|Qinetics

IQ-MC-17-15-24C-H

Three Phase Brushless Motor Controller/Driver 17 V 15 A

1 Features

e Controls one three-phase brushless motor

e Supply voltage 5-17 V DG

e Output current 15 AT

e Sensored vector control with space vector PWM
e +28000 RPM Max

e Precise to 0.022°

e Position control with tunable PID

e Velocity control with tunable PID + 2nd order
polynomial feed forward

e Torque contro?

e Current contro

e Voltage control

e Coast and brake modes
e Regenerative braking

e Active freewheeling

e Built-in current limitZ

e Serial (UART), 22, 1-2ms PWME,
OneShot1252, OneShot422, MultiShot®

e OPTION: Anticogging torque ripple reduction

2 Applications

e UAV propeller, reversible/3D capable
e Gimbals

e 3D printers

e Robotics

e Haptic devices

3 Description

The IQ-MC-17-15-24C-H is a sensored, three phase
brushless motor controller. It utilizes a high resolu-
tion magnetic rotary position sensor and a powerful
ARM Cortex-M4 processor. The 1Q-MC-17-15-24C-
H commutes motors smoothly at any speed between
0 and 28,000 RPM in either direction. The sensored
vector control with space vector PWM is up to twice
as efficient as sensorless electronic speed controllers

1Subject to change
2Estimated, +£20%
3In development
4Planned

BRI

8

that use block commutation. Furthermore, this con-
troller can output 4.8% more shaft power compared
to block commutation controllers in voltage limited
applications. The controller is capable of communi-
cating via UART (3.3 V logic level serial), I°C, 1-2
ms PWM, and OneShot125 PWM.

With the Anticogging option the torque ripple
from cogging torque is effectively reduced by up to
88%.

3 DESCRIPTION

(©2017 1Qinetics Technologies LL.C

1Q-MC-17-15-24C-H |Qinetics

4 Absolute Maximum Ratings

Description Symbol | Min Max | Unit | Notes

Supply Voltage Veeo 0 17 \% Designed for 12.6 V = 3S LiPo
Continuous Stall Current Is - 11.1 A

Continuous Rotating Current Isgr - 15 A

Pulsed Stall Current Isp - 60 A

Digital Logic Voltage Vi -0.3 7.3 \% 3.3V system, 5V tolerant

5 Electrical Interface

Motor Controller TX \
Host RX
Negative
Motor Controller RX
Host TX
Positive Negative
(a) XT-30 Power Connector (b) JR Servo Communication Connector

5.1 Supply Wiring

Power is transmitted to the 1Q-MC-17-15-24C-Hvia an XT-30 connector and 6cm of 18 AWG wires. The
motor controller has the male connector, while the supply has the female connector. Both genders of the
connector have positive and negative markings. The wires are soldered directly to the motor controller PCB
for lower resistance. Please refrain from unnecessary tugging.

5.2 Communication Wiring

The standard communication connector is a JR type servo connector with 12in of wire. These connectors
have 0.1lin spacing and can be inserted into standard perfboard and breadboards with a 3x1 0.1lin male-to-
male header. Brown is ground, red is motor controller RX (host TX), orange is motor controller TX (host
RX).

5Usable on 4S LiPo systems as long as extreme care is taken to ensure there are no no voltage spikes at the motor controller.
A Zener diode with a Zener voltage below 17 V is recommended for power supply and other applications that cannot absorb
energy from motor regeneration. We recommend a 1N5351B for 12 V systems that may experience light regeneration.

(©2017 IQinetics Technologies LLC 2 5 ELECTRICAL INTERFACE

|Qinetics 1Q-MC-17-15-24C-H

6 Messaging

6.1 Introduction

IQinetics uses a fully featured, serial based protocol for communicating with motor controllers. This com-
munication protocol is broken into classes of related functionality. As such, IQinetics supplies libraries for
communicating with the motor controllers in the object-oriented languages C++ (C++11 standard) and
Matlab.

6.2 C++ Libraries

The C++ libraries contain all of the required code to form and decode communication packets. They also
contain tools for buffering packets until ready for transmission on your hardware and for storing received
packets until parsing.

Each communication client object is capable of forming packets to send get, set, and save messages to a
motor controller. This is done in the library with a sub-object for each piece of data that can be get, set,
and saved. Thus, to form a get message, use

client_object.sub_object.get (CommunicationInterface &com)

To form a set message with a value of data type T, use
client_object.sub_object.set(CommunicationInterface &com, T value)
To form a set message with no value, use
client_object.sub_object.set(CommunicationInterface &com)

Finally, to form a save message, use

client_object.sub_object.save (CommunicationInterface &com)

These commands form serialized get/set/save packets and store them into a CommunicationInterface
object. We supply a hardware agnostic CommunicationInterface called GenericInterface. Once packets are
stored in the Genericlnterface object, the user must remove the bytes with the class method

interface_object.GetTxBytes(uint8_t* data_out, uint8_t& length_out)

and send the bytes in data_out over the hardware serial.
Similarly, when bytes are received over the hardware serial they must be transferred into the Genericln-
terface using the class method

interface_object.SetRxBytes(uint8_t* data_in, uintl6_t length_in)
Once transferred, a packet can be peeked using
int8_t interface_object.PeekPacket(uint8_t **packet, uint8_t *length)

which will return 1 if there is a packet, 0 if not. If there is a packet, this packet must be passed to the client
objects using

client_object.ReadMsg(CommunicationInterface& com, uint8_t* rx_data, uint8_t rx_length)

Once passed to all objects, drop the packet using interface_object.DropPacket ().
You can check for newly received data with

client_object.sub_object.IsFresh()
To retrieve the most recent data, regardless of its freshness, use
data = client_object.sub_object.get_reply()

For a complete example of usage, please see the Arduino documentation as well as the documentation
for the client classes.

6 MESSAGING 3 (©2017 1Qinetics Technologies LL.C

IQ-MC-17-15-24C-H

|Qinetics

6.2.1 Arduino

These C++ libraries are compatible with Arduino. To use them, copy all files in IQinetics_cpp/inc and
IQinetics_cpp/src into a single folder. See the instructions on this page to install that folder as a library:
https://www.arduino.cc/en/Guide/Libraries. Usage is identical to the C++ documentation.

Below is a complete example Arduino sketch:

~
*

IQinetics serial communication example.

The circuit:
LED attached from pin 13 to ground

Created 2016/12/28 by Matthew Piccoli

* XK X X X X X X X X X X *

This example code is in the public domain.

*
~

// Includes required for communication
// Message forming interface
#include <generic_interface.hpp>

// Client that speaks to complex motor controllers

#include <complex_motor_control_client.hpp>

// LED pin
const int kLedPin = 13;

// This buffer is for passing around messages.
// We use one buffer here to save space.
uint8_t communication_buffer[256];

// Stores length of message to send or receive
uint8_t communication_length;

// Time in milliseconds since we received a packet

unsigned long communication_time_last;

// Make a communication interface object
GenericInterface com;

// Make a complex motor control object
ComplexMotorControlClient motor_client(0);

void setup() {
// Initialize the Serial peripheral
Seriall.begin(115200);
// Initialize the LED pin as an output:
pinMode (kLedPin, OUTPUT);

// Initialize communication time
communication_time_last = millis();

Turns off the LED when the motor’s position is under pi.
Turns on the LED when the motor’s position is over pi.

Arduino RX is directly connected to motor TX
Arduino TX is directly connected to motor RX

(©2017 IQinetics Technologies LLC 4

6 MESSAGING

https://www.arduino.cc/en/Guide/Libraries

|Qinetics 1Q-MC-17-15-24C-H

void loop() {

// Puts an absolute angle request message in the outbound com queue
motor_client.obs_absolute_angle_.get(com);

// Grab outbound messages in the com queue, store into buffer
// If it transferred something to communication_buffer...
if (com.GetTxBytes (communication_buffer,communication_length))
{
// Use Arduino serial hardware to send messages
Seriall.write(communication_buffer,communication_length);

}

// wait a bit so as not to send massive amounts of data
delay (100) ;

// Reads however many bytes are currently available

communication_length = Seriall.readBytes(communication_buffer, Seriall.available());
// Puts the recently read bytes into com’s receive queue

com.SetRxBytes (communication_buffer,communication_length);

uint8_t *rx_data; // temporary pointer to received typetdata bytes
uint8_t rx_length; // number of received type+data bytes

// while we have message packets to parse

while(com.PeekPacket (&rx_data,&rx_length))

{
// Remember time of received packet
communication_time_last = millis();
// Share that packet with all client objects
motor_client.ReadMsg(com,rx_data,rx_length);
// Once we’re done with the message packet, drop it
com.DropPacket () ;

}

// Check if we have any fresh data
// Checking for fresh data is not required, it simply
// lets you know if you received a message that you
// have not yet read.
if (motor_client.obs_absolute_angle_.IsFresh()) {
// Check if position is above pi
if (motor_client.obs_absolute_angle_.get_reply() > 3.14f) {
// turn LED on:
digitalWrite(kLedPin, HIGH);
}
else {
// turn LED off:
digitalWrite(kLedPin, LOW);
}
}

// If we haven’t heard from the motor in 250 milliseconds

6 MESSAGING 5 (©2017 1Qinetics Technologies LL.C

1Q-MC-17-15-24C-H |Qinetics

if(millis() - communication_time_last > 250)

{
// Toggle the LED
// Should flash at 5 hz thanks to the delay(100) above
digitalWrite(kLedPin, !digitalRead(kLedPin));

}

6.3 Matlab Libraries

The Matlab libraries contain everything required to open a serial port, send and receive messages on that
serial port, and parse the results. First, create a Messagelnterface, which opens a serial port and is responsible
for the transmission and reception of messages, by typing

com = MessageInterface(’COM_PORT’,115200);

Replace the "COM_PORT" string with the port string for your serial device (FTDI or similar). In Windows,
this string has the form ’'COM1’, "COM2’, etc. In a Unix based OS, this string has the form ’/dev /ttyUSB0’
or similar and depends on the device. The default serial baud rate for the motor controller is 115200.

To communicate to the motor controller, create a client object using

client_object = ClientClass(’com’,com);

Then, send and receive messages using this object via the get, set, and save member functions.
value = client_object.get(’short_name’);

sends a get request to the motor controller and waits for its response. The responded value is returned.

client_object.set(’short_name’, value); % with value
client_object.set(’short_name’); % without value

sends a set message. If the message requires a value, the value is stored in the motor controller’s RAM.
client_object.save(’short_name’) ;

sends a save message, which store’s the current RAM value into non-volatile memory. These functions are
blocking and perform all necessary tasks for messaging.
All clients have added member functions list, get_all, set_all, set_verify, and save_all.

client_object.list()

displays all possible short names, their data types, and their units.
data_all = client_object.get_all()

performs a get on all messages in 1ist and stores it in data_all.

client_object.set_all(data_all);
data.short_namel = 0;
data.short_name2 = 1;
client_object.set_all(data);

will send set messages for all fieldnames in data.
client_object.set_verify(’short_name’, value);

performs the same function as set, but also performs a get to verify transmission. It will retry up to 10
times if transmission fails.

client_object.save_all()

saves all values currently in the motor controller’s RAM into non-volatile memory.
For a complete example of usage, please see the documentation for the client classes.

(©2017 IQinetics Technologies LLC 6 6 MESSAGING

|Qinetics 1Q-MC-17-15-24C-H

6.4 Buffered Initialized Encoder

The Buffered Initialized Encoder reads motor positions from the encoder then estimates and filters the motor
velocity.

6.4.1 C++

To use Buffered Initialized Encoder in C++, include buffered_Initialized_Encoder.hpp. This allows the
creation of a BufferedInitializedEncoderClient object. See Table[I]for available messages. All message objects
use the Short Name with a trailing underscore. All messages use the standard Get/Set/Save functions.

A minimal working example for the BufferedInitializedEncoderClient is:

#include "generic_interface.hpp"
#include "buffered_initialized_encoder_client.hpp"

float velocity_filtered;

void main()

{

// Make a communication interface object
GenericInterface com;

// Make a Buffered Voltage Monitor object with obj_id O
BufferedInitializedEncoderClient encoder(0);

// Use the Buffered Initialized Encoder object
encoder.velocity_.get (com);
encoder.filter_fc_.set(com,100);

// Insert code for interfacing with hardware here

// Read response
velocity_filtered = encoder.velocity_.get_reply();
}

6.4.2 Matlab

To use Buffered Initialized Encoder in Matlab, all IQinetics communication code must be included in your

path. This allows the creation of a BufferedInitializedEncoderClient object. See Table [I| for available

messages. All message strings use the Short Names. All messages use the standard Get/Set/Save functions.
A minimal working example for the BufferedInitializedEncoderClient is:

% Make a communication interface object
com = MessageInterface(’COM18°,115200);

% Make a Buffered Initialized Encoder object with obj_id O
encoder = BufferedInitializedEncoderClient(’com’,com);

% Use the Buffered Initialized Encoder object
velocity_filtered = encoder.get(’velocity’);
encoder.set(’filter_fc’,100);

6.5 Buffered Voltage Monitor
The Buffered Voltage Monitor samples and filters the input voltage to the motor controller.

6 MESSAGING 7 (©2017 1Qinetics Technologies LL.C

1Q-MC-17-15-24C-H |Qinetics

Table 1: Type ID 53: Buffered Initialized Encoder

Sub ID Short Name Data Type | Unit | Note

0 zero_angle float rad Angle from absolute to incremental
1 velocity_filter fs uint32 Hz Filter sample frequency
2 velocity_filter fc uint32 Hz Filter cutoff frequency
3 rev uint32 Rev32 | Position in UQ32 format, 0 to 1, with zero_angle
4 absolute_rev uint32 Rev32 | Position in UQ32 format, 0 to 1, without zero_angle
5 rad float rad Position with zero_angle
6 absolute_rad float rad Position without zero_angle
7 velocity float rad/s | Filtered velocity

6.5.1 C++

To use Buffered Voltage Monitor in C++, include buffered_voltage_monitor.hpp. This allows the creation
of a BufferedVoltageMonitorClient object. See Table [2] for available messages. All message objects use the
Short Name with a trailing underscore. All messages use the standard Get/Set/Save functions.

A minimal working example for the Buffered VoltageMonitorClient is:

#include "generic_interface.hpp"
#include "buffered_voltage_monitor_client.hpp"

float volts_filtered;

void main()

{

// Make a communication interface object
GenericInterface com;

// Make a Buffered Voltage Monitor object with obj_id O
BufferedVoltageMonitorClient volt_monitor(0);

// Use the Buffered Voltage Monitor object
volt_monitor.volts_.get(com) ;
volt_monitor.filter_fc_.set(com,100);

// Insert code for interfacing with hardware here

// Read response
volts_filtered = volt_monitor.volts_.get_reply();
}

6.5.2 Matlab

To use Buffered Voltage Monitor in Matlab, all IQinetics communication code must be included in your
path. This allows the creation of a BufferedVoltageMonitorClient object. See Table [2|for available messages.
All message strings use the Short Names. All messages use the standard Get/Set/Save functions.

A minimal working example for the Buffered VoltageMonitorClient is:

% Make a communication interface object
com = MessageInterface(’COM18’,115200);

% Make a Buffered Voltage Monitor object with obj_id 0
volt_monitor = BufferedVoltageMonitorClient(’com’,com);

(©2017 IQinetics Technologies LLC 8 6 MESSAGING

|Qinetics

IQ-MC-17-15-24C-H

% Use the Buffered Voltage Monitor object
volts_filtered = volt_monitor.get(’volts’);
volt_monitor.set(’filter_fc’,100);

Table 2: Type ID 42: Buffered Voltage Monitor

Sub ID | Short Name | Data Type | Unit | Note
0 volts_raw float A% Unfiltered voltage
2 volts float A% Filtered Voltage
11 volts_gain float
16 filter_fs uint32 Hz | Filter sample frequency
17 filter_fc uint32 Hz | Filter cutoff frequency

6.6 System Control

System Control allows the user to perform low level tasks on the motor controller’s microcontroller and
gather basic information.

6.6.1 C++4

To use System Control in C++, include system_control_client.hpp. This allows the creation of a System-
ControlClient object. See Table [3] for available messages. All message objects use the Short Name with a
trailing underscore. All messages use the standard Get/Set/Save functions.

A minimal working example for the SystemControlClient is:

#include "generic_interface.hpp"
#include "system_control_client.hpp"

uint16_t mem_size;

void main()

{

// Make a communication interface object
GenericInterface com;

// Make a System Control object with obj_id 0
// System Control objects are always obj_id 0
SystemControlClient system_control(0);

// Use the System Control object
system_control.mem_size_.get(com);
system_control.reboot_program_.set (com) ;

// Insert code for interfacing with hardware here

// mem_size = system_control.mem_size_.get_reply();

6.6.2 Matlab

To use System Control in Matlab, all IQinetics communication code must be included in your path. This
allows the creation of a SystemControlClient object. See Table [3|for available messages. All message strings
use the Short Names. All messages use the standard Get/Set/Save functions.

A minimal working example for the SystemControlClient is:

NE

6 MESSAGING (©2017 1Qinetics Technologies LL.C

1Q-MC-17-15-24C-H |Qinetics

% Make a communication interface object
com = MessageInterface(’COM18’,115200);

% Make a System Control object with obj_id O
% System Control objects are always obj_id O
system_control = SystemControlClient(’com’,com);

% Use the System Control object

system_control.get(’mem_size’);
system_control.set (’reboot_program’) ;

Table 3: Type ID 5: System Control

Sub ID Short Name Data Type | Unit | Note
0 reboot_program Reboots the motor controller with saved values
1 reboot_boot_loader Reboots into the boot loader
2 dev_id uint16
3 rev_id uint16
4 uid1 uint32
5 uid2 uint32
6 uid3 uint32
7 mem_size uint16 Kb
8 build_year uint16 year
9 build_month uint8 mon
10 build_day uint8 day
11 build_hour uint8 hour
12 build_minute uint8 min
13 build_second uint8 S
14 module_id uint8 id The ID used for all obj_id on this module

6.7 Complex Motor Control

Complex Motor Control is a multi-mode motor motion controller. It exposes 3 closed loop controllers—angle,
velocity, current®. It also provides access to a number of open loop control modes.

6.7.1 C++

To use Complex Motor Control in C++, include complex_motor_control.hpp. This allows the creation of a
ComplexMotorControlClient object. See Table [4] for available messages. All message objects use the Short
Name with a trailing underscore. All messages use the standard Get/Set/Save functions.

A minimal working example for the ComplexMotorControlClient is:

#include "generic_interface.hpp"
#include "complex_motor_control_client.hpp"

float abs_angle;

void main()

{

// Make a communication interface object
GenericInterface com;

6Closed loop available on some models, open loop on the remaining models

(©2017 IQinetics Technologies LLC 10 6 MESSAGING

|Qinetics 1Q-MC-17-15-24C-H

// Make a Complex Motor Control object with obj_id O
ComplexMotorControlClient motor_control(0);

// Use the Complex Motor Control object
motor_control.obs_absolute_angle_.get(com);
motor_control.cmd_angle_.set(com,3.14f);

// Insert code for interfacing with hardware here

// Read response
abs_angle = motor_control.obs_absolute_angle_.get_reply();

}

6.7.2 Matlab

To use Complex Motor Control in Matlab, all IQinetics communication code must be included in your path.
This allows the creation of a ComplexMotorControlClient object. See Table [4] for available messages. All
message strings use the Short Names. All messages use the standard Get/Set/Save functions.

A minimal working example for the ComplexMotorControlClient is:

% Make a communication interface object
com = MessageInterface(’COM18’,115200);

% Make a Complex Motor Control object with obj_id O
motor_control = ComplexMotorControlClient(’com’,com);

% Use the System Control object
abs_angle = motor_control.get(’obs_absolute_angle’);
motor_control.set(’cmd_angle’,3.14);

6 MESSAGING 11 (©2017 1Qinetics Technologies LL.C

IQ-MC-17-15-24C-H

|Qinetics

Table 4: Type ID 51: Complex Motor Control

Sub ID Short Name Data Type Unit Note

0 cmd_mode uint8 enum 0 = phase pwm, 1 = phase volts, 2 = spin pwm, 3 = spin
volts, 4 = brake, 5 = coast, 6 = calibrate, 7 = velocity, 8
= angle, 9 = spin amps

1 cmd_phase_pwm float pwm -1tol

2 cmd_phase_volts float \% -supply voltage to supply voltage

3 cmd_spin_pwm float pwm -1tol

4 cmd_spin_volts float \% -supply voltage to supply voltage

5 cmd_brake

6 cmd_coast

7 cmd _calibrate float pwm

8 cmd_velocity float rad/s Sets target speed for velocity controller

9 cmd_angle float rad Sets target angle for position controller

10 drive_pwm float pwm The pwm currently used

11 drive_volts float \% The voltage currently used

12 mech_lead_angle float rad

13 obs_supply_volts float \% Observed supply voltage

14 obs_supply_amps float \% Observed supply amperage

15 obs_angle float \% Observed angle using zero_angle

16 obs_absolute_angle float \Y Observed angle ignoring zero_angle

17 obs_velocity float \Y Observed velocity

18 motor_pole_pairs uint16

19 motor_emf_shape uint8

20 motor_Kv float RPM/V

21 motor_R_ohm float ohm

22 motor_I_max float A Software current limit

23 permute_wires uint8 bool

24 calibration_angle float rad

25 lead_time float S

26 commutation_hz uint32 Hz

27 control_hz uint32 Hz

28 phase_angle float rad

29 calibration_time float S

30 velocity filter_fc uint32 Hz Cutoff frequency for velocity filter

31 velocity _filter_value float rad/s Observed velocity with filter

32 velocity _Kp float V/(rad/s) | Velocity control proportional gain

33 velocity _Ki float V/(rad) Velocity control integral gain

34 velocity _Kd float V/(rad/s?) | Velocity control derivative gain

35 velocity _ff0 float \% Velocity control constant feed forward

36 velocity _ff1 float V/(rad/s) | Velocity control linear feed forward

37 velocity {2 float V/(rad/s)? | Velocity control quadratic feed forward

38 angle_Kp float V/(rad) Position control proportional gain

39 angle_Ki float V/(rad*s) | Position control integral gain

40 angle_Kd float V/(rad/s) | Position control derivative gain

42 est_motor_amps float A Estimated motor amperage

43 est_motor_torque float Nm Estimated motor torque

44 obs_motor_amps float A Observed motor amperage

45 ctrl_spin_amps float A -motor_[_max to motor_I_max

46 ctrl_spin_torque float Nm

47 amps_Kp float V/A Current control proportional gain

48 amps_Ki float V/(A*s) Current control integral gain

49 amps_Kd float V/(A/s) Current control derivative gain

50 volts_limit float \Y Maximum regen voltage

(©2017 IQinetics Technologies LLC

12/12]

6 MESSAGING

	Features
	Applications
	Description
	Absolute Maximum Ratings
	Electrical Interface
	Supply Wiring
	Communication Wiring

	Messaging
	Introduction
	C++ Libraries
	Arduino

	Matlab Libraries
	Buffered Initialized Encoder
	C++
	Matlab

	Buffered Voltage Monitor
	C++
	Matlab

	System Control
	C++
	Matlab

	Complex Motor Control
	C++
	Matlab

