
}
// ---
void playScale() {

static const int DO = 440;
 static const int RE = 494;
 static const int MI = 554;

static const int FA = 587;
 static const int SOL = 659;
 static const int LA = 740;

static const int TI = 831;
 static const int DO2 = 880;

 static const int BUZZER = 8; // the buzzer is on D8

static const int toneArray[] = { DO, RE, MI, FA, SOL, LA, TI, DO2}; // moved this into playScale function

 for(int i = 0 ; i < 8 ; i++) {
 tone(BUZZER, toneArray[i]); // send the frequency toneArray[i] to the pin “buzzer”
 delay(1000); // play tone for one second
 }
 noTone(BUZZER); //turn off buzzer at the end of playing scale
}// ---
boolean switchPushed() {

 const int pushButtonSwitch = 2; // switch is on pin D2, declare as constant, hide from other functions

pinMode(pushButtonSwitch, INPUT_PULLUP); // D2 INPUT mode and attach a PULLUP resistor

if(digitalRead(pushButtonSwitch) == HIGH) return false; // if 5v (HIGH) switch is NOT pushed

else return true; // if 0v (LOW) switch IS pushed

}

Figure 28 Ch_9_2_read_keyboard_play_scale

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

56

10 PROGRAMMING THE SIX COLORED LIGHT EMITTING DIODES (LED’S)

A diode is a two terminal device that allows current to flow in only one direction. A LED will emit a specific

color when the current is flowing and will be dark when no current is flowing. The symbols for a diode and

a LED are shown below:

Current is the flow of electrons and since electrons are negatively charged, they are repelled by the

negative terminal of the battery and attracted to the positive terminal. So electrons move from the

Cathode to the Anode. The absence of an electron, called a “hole”, moves in the opposite direction of the

electrons – from positive to negative. The arrow on the diode symbol points in the direction of the “hole”

movement.

To the right is a photo of the six different colored LED’s

included in your Geek Pack™. Notice that these LED’s all

have two leads and that one lead is longer than the other.

The longer lead is the Anode and would be connected to

the POSITIVE terminal.

There are two other LED’s included in your Geek Pack™

that have THREE leads – these devices actually have TWO

separate LED’s in one package with the two Anode’s tied

together to create a three lead device. We will be using

these special LED’s later so set them aside for now.

If we were to connect an LED directly to our 9v battery or even directly to our microcontroller (Ardunino

Nano), we would either burn out our LED or destroy the microcontroller – or both. This is because too

much current would flow and the devices would overheat and burn out. We need to limit the amount of

current that flows through the LED by using a RESISTOR. A resistor restricts, or resists the flow of current

and we can calculate how much current will flow using the following equation:

Cathode - Anode +

Figure 29 Diode Schematic Symbol

Figure 31 Six different colored LED's - long lead is +

Figure30 Light Emitting Diode (LED) Symbol

Voltage = Current * Resistance (voltage in Volts, Current in Amps, Resistance in Ohms)

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

57

This is often written as either V = IR or E = IR (E stands for Electromagnetic force or Voltage). The Arduino

Nano specifications say that each 5v output pin can supply 40 mA (one milliamp = 1/1000 Amp) so we

know we must limit the current to less than 40 mA. The specifications for the LED’s indicate 5 – 20 mA

and in order to maximize the battery life, let’s target something close to 6 mA.

Before we can calculate the value of the resistor, we need one more item; the amount of voltage across

the LED. Different colored LEDs operate at different voltages but 2.0 volts is a good average value for the

different colored LEDs in this Geek Pack™.

Referring to the figure below, if we start with 5 volts and there are 2 volts across the LED, then the resistor

will have 3 volts across it. What value of resistance would cause 3 volts to be across the resistor with 6

mA flowing?

R = E/I = 3volts/0.006A = 500 Ohms

Resistors come in fixed values and 470 ohms is a common value so we will use this value resistor for our

LED’s.

Resistors are color coded to indicate their

value. The resistors included in this Geek

Pack™ use the 4-band code as shown

below. With the three bands that are close

together pointed to the left, the first to

bands are the digits (Yellow, Violet = 47. The

next band indicates how many “zeros” are

after the two digits. Brown indicates one

zero so Yellow, Violet, Brown = 470 ohms.

At the other end of the resistor is the

TOLLERANCE band. Gold equals 5%

tolerance so the resistors included in

your kit are 470 ohms, 5% tolerance.

Figure 33 Resistor Color Code

Figure 32 LED Circuit Schematic

470 ohm

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

58

10.1 STARTING TO PROGRAM THE SIX COLORED LED’S
From the Appendix we can see that the six colored LEDs are connected to the following pins on the

Nano:

These six LEDs are wired so that the Cathode (negative end) of each LED is connected to Ground and the

Anode is connected to the Nano pin through a 470 Ohm resistor. This means that in order to light the LED,

we need to send +5v (a HIGH) to the digital output pin.

Here are the requirements for this program. Try writing the program on your own before you continue

reading the step by step directions.

By now you should have a pretty good idea of the items we need to accomplish outside of any function

(global) and in the setup() function. We need to set the pinMode() of each of the LED pins to OUTPUT and

we should probably do a digitalWrite(LOW) to make sure all the LED’s are off.

We could do this by doing the following for each LED:

 #define RED 11 // outside of any function to make global

 pinMode(RED, OUTPUT); // in setup()

 digitalWrite(RED, LOW); // in setup()

That would certainly get the job done but would require a lot of typing.

Let’s think about what we might want to do with the LEDs before we determine how to perform the

setup() activities. Let’s start by lighting each LED, in sequence, for a period of time ledOn and then off for

a period of time ledOff. To begin, let’s do them in the order of: Red, Orange, Yellow, White, Green, and

Blue. Later we know we may want to change the order so that should factor into our coding decision as

well.

Red D11
Orange D10
Yellow D9
White D6
Green D5
Blue D3

Program Requirements:

 Program name Ch_10_1_6leds

 LED pin numbers as shown above

 Sequence through each LED in the following order (Red, Orange, Yellow,

White, Green, Blue)

 For each LED, turn LED on for time ledOn and then off for time ledOff

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

59

If we were to use an Array[] that contained the LED pin numbers in the sequence that we wanted to light

them, then if we wanted to change the sequence, all we would need to do is change the order of the LED

pin numbers in the array. This sounds like a much better plan than “hard coding” the sequence as in the

above example.

What if we did the following:

Then, if we want to change the order of the LEDs being lit, we simply change the order of the colors in the

array ledArray[].

This would take care of the setup() items for the LED’s but if we want to turn them ON for time = ledOn

and OFF for time = ledOff and sequence through the list of LEDs in ledArray[], we would need to add

something like the following. We have many choices of where to add these statements. We could place

them outside the setup() or loop() functions if we want to make them global or we could put them inside

the loop() function if we were going to use them within the loop function or with a separate blinkLeds()

function if that is where we are going to use them to blink the leds. For now, let’s make them global and

place them outside of any function definition.

int ledOn = 250;

int ledOff = 100;

We would also have to add something like the following to the loop() function in order to turn each LED

on for time ledOn and off for ledOf time.

int red = 3;
int orange = 5;
int yellow = 6;
int white = 9;
int green = 10;
int blue = 11;

int ledArray[] = {red, orange, yellow, white, green, blue};

void setup() {
 // make LED pins OUTPUTs and turn off all LEDs

for(int i = 0 ; i < 6 ; i++) {
 pinMode(ledArray[i], OUTPUT);
 digitalWrite(ledArray[i], LOW);
 }
}

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

60

loop() {
 for(int i = 0 ; i < 5 ; i++) {
 digitalWrite(ledArray[i], HIGH);
 delay(ledOn);
 digitalWrite(ledArray[i], LOW);
 delay(ledOff);
 }
}

Putting all of this together, we would have the following:

int ledOn = 250;
int ledOff = 100;

int red = 3;
int orange = 5;
int yellow = 6;
int white = 9;
int green = 10;
int blue = 11;

int ledArray[] = {red, orange, yellow, white, green, blue};

void setup() {
 // make LED pins OUTPUTs and turn off LEDs

for(int i = 0 ; i < 6 ; i++) {
 pinMode(ledArray[i], OUTPUT);
 digitalWrite(ledArray[i], LOW);
 }
}

void loop() {
 // turn on each LED, one at a time for time ledOn
 // and then off for time ledOff

for(int i = 0 ; i < 6 ; i++) {
 digitalWrite(ledArray[i], HIGH);
 delay(ledOn);
 digitalWrite(ledArray[i], LOW);
 delay(ledOff);
 }
}

Figure 34 Ch_10_1_6leds

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

61

10.2 TWO DIMENSIONAL ARRAY AND NESTED “FOR” LOOPS
What if we want to create a more complex sequence of patterns for the LEDs? How could we do that? We

are going to use this program to introduce two new concepts: nested “for” loops (having one “for” loop

inside another “for” loop) and two dimensional arrays.

A two dimensional array looks like a table with rows and columns. In our case, each column is an LED so

we will have 6 columns and each row is a different pattern of on/off for the LEDs. If an element of the

array is a “1”, we will light the LED and if the element is a “0” we will turn it off.

Starting with the first row, we will sequence through all the columns, turning the corresponding LED on

or off based upon whether that element is a 1 or a 0. Then we will wait a time = ledOn, point to the next

row, and start again on this new row. In this way, each row becomes an on/off pattern for the 6 LEDs that

is illuminated for a time = ledOn, and then the pattern in the next row is illuminated. The result of lighting

each LED according to the value 1 or 0 in a row, waiting, and then performing the same action for the next

row will create a sequence of patterns for the LED’s.

When you declare a two dimensional array without initializing it, you need to specify both the number of

rows and the number of columns as follows:

#define numRows 6
#define numCols 6

int sequenceArray[numRows] [numCols];

This would declare a two dimensional array with 6 rows and 6 columns. Normally, you will want to initialize

the array at the same time as follows:

int sequenceArray [] [numCols] {
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0},
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0}
};

Notice that in this case, we did not provide a value for the number of rows – the compiler will calculate

this based upon the data that we provided to initialize the array. In general, for an “n” dimension array,

you must specify all but the last dimension – that will be calculated.

When you reference a two dimensional array, you must specify both the row and the column you are

interested in. For example, sequenceArray[1][4] would return ‘1’ since the second row (starting from 0,

remember), the fifth element (again, starting from 0) is a ‘1’ (colored orange above).

One more item to point out before we jump into coding. Notice that if we use a loop counter “i” to point

to the column in the two dimensional array, then the value of the “i”th element on the current row tells

us whether to turn on or off the LED associated with that column – but what LED is that?

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

62

From our last program, we used the one dimensional array ledArray[] to point to the pin numbers of the

LEDs in the sequence they are installed in our box. So, the loop counter “i” that is used to identify the

column in the two dimensional array will also point to the correct pin number in ledArray[i].

An example might make this clearer.

int red = 3;
int orange = 5;
int yellow = 6;
int white = 9;
int green = 10;
int blue = 11;

#define numCols 6
#define numRows 6

// this is the sequence for the 6 LEDs
int ledArray[] = {red, orange, yellow, white, green, blue};

int sequenceArray [] [numCols] {
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0},
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0}
};

If i = 3, then sequenceArray[2][i] would return “1” (see red “1” above) and using the same loop counter
“i”, ledArray[i] would return the pin associated with the “white” LED or the pin number 9. Putting this all
together, the “1” in sequenceArray[2][3] says turn on that LED and the 9 returned from ledArray[3] says
that LED is on digital pin 9.

Take a shot at programming this before you proceed to the next page.

Program Requirements:

 Name your program Ch_10_2_two_dim_array_nested_for_loops

 Create a two dimensional array containing integers named sequenceArray[] []

 sequenceArray has numCols = 6 columns (one for each LED) and numRows = your choice

 Continue to use ledArray[] to contain a list of the colors/pin numbers for the 6 LED’s

 Use a nested “for” loop with two loops: the outer loop selects the row and the inner loop

selects the columns

 If the entry in sequenceArray[j] [i] is a 1 then turn on the led ledArray[i], otherwise turn it off

 Continue to display each row for time ledOn = 300ms

 Continue to sequence through all the rows and then repeat forever

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

63

The nested “for” loops will contain two loops: an outer loop that sequences through the rows (with each

row being a different pattern that will be displayed) and an inner loop that sequences through each of the

six columns (one for each of the 6 LED’s).

So the program would look as follows:

for(int j = 0 ; j < numRows ; j++) { // outer loop increments through the ROWS

 for(int i = 0 ; i < numCols, i++) // inner loop increments through the COLUMNS
 if(sequenceArray [j][i] == 0) digitalWrite(ledArray[i], LOW);
 else digitalWrite(ledArray[i], HIGH);
 }
 delay(ledOn);
 }

/* Ch_10_2_two_dim_array_nested_for

 Using a two dimensional array and nested "for" loops to control the 6 LED light pattern

 copy and paste this program into the Arduino IDE
 name this program Ch_10_2_two_dim_array_nested_for
*/

// --
Int ledOn = 300;
int red = 3;
int orange = 5;
int yellow = 6;
int white = 9;
int green = 10;
int blue = 11;

// this is the sequence for the 6 LEDs
int ledArray[] = {red, orange, yellow, white, green, blue};

/* the 6 x 6 array represents one entire display pattern sequence. The columns represent the 6 LEDs (0 - 5)
 and the rows represent the the pattern that the 6 LEDs will display. A zero means the LED is off and a
 one means ON.
 So, the first row in the 6x6 array says LED 0 and 5 will be on, all other off, the second row indicates
 that LEd 1 and 4 will be on and so forth.
 */
#define numCols 6
#define numRows 6

int sequenceArray [] [numCols] {
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0},
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0}
};

Figure 35 Figure 14 Ch_10_2_two_dim_array_nested_for - part 1

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

64

The LED pattern sequence that we programmed starts with the top and bottom LED illuminated, then the

next two LEDs closer to the center are illuminated, and finally the center two LEDs are illuminated. Try

changing the values in the sequenceArray[] to create your own pattern sequence before you proceed to

the next section.

10.3 THREE DIMENSIONAL ARRAY AND BUTTON PUSH
Now that you have played around with several different pattern sequences, what if you have several

favorites and you would like to select which one to display without having to go back to your computer

and change the values in the sequenceArray[]? How can we program it such that each time you press the

NOMC (Normally Open, Momentary Contact) switch, you select your next pattern sequence?

For this, we are going to use a three dimensional array where each plane (each 2 dimensional array)

represents one entire LED pattern sequence. Think of the three dimensional array as a cube. If you look

at a face of the cube, you are looking at a two dimensional array where the columns represent the

individual LEDs and the rows are the various illumination patterns that go with this pattern sequence –

just like in the last example. If you go back into the cube one layer, you are at another two dimensional

array that represents another pattern.

// --
void setup() {
// configure the LED pins as outputs and turn off the LEDs
 for(int i = 0 ; i < numCols ; i++) {
 pinMode(ledArray[i], OUTPUT);
 digitalWrite(ledArray[i], LOW);
 }
}

// --
void loop() {
/* each row represents one LED pattern, display that pattern for time ledOn
 then go to next row and display that pattern
 */
 for(int j = 0; j < numRows ; j++) { // outter loop - ROW pointer
 for(int i = 0 ; i < numCols ; i++) { // inner loop - COLUMN pointer
 if(sequenceArray [j][i] == 0) digitalWrite(ledArray[i], LOW);
 else digitalWrite(ledArray[i], HIGH);
 }
 delay(ledOn);
 }
}

Figure 36 Figure 14 Ch_10_2_two_dim_array_nested_for - part 2

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

65

The syntax for declaring and initializing a three dimensional array is very similar to that of a two

dimensional array.

Here are the requirements for the program we are going to write using a three dimensional array. Spend

some time creating a program that will meet these requirements before you continue and see how we

did it.

Int nameOfThreeDimArray [],[numberOfColumns] [numberOfRows] {

 { // start of first sequence
 {1, 0, 0, 0, 0, 1}, // first pattern to display

 {0, 1, 0, 0, 1, 0}, // second pattern to display
 {0, 0, 1, 1, 0, 0}, // third pattern to display
 {1, 0, 0, 0, 0, 1}, // fourth pattern to display
 {0, 1, 0, 0, 1, 0}, // fifth pattern to display
 {0, 0, 1, 1, 0, 0} // sixth pattern to display

 }, // end of first sequence, notice the comma

 { // start of second sequence
 {1, 0, 0, 0, 0, 0},

 {0, 1, 0, 0, 0, 0},
 {0, 0, 1, 0, 0, 0},
 {0, 0, 0, 1, 0, 0},
 {0, 0, 0, 0, 1, 0},
 {0, 0, 0, 0, 0, 1}

 }, // end of second sequence

 { // start of third sequence
 {1, 0, 0, 0, 0, 0},

 {1, 1, 0, 0, 0, 0},
 {0, 1, 1, 0, 0, 0},
 {0, 0, 1, 1, 0, 0},
 {0, 0, 0, 1, 1, 0},

 {0, 0, 0, 0, 1, 1}
 } // end of third sequence

}; // semicolon at end of statement

Program Requirements:

 Name your program Ch_10_3_three_dim_array

 Create a three dimensional array sequenceArray [numPatterns] [numRows] [numCols]

 numPatterns is an int and has a value of 3 (three patterns) a counter would go 0, 1, 2

 The pointer to the current pattern being displayed is an int called ledPatternNo

 Reuse the function we created called switchPushed() to determine if you should go to the

next pattern

 Sequence through the patterns each time the switch is pushed and when you get to the last

pattern, start with the first all over again

 Do this continuously as long as power is applied

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

66

/* Ch_10_3_three_dim_array

 Using a three dimensional array to control the 6 LED light pattern
 depressing the push button switch selects the next pattern

 copy and paste this program into the Arduino IDE
 name this program Ch_10_3_three_dim_array
 */

// --
#define numCols 6 // one column for each LED
#define numRows 6 // number of patterns

int ledPatternNo = 0; // current pattern to display
int numPatterns = 3; // number of pattern sequences

int ledOn = 300; // lenght of time to display each pattern

// pin numbers for each LED
int red = 3;
int orange = 5;
int yellow = 6;
int white = 9;
int green = 10;
int blue = 11;

// this is the sequence for the 6 LEDs
int ledArray[] = {red, orange, yellow, white, green, blue};

/* each 6 x 6 array represents one entire display pattern sequence. The columns represent the 6 LEDs (0 - 5) and the rows
 represent the the pattern that the 6 LEDs will display. A zero means the LED is off and a one means ON.
 So, the first row in the first 6x6 array says LED 0 and 5 will be on, all other off, the second row indicates
 that LEd 1 and 4 will be on and so forth.
 */
int sequenceArray [] [numRows] [numCols] {
 { // light LEDs from outside -> center
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0},
 {1, 0, 0, 0, 0, 1},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 1, 0, 0}
 },
 { // light LEDs from top to bottom
 {1, 0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0},
 {0, 0, 1, 0, 0, 0},
 {0, 0, 0, 1, 0, 0},
 {0, 0, 0, 0, 1, 0},
 {0, 0, 0, 0, 0, 1}
 },
 { // light two LEDs and have them travel
 {1, 0, 0, 0, 0, 0},
 {1, 1, 0, 0, 0, 0},
 {0, 1, 1, 0, 0, 0},
 {0, 0, 1, 1, 0, 0},
 {0, 0, 0, 1, 1, 0},
 {0, 0, 0, 0, 1, 1}
 }
};

Figure 37 Three dimensional array - part 1

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

67

Notice that we are reusing our switchStatus() function and using it to move to the next plane in the 3D

cube – e.g. selecting the next pattern to run. In this program, ledPatternNo points to the plane we are

going to use (the pattern we want to use). Each time we press the button, we increment ledPatternNo

and point to the next plane, when we get to the last plane, we reset ledPatternNo to zero and start again.

void setup() {
// configure the LED pins as outputs and turn off the LEDs
 for(int i = 0 ; i < 6 ; i++) {
 pinMode(ledArray[i], OUTPUT);
 digitalWrite(ledArray[i], LOW);
 }
}
// --
void loop() {
 for(int j = 0; j < numRows ; j++) {

 for(int i = 0 ; i < numCols ; i++) {
 if(sequenceArray [ledPatternNo][j][i] == 0) digitalWrite(ledArray[i], LOW);
 else digitalWrite(ledArray[i], HIGH);
 }
 delay(ledOn);

 if(switchPushed()== true){ // select next pattern if switch is pressed
 ledPatternNo++;
 if(ledPatternNo >= numPatterns) ledPatternNo = 0;
 }
 }
}
// ---
boolean switchPushed() {

const int pushButtonSwitch = 2; // switch is on pin D2, declare as constant,
pinMode(pushButtonSwitch, INPUT_PULLUP); // D2 INPUT mode and attach a PULLUP resistor

 if(digitalRead(pushButtonSwitch) == HIGH) return false; // if 5v (HIGH) switch is NOT pushed
 else return true; // 0v if IS pushed
}

Figure 38 Ch_10_3_Three_Dim_Array_Button_Push - part 2

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

68

11 USING THE ULTRA-SONIC RANGE DETECTOR

Now we are going to turn our attention to using the ultra-sonic range detector. This is a really cool device

and operates like sonar. The range detector sends out a series of pulses and listens for an echo (a return)

where the pulses strike an object and returns. The length of time it takes for the pulse to return is used to

determine the distance to the object.

There are four pins on the range detector: power, ground, trigger, echo. Operation is quite simple, have

the trigger pin (D4) go from LOW to HIGH and stay HIGH for at least 10 uSec then return to LOW. Then

monitor the echo pin (D7) and measure the length of the return pulse in uSec.

The Arduino comes with a command to measure the length of a pulse in uSec (micro seconds, millionth

of a second): pulseIn(pinNumber,triggerHighorLow);

The pulseIn() function is general purpose and can be used to measure a “return” signal that goes from

LOW to HIGH and then back to LOW (measuring the time in the HIGH state) or the other way around. If

triggerHighorLow = HIGH, then we are measuring the time the “return” pulse is in the HIGH state – which

is what we want to do.

So we would call pulseIn(7, HIGH); to read a HIGH pulse on digital pin D7.

The speed of sound in air depends upon the humidity and temperature but for our needs, we will assume

it is constant at 1,127 feet/second or 0.013524 inches/uSec. When using pulseIn(), remember that the

pulse traveled out AND back so the time returned is twice the time we need to determine distance so we

will need to divide the return time by 2 and multiply by 0.013524. For example:

#define TRIG_PIN 4 // trigger pin on range detector is digital pin D4
#define ECHO_PIN 7 // echo pin is D7
#define TRIG_PULSE_WIDTH 15 // use 15 uSec for trigger pulse width

int distance;
pinMode(TRIG_PIN, OUTPUT); // define trigger pin as an output pin
pinMode(ECHO_PIN, INPUT); // define echo pin as an input pin
digitalWrite(TRIG_PIN, LOW); // set trigger pin to LOW

digitalWrite(TRIG_PIN, HIGH); // send 15 microsecond pulse
delayMicroseconds(TRIG_PULSE_WIDTH); // delay 15 microseconds
digitalWrite(TRIG_PIN, LOW);

distance = pulseIn(ECHO_PIN, HIGH) *2/.0135135 // wait for return pulse to go high

Remember to keep referring to: http://www.arduino.cc/en/Reference/HomePage

This page contains the Language Reference for the Arduino and lists all the functions and how to

use them. This is a VERY useful page to bookmark.

http://www.arduino.cc/en/Reference/HomePage

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

69

11.1 DETERMINE DISTANCE AND PRINT TO SCREEN
In this program, you are going to read the distance from the ultra-sonic range detector SAMPLES times

and take the average distance and print that value in inches to the computer screen. You will also use that

value to send a tone to the buzzer. The smaller the distance, the higher the tone. The highest tone will be

MAX_TONE and the lowest tone will be MIN_TONE. We will arbitrarily limit the range of the distance

measurement from 0 – 100 inches.

In order to do this last part, converting distance to frequency, we will need to convert a distance value

from 0 – 100 into a frequency from MAX_TONE to MIN_TONE. Fortunately, the Arduino C++ environment

contains a function to do just that. It is called map() and you use it as follows:

map(valueToMap, fromLow, fromHigh, toLow, toHigh);

In our case, we are going to be using

map(distanceInches, 0, 100, MAX_FREQ, MIN_FREQ);

to take the distance we measured from the ultra-sonic range detector (distanceInches) and map it from

its range of 0 – 100 inches to the frequencies MAX_FREQ to MIN_FREQ. Notice that in this case, since the

highest frequency is associated with the smallest distance the value we used for “toLow” is actually the

highest frequency (MAX_FREQ) and the value we used for “toHigh” is actually the lowest frequency.

In practice, if we have already calculated the value of distanceInches, we could do something like the

following:

int buzzerFrequency;

buzzerFrequency = map(distanceInches, 0, 100, MAX_FREQ, MIN_FREQ);

tone(BUZZER_PIN, buzzerFrequency);

A more efficient (and probably easier to read) version would be:

tone(BUZZER_PIN, map(distanceInches, 0, 100, MAX_FREQ, MIN_FREQ));

Which does not require the creation of the buzzerFrequency variable.

Take a shot at programming this before you continue.

Program Requirements:

 Name your program Ch_11_1_range_screen

 Use the variable names and values as shown above

 15 uSec trigger pulse, 3 samples and obtain the average, limit distance from 0 – 100 inches

 At 0 inches, play a tone of 4 KHz and at 100” play 60 Hz

 Print the distance in inches as well as the frequency on the computer screen

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

70

Hint 1: Remember to initialize the serial channel with Serial.begin(9600) and to include the #defines
before the setup() routine.

Hint 2: Remember to set any output pins to the output mode using pinMode() and setting their initial
values to either LOW or HIGH using digitalWrite(). For example, the trigger pin should be set low
to start so you can generate a positive pulse.

Here is an example of the definition and initialization sections of our program based upon the

requirements given to us. There is no loop() program written yet – that is next on our “to-do” list.

Now that we have all of the housekeeping out of the way, lets focus on the loop() program.

/* Ch_11_1_range_screen

 copy and paste this program into the Arduino IDE
 name this program Ch_11_1_range_screen

 uses the ultra-sonic range detector to measure the distance in inches
 to an object and print distance on screen

 also plays a tone associated with the distance from MIN_FREQ (farthest away) to MAX_FREQ (closest)
 */
// --

#define TRIG_PIN 4 // trigger pin on range detector is digital pin D4
#define ECHO_PIN 7 // echo pin is D7
#define BUZZER_PIN 8 // buzzer is on pin D8

#define TRIG_PULSE_WIDTH 15 // use 15 uSec for trigger pulse width
#define SAMPLES 3 // number of distance samples to average
#define MIN_FREQ 60 // 60 Hz minimum
#define MAX_FREQ 4000 // 4 KHz maximum

int distanceInches = 0; // used to hold the returned value of distance in inches

// ---
void setup() {
 pinMode(TRIG_PIN, OUTPUT); // set up trigger pin as an output pin
 pinMode(ECHO_PIN, INPUT); // set up echo pin as an input

 digitalWrite(TRIG_PIN, LOW); // make sure trigger pin is low to start

 Serial.begin(9600); // setup serial I/O to display
}
// ---
void loop() {

}

Figure 39 Ch_11_1_range_screen, part 1

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

71

Within the loop program we are going to have to do the following:

 Send a trigger pulse of length TRIG_PULSE_WIDTH

 Listen for and measure the echo using pulseIn(ECHO_PIN, HIGH)

 Take the value we receive from pulseIn() which is time in uSeconds and convert to distance =

pulseIn(ECHO_PIN, HIGH) * .0135135/2

 Test to be sure that the distance is between 0 and 100 inches

 Take number = SAMPLES measurements and take the average (add them together and divide by

SAMPLES) to get distanceInches

 Map this distanceInches to frequency with 0 inches = MAX_FREQ and 100 inches = MIN_FREQ

using the map() function.

 Print distanceInches to the computer screen using Serial.println() function

 Play a tone() on the BUZZER_PIN using the frequency we got back from map()

Spend some time writing the body of loop() before you move on and see how we did it. By now you should
be able to make great progress on this on your own.

void loop() {

 int duration, freq; // duration is uSec echo duration, freq is frequency to send to BUZZER_PIN
 int distance = 0; // final averaged distance over SAMPLES measurements
 int accumDistance = 0; // the total of SAMPLES distance measurements, reset accumulated distance to zero

 for(int i = 0 ; i < SAMPLES ; i++) { // measure the distance SAMPLES times and use average distance
 // send trigger pulse
 digitalWrite(TRIG_PIN, HIGH);
 delayMicroseconds(TRIG_PULSE_WIDTH); // wait TRIG_PULSE_WIDTH micro seconds
 digitalWrite(TRIG_PIN, LOW);

 // wait for echo and measure it
 duration = pulseIn(ECHO_PIN, HIGH);
 distance =(duration/2)*.0135135; // get current distance measurement

 if(distance > 100) distance = 100; // largest distance allowed is 100 inches (completely arbitrary)
 if(distance <= 0) distance = 0; // just to be sure you dont get a negative number

 accumDistance = accumDistance + distance; // add current distance to accumulated distance
 delay(100); // wait 1/10 second before taking another distance measurement
 }
 distance = accumDistance/SAMPLES; // calculate the average distance

 freq = map(distance, 0, 100, MAX_FREQ, MIN_FREQ); // map the measured distance from 0 - 100 inches

 Serial.print(“distance = “);
 Serial.print(distance);

 Serial.print(" frequency = ");
 Serial.println(freq); // to a number between MAX_FREQ and MIN_FREQ

 tone(BUZZER_PIN, freq);
}

Figure 40 Ch_11_1_range_screen, part 2

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

72

11.2 USING DISTANCE TO CREATE A BAR GRAPH WITH OUR SIX COLORED LED’S
In this program we will build on our previous range-detector program by lighting the row of 6 LED’s based

upon the distance from an object; an object nearby will light all the LED’s while an object 100” away will

only light one LED.

Since we will now have the LED’s to tell us how far away the object is, let’s also add the capability to turn

off the buzzer so we don’t go crazy. Each time the button is depressed, we will toggle between playing

and buzzer and silencing the buzzer.

Since we are going to be turning stuff ON and OFF, how about we define the following to make our code

easier to read:

#define ON true
#define OFF false

We are also going to need a global variable to keep track of whether we should be buzzing the buzzer or
not. Let’s call this variable playBuzzerFag and declare it as follows:

int playBuzzerFlag = OFF;

One last item we need to discuss is how to light from one to all six LED’s based upon the distance we read
from the ultra-sonic range detector. Since we have already learned about one, two, and three dimensional
arrays for controlling the LED’s, let’s build upon that.

In our case, a two dimensional array where each row contains the pattern of LED’s to light would work
just fine. We will have six rows each having six entries. For objects that are very close, the row will be
{1,1,1,1,1,1} and for objects that are far away (100” or more) the row would be {0,0,0,0,0,1}. So our total
array, named sequenceArray, would look as follows:

int sequenceArray [] [6] {
 {1, 1, 1, 1, 1, 1}, // all lights on, closest
 {0, 1, 1, 1, 1, 1},
 {0, 0, 1, 1, 1, 1},
 {0, 0, 0, 1, 1, 1},
 {0, 0, 0, 0, 1, 1},
 {0, 0, 0, 0, 0, 1} // only one light on, farthest
};

Let’s combine all the “setup” information for this program by using the information we used in the last
program and adding the stuff we just discussed:

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

73

/* Ch_11_2_range_leds

 copy and paste this program into the Arduino IDE
 name this program Ch_11_2_range_leds

 This program uses the ultra-sonic range detector to measure the distance in inches to an object
 And light from one to six LEDs based upon the distance (all 6 closest)
 play a tone from MIN_FREQ = 60Hz to MAX_FREQ = 4KHz based upon distance (4HKHz is closest)
 turn on/off tone using NOMC push button switch
 */
// --
#define ON true
#define OFF false

#define TRIG_PIN 4 // trigger pin on range detector is digital pin D4
#define ECHO_PIN 7 // echo pin is D7
#define BUZZER_PIN 8 // buzzer is on pin D8

#define TRIG_PULSE_WIDTH 15 // use 15 uSec for trigger pulse width
#define SAMPLES 3 // number of distance samples to average
#define MAX_DISTANCE 100 // set maximum distance to 100 inches (quite arbitrary)

#define MIN_FREQ 60 // lowest frequency is 60 Hz
#define MAX_FREQ 4000 // highest frequency is 4KHz

int playBuzzerFlag = OFF; // global variable - changed by NOMC push button switch
int distanceInches = 0; // used to hold the returned value of distance in inches

#define RED 3 // six colored LED pins
#define ORANGE 5
#define YELLOW 6
#define WHITE 9
#define GREEN 10
#define BLUE 11

// this is the sequence for the 6 LEDs
 int ledArray[] = {RED, ORANGE, YELLOW, WHITE, GREEN, BLUE};

int numCols = 6;
int numRows = 6;

int sequenceArray [] [6] {
 {1, 1, 1, 1, 1, 1}, // all lights on, closest
 {0, 1, 1, 1, 1, 1},
 {0, 0, 1, 1, 1, 1},
 {0, 0, 0, 1, 1, 1},
 {0, 0, 0, 0, 1, 1},
 {0, 0, 0, 0, 0, 1} // only one light on, farthest
};
// ---
void setup() {
 Serial.begin(9600);
 pinMode(TRIG_PIN, OUTPUT); // set up trigger pin as an output pin
 pinMode(ECHO_PIN, INPUT); // set up echo pin as an input

 digitalWrite(TRIG_PIN, LOW); // make sure trigger pin is low to start

 // configure the LED pins as outputs and turn off the LEDs
 for(int i = 0 ; i < numCols ; i++) {
 pinMode(ledArray[i], OUTPUT);
 digitalWrite(ledArray[i], LOW);
 }
}

Figure 10 CH_11_2_range_leds, part 1

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

74

Now let’s turn our attention to the tasks to be performed within the loop() program itself. In addition to

the activities we performed in the previous program we will need to:

 Monitor the push button switch using switchStatus() and toggle the global variable playBuzzerFlag

from true to false and vice-versa every time the switch is pressed.

 Since we will be lighting one LED at 100” and 6 LED’s at 0” we have 5 LED’s to control over a

distance of 100” or 20” per LED. We will need an index that will be used to select the row within

our array sequenceArray[index][] and this index will be zero when the distance is between 0” –

20”, 1 when the distance is >20” – 40”, and so on up to 5 when distance >= 100”.



For boolean variables (ones that can only be true or false) there is a useful operation that can be

performed in C and C++. The NOT operator (!) will toggle the value of a boolean variable. This means that

if the variable was true, it is changed to false and if it was false, it is changed to true. This is very useful

since you don’t need to know the current state of the variable if all you want to do is toggle it.

So if we want to toggle the state of the playBuzzerFlag every time the push button switch is pushed, all

we need to do is:

if(switchStatus() == true) playBuzzerFlag = !playBuzzerFlag; // toggle the playBuzzerFlag

Take a shot a completing this program and then look at the next page to see one way to accomplish this.

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

75

 void loop() {

 int pattern = 0; // current pattern of LEDs to display based upon distance, index into sequenceArray[pattern][]
 int duration, freq; // frequence for buzzer from 60Hz to 4KHz
 int distance = 0; // initialize starting disance as zero
 int accumDistance = 0; // reset accumulated distance to zero

 if(switchStatus() == true) playBuzzerFlag = !playBuzzerFlag; // toggle the playBuzzerFlag

 for(int i = 0 ; i < SAMPLES ; i++) {
 // send trigger pulse
 digitalWrite(TRIG_PIN, HIGH);
 delayMicroseconds(TRIG_PULSE_WIDTH); // wait TRIG_PULSE_WIDTH micro seconds
 digitalWrite(TRIG_PIN, LOW);

 // wait for echo and measure it
 duration = pulseIn(ECHO_PIN, HIGH);
 distance =(duration/2)*.0135135; // get current distance measurement

 if(distance > MAX_DISTANCE) distance = 100; // largest distance allowed is MAX_DISTANCE inches
 if(distance <= 0) distance = 0; // just to be sure you dont get a negative number

 accumDistance = accumDistance + distance; // add current distance to accumulated distance
 delay(60); // wait 60ms before taking another distance measurement
 }
 distance = accumDistance/SAMPLES; // calculate the average distance

 // average distance now constrained from 0" to 100"
 freq = map(distance, 0, 100, MAX_FREQ, MIN_FREQ); // translate from 0 - 100 to 4KHz to 60Hz

 if(playBuzzerFlag == ON) tone(BUZZER_PIN, freq);
 else noTone(BUZZER_PIN);

 pattern = map(distance, 0, 100, 0, 5);

/* each row represents one LED illumination pattern, display the pattern for each LED in the row
 pointed to by “pattern”
 */
 for(int i = 0 ; i < numCols ; i++) {
 if(sequenceArray [pattern][i] == 0) digitalWrite(ledArray[i], LOW);
 else digitalWrite(ledArray[i], HIGH);
 }

 }
// ---
boolean switchStatus() {
 static const int pushButtonSwitch = 2; // switch is on pin D2, declare as constant, hide from other functions
 pinMode(pushButtonSwitch, INPUT_PULLUP); // D2 INPUT mode and attach a PULLUP resistor

 if(digitalRead(pushButtonSwitch) == HIGH) return false; // if 5v (HIGH) switch is NOT pushed
 else return true; // if 0v (LOW) switch IS pushed
}

Figure 42 Ch_11_2_range_leds, part 2

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

76

12 CHALLENGE PROGRAMS

What follows are a number of challenge programs to increase your expertise and create additional cool

ways for your Programmable Box to interact with the environment. You will be given the requirements

and, if there is additional concepts, those will be covered. Go to the web at www.Your-Inner-Geek.com

and look under DOWNLOADS for hints as well as the full solutions to these problems.

12.1 IMPROVING THE SWITCHPUSHED() FUNCTION
In Chapter 10, lesson 3, we introduced using the push button switch to move from one LED pattern to

another. You may have noticed that when pressing the button, sometimes your program acted as if you

had pressed the button more than once – and skipped one of the patterns. The reason for this is that

when you push the button, the two pieces of metal that come together don’t just come together and stay

together, they bounce back away from each other for a fraction of a second and then come back together

again. Sometimes they do this more than once before finally coming together and staying together.

This action is called switch bounce and ordinarily, if the switch is wired directly to an LED our eye can’t

see the LED going on and off that fast so we don’t even realize that this is happening. But when we use a

computer to detect the state of the switch, the computer can detect each of these bounces and count

each one as a separate switch press. We want to get rid of this by adding “de-bounce” software so we

only count one button-push not several.

Program Requirements:

 Name your program Ch_12_1_challenge_debounce_leds

 Modify the switchPushed() function as follows

 After the initial push is detected, wait 10 ms and read the switch status again. If no longer

pushed, return not pushed if pushed then…

 As long as it stays pushed (while loop) sample, wait 10 ms, sample again. Each time the sample

is “pushed” increment a loop counter. Exit the while loop when switch no longer pushed

 If loop counter >= 3, return “pushed”

 e.g. switch must remain pushed for 30 ms to count as “pushed”

http://www.your-inner-geek.com/

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

77

12.2 VARY THE INTENSITY OF THE LEDS USING PULSE WIDTH MODULATION (PWM)
Another enhancement we can make to the three dimensional array program is to have the intensity of

the LEDs controlled by the potentiometer. This is quite simple to do thanks to a built in Pulse Width

Modulation (PWM) functionality contained in the Arduino.

In PWM, rather than have an output pin that drives an LED be always HIGH or always LOW, we can have

is switch from HIGH to LOW very rapidly. For the Nano, the PWM frequency 490 Hz. To apply a PWM signal

to a pin, simply use:

analogWrite(pinNumber, dutyCycle)

The dutyCycle specifies what portion of the time the pin is HIGH vs. LOW. For example, a dutyCycle of 0

means the pin is always LOW, a dutyCycle of 255 means the pin is always HIGH and a dutyCycle of 127

means the pin is HIGH 50% of the time and LOW 50% of the time.

So now that we know how to make the LED’s brighter and dimmer using analogWrite(), we need to figure

out how to determine the position of the potentiometer so we can use that information to control the

brightness.

The potentiometer is connected to digital pin 7 so we know we are going to either use:

int potPin = 7;

or

#define POTPIN 7

So that we can reference the correct pin.

The schematic symbol for a potentiometer is shown below. A potentiometer has three leads. The outer

two leads are at the ends of the resistor (in our case, a 10K resistor) and the center lead goes to the

“wiper”. The wiper is a contact that can move from one end of the resistor to the other as you turn the

potentiometer shaft.

In our case we have one end of the resistor connected to 5v and the other end

to ground. As the wiper moves from one end of the resistor to the other, the

voltage measured at the wiper will go from zero volts (when the wiper is at the

ground end of the resistor) to 5v (when the wiper is at the 5v end of the

resistor).

In order to read the value of the voltage on a pin, we use the Arduino function

call analogRead(pinNumber).

The analogRead() function returns a value from 0 to 1023 with 1023 representing 5 volts.

So by now we have a pretty good idea of what we need to do:

Read the value of the potentiometer using analogRead(potPinNumber) and use that value to control the

intensity of the LED using analogWrite(ledPinNumber, potValue). But wait a minute. When we read the

5v

10 K ohms

Gnd

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

78

potentiometer value we get a value from 0-1023 and when we write a value to control the PWM we are

limited to 0-255 so we are going to have to scale our potentiometer value by dividing by 4. That way the

potentiometer value will be limited to 0-255. Just what the PWM function required.

Note: In this case the scaling was easy, just divide by 4 but for more complicated scaling, there is a scaling

function called:

map(valueToMap, fromLow, fromHigh, toLow, toHigh)

In our case we could have used this function as: map(potValue, 0, 1023, 0, 255);

Program Requirements:

 Name your program Ch_12_2_challenge_pwm_intensity_leds

 Use analogRead(potPinNumber) to get potentiometer position

 Scale that value by dividing by 4 to get the range to 0-255

 Use analogWrite(ledPinNumber, potValue/4) to control LED intensity

V1.0 Copyright © 2014, 2015 Your Inner Geek™, LLC

79

13 APPENDIX:

Device Analog/Digital
pin number

Notes:

Red LED Digital pin D3 HIGH to light

Orange LED Digital pin D5 HIGH to light
Yellow LED Digital pin D6 HIGH to light
White LED Digital pin D9 HIGH to light
Green LED Digital pin D10 HIGH to light

Blue LED Digital pin D11 HIGH to light

Dual Color LED7
 Blue
 Red

Digital pin D12
Digital pin D14

Low to light
Low to light

Dual Color LED8
 Blue
 Red

Digital pin D13
Digital pin D15

Low to light
Low to light

Buzzer Analog pin A8 tone()

Ultra sonic range
 Trigger Send
 Echo Receive

Digital pin D4
Digital pin D7

Potentiometer Analog pin A7

Push Button Switch Digital pin D2 pinMode(2, INPUT_PULLUP)

