

BIOLOGY REVISION SHEET FINAL EXAM

TERM-III

Session: 2017-18

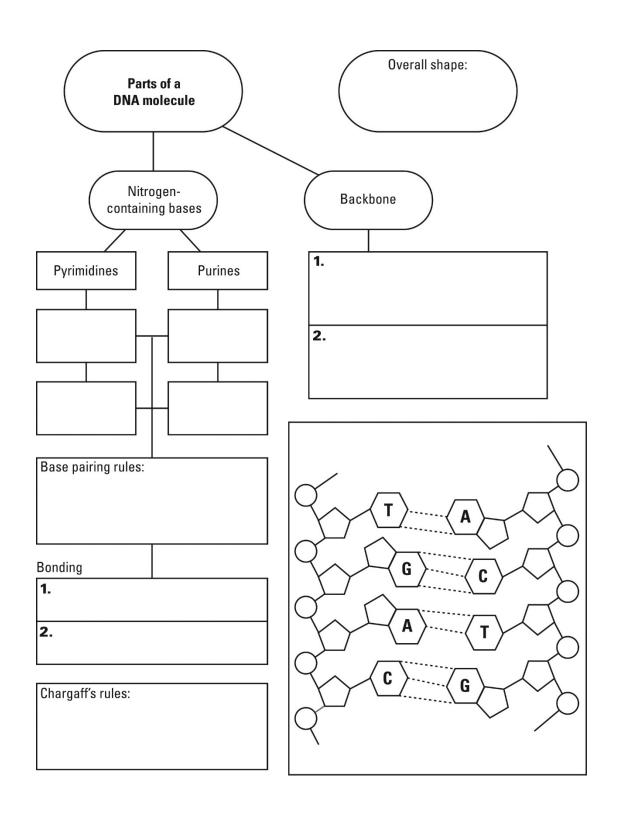
CCS: 10.BIO.4 a, 5 a, 5 b.

Name:

Grade: 10

CHAPTER.8:

SECTION 8.1, SECTION 8.2, SECTION 8.3, SECTION 8.4 & SECTION 8.5.

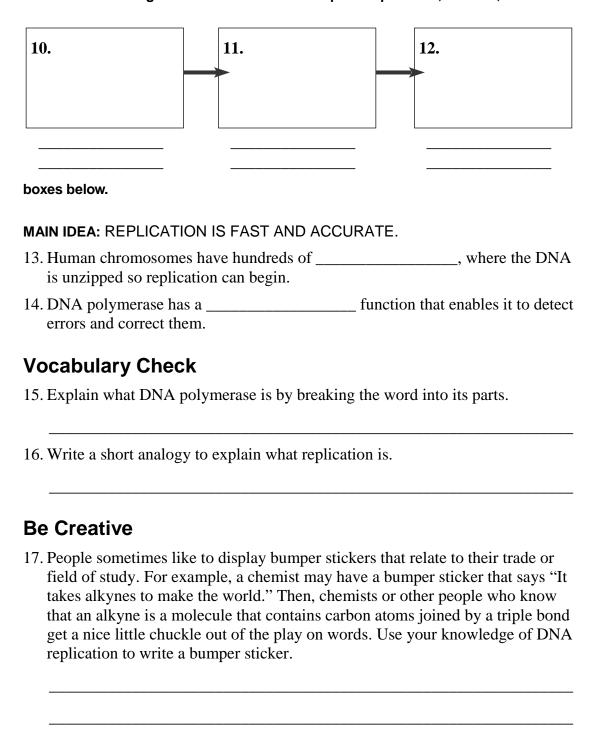

NOTE: THE STUDENTS SHOULD FIRST STUDY FROM THEIR TEXTBOOK AND THEN TRY TO SOLVE THIS REVISION SHEET INDEPENDANTLY.

MR. ABID UR REHMAN BIOLOGY TEACHER

 Which scientist used chemical analysis to show that the genetic material in bacteria is DNA? a. Martha Chase b. Oswald Avery c. Frederick Griffith d. Alfred Hershey
 2. How did Hershey and Chase's use of radiolabeled bacteriophages to study the genetic material validate Avery's research? a. It demonstrated conclusively that the genetic material is not protein. b. It showed that bacteriophages are not digested by bacterial enzymes. c. It proved that bacteria will take up phosphorus, but not sulfur. d. It confirmed that bacteriophages cannot inject radiolabeled DNA.
 3. Figure 8.1 shows a single strand of DNA. Identify the nucleotide sequence of the other DNA strand. C C G T A C T
FIG. 8.1 a. GGCUTGU b. AATGCAG c. GGCATGA d. TTACGTC
 4. The DNA double helix model used today is the product of research done by scientists a. Hershey and Chase. b. Watson and Crick. c. Pauling and Franklin. d. Chargaff and Griffith.
 5. Suppose you can read the sequence of bases on only one strand of the double helix. What would you use to figure out the sequence on the other strand? a. central dogma b. x-ray crystallography c. Chargaff 's rules d. base pairing rules
 6. Which of the following is the site of DNA replication in eukaryotes? a. cytoplasm b. ribosome c. nucleus d. vacuole

	 7. What does DNA polymerase do during replication? a. binds nucleotides together and corrects base pair errors b. transmits messages that are translated into proteins c. attracts amino acids to the ribosomes for assembly d. recognizes and points out new origins of replication
:	8. Figure 8.2 shows a single strand of DNA. Identify the nucleotide sequence of the complementary RNA strand.
	a. ATUTUAG b. CAAGACT c. AUCUCAG d. ATCTCAG
	9. What "message" does mRNA carry? a. the genetic code that, when translated, forms proteins b. orders for making ribosomes, a cell's protein factories c. the order of base pairs in complementary RNA strands d. the number of codons in an individual reading frame
1	 0. When does replication occur? a. once in every cell cycle b. when nucleotides float in the nucleus c. during the cell's M phase d. when tRNA unzips DNA
1	 Crick's central dogma of molecular biology is essentially a summary of a. base pairing rules for all nucleotides. genetic code stored in all start codons. amino acid relationships to ribosomes. replication, transcription, and translation.
1	2. How many amino acids are coded for in the following sequence of mRNA nucleotides? Assume the reading frame begins with the first nucleotide. CGAUACAGUAGC
	a. 3 c. 6 b. 4 d. 12

	13. When does mRNA processing take place? a. after replication b. after translation c. after transcription d. after protein synthesis
	14. The nucleotide sequences that are removed during mRNA processing are calleda. operators.b. promotors.c. exons.
1.	What was "transformed" in Griffith's experiment?
2.	Which molecule had entered the bacterium in the Hershey-Chase experiments, sulfur or phosphorus? Which molecule is a major component of DNA?
3.	What did Chargaff's rules state?
4.	What did Franklin's data show about the three-dimensional structure of DNA?
5.	What forms the backbone strands of the DNA double helix? What connects these strands in the middle?
6.	Why is DNA replication described as semiconservative?
7.	What are two major functions that DNA polymerase performs?
.V	What is stated in the central dogma?
9.	What are the three main types of RNA? Which is translated into a protein?


KEY CONCEPT

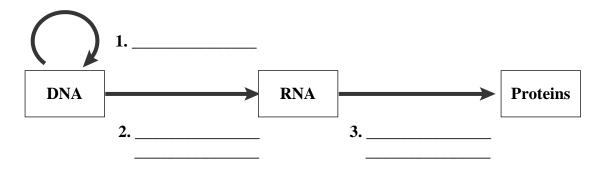
DNA replication copies the genetic information of a cell.

VOCABULARY

replication		DNA polymerase
		Replication copies the genetic information. ONA replication?
2.	Where do	es DNA replication take place in a eukaryotic cell?
3.	When is Γ	ONA replicated during the cell cycle?
4.	Why does	s DNA replication need to occur?
5.	What is a	template?
6.		and of DNA had the sequence TAGGTAC, what would be the of the complementary DNA strand?
MΑ	IN IDEA:	Proteins carry out the process of replication.
7.	What role	es do proteins play in DNA replication?
8.	What mus	st be broken for the DNA strand to separate?
9.	Why is D	NA replication called semiconservative?

Use words and diagrams to summarize the steps of replication, in order, in the

KEY CONCEPT


Transcription converts a gene into a single-stranded RNA molecule.

VOCABULARY

central dogma	messenger RNA (mRNA)
RNA	ribosomal RNA (rRNA)
transcription	transfer RNA (tRNA)
RNA polymerase	

MAIN IDEA: RNA carries DNA's instructions.

Label each of the processes represented by the arrows in the diagram below. Write where each of these processes takes place in a eukaryotic cell in parentheses.

Fill in the table below to contrast DNA and RNA.

DNA	RNA
4. Contains the sugar deoxyribose	
5.	Has the bases A, C, G, and U
6. Typically double-stranded	

MAIN IDEA: Transcription makes three types of RNA.					
7. What enzyme helps a cell to make a strand of RNA?					
8. Summarize the	e three key steps of transcription.				
9. Write the basic	c function of each type of RNA in the chart below.				
Type of RNA	Function				
mRNA					
rRNA					
tRNA					
MAIN IDEA: The t	transcription process is similar to replication.				
10. List two ways	that the processes of transcription and replication are similar.				
11. List two ways	that the end results of transcription and replication differ.				
Vocabulary 0	Check				
12. How does the	name of each type of RNA tell what it does?				
13. What is transcr	ription?				

KEY CONCEPT

Translation converts an mRNA message into a polypeptide, or protein.

VOCABULARY

translation	stop codon	anticodon	
codon	start codon		
MAIN IDEA: Amino 1. What is translati	acids are coded by mRNA on?	base sequences.	
2. What is a codon	?		

3. Would the codons in Figure 5.1 be found in a strand of DNA or RNA?

4. What is a reading frame?

Refer to Figure 5.1 to complete the table below.

Codon	Amino Acid or Function
5. AGA	
6. UAG	
7.	tryptophan (Trp)
8. GGA	

141 A 141	IDE A .	Amino	acide	ara	linkod	to	become	_	protoin
IVI A I IVI	IDEA:	AIIIIIIO	acius	are	III IKEU	ω	become	а	protein.

9.	and		are the tools that help a cell
	translate an mRNA me	ssage into a polype	ptide.
10.	The	subunit of a riboso	ome holds onto the mRNA strand.
11.	The	subunit of a riboso	ome has binding sites for tRNA.

	ched to an at one end and has an other end.
Fill in the cycle diagram belo	w to outline the steps of translation.
Ribosome assembles on start codon of mRNA strand.	A.
C.	B.
	When the ribosome encounters a stop codon, it falls apart and the protein is released.
Vocabulary Check	
13. What are AGG, GCA, ar	d GUU examples of?
14. What is a set of three nucleon to an mRNA codon?	leotides on a tRNA molecule that is complementary
15 What do codons code for	in addition to amino acids?

MR. ABID UR REHMAN
BIOLOGY TEACHER