

Write a verbal description for each algebraic expression.

1. 100 – 5 <i>n</i>	2. 0.25 <i>r</i> + 0.6s	3. $\frac{3m-8n}{13}$

Write an algebraic expression for each verbal description.

- 4. Half of the seventh graders and one third of the eighth graders were divided into ten teams.
- 5. Thirty percent of the green house flowers are added to 25 ferns for the school garden.
- 6. Four less than three times the number of egg orders and six more than two times the number of waffle orders.

6-2 One-Step Equations with Rational Coefficients *Reteach*

Using Addition to Undo Subtraction

Addition "undoes" subtraction. Adding the same number to both sides of an equation keeps the equation balanced.

$$x-5 = -6.3$$

 $x-5+5 = -6.3+5$
 $x = -1.3$

Using Subtraction to Undo Addition

Subtraction "undoes" addition. Subtracting a number from both sides of an equation keeps the equation balanced.

$$n + \frac{3}{4} = -15$$
$$n + \frac{3}{4} - \frac{3}{4} = -15 - \frac{3}{4}$$
$$n = -15\frac{3}{4}$$

Be careful to identify the correct number that is to be added or subtracted from both sides of an equation. The numbers and variables can move around, as the problems show.

Solve using addition or subtraction.

1.
$$6 = m - \frac{7}{8}$$
 2. $3.9 + t = 4.5$ 3. $10 = -3.1 + j$

Multiplication Undoes Division

To "undo" division, multiply both sides of an To equation by the number in the denominator of an problem like this one. by

$$\frac{m}{3} = 6$$
$$3 \times \frac{m}{3} = 3 \times 6$$
$$m = 18$$

Division Undoes Multiplication

4

To "undo" multiplication, divide both sides of an equation by the number that is multiplied by the variable as shown in this problem.

$$4.5p = 18$$
$$\frac{4.5p}{4.5} = \frac{18}{4.5} =$$

Notice that decimals and fractions can be handled this way, too.

Solve using division or multiplication.

4.
$$\frac{y}{2.4} = 5$$
 5. $0.35w = -7$ 6. $-\frac{a}{6} = 1$

Writing Two-Step Equations		
Reteach		
Many real-world problems lo	ok like this:	
one-time amount +	- number × variable = total amount	
You can use this pattern to w	vrite an equation.	
Example:		
At the start of a month a cust \$2 each time she has the cu paid \$53. How many cups of	tomer spends \$3 for a reusable coffee cup. She pays p filled with coffee. At the end of the month she has coffee did she get?	
one-time amount:	\$3	
number × variable:	$2 \times c$ or $2c$, where c is the number of cups of coffee	
total amount:	\$53	
The equation is:	3 + 2c = 53.	

Write an equation to represent each situation.

Each problem can be represented using the form:

one-time amount + number × variable = total amount

1. The sum of twenty-one and five times a number *f* is 61.

	one-time amount	+	number × variable	=	total amount
--	-----------------	---	-------------------	---	--------------

2. Seventeen more than seven times a number *j* is 87.

3. A customer's total cell phone bill this month is \$50.50. The company charges a monthly fee of \$18 plus five cents for each call. Use *n* to represent the number of calls.

4. A tutor works with a group of students. The tutor charges \$40 plus \$30 for each student in the group. Today the tutor has s students and charges a total of \$220.

Solving Two-Step Equations LESSON 6-4 Reteach

Here is a key to solving an equation.

Example: Solve 3x - 7 = 8.

- **Step 1:** Describe how to form the expression 3x 7 from the variable *x*: • Multiply by 3. Then subtract 7.
- Step 2: Write the parts of Step 1 in the reverse order and use inverse operations: • Add 7. Then divide by 3.
- Step 3: Apply Step 2 to both sides of the original equation.
 - Start with the original equation. 3x 7 = 8• Add 7 to both sides. 3x = 15• Divide both sides by 3. x = 5

Describe the steps to solve each equation. Then solve the equation.

1. 4x + 11 = 19

2. -3y + 10 = -14

3.
$$\frac{r-11}{3} = -7$$

4. 5 - 2p = 11

5.
$$\frac{2}{3}z + 1 = 13$$

6.
$$\frac{w-17}{9} = 2$$

Writing and Solving One-Step Inequalities *Reteach*

When solving an inequality, solve it as if it is an equation. Then decide on the correct inequality sign to put in the answer.

When adding or subtracting a number from each side of an inequality, the sign stays the same. When multiplying or dividing by a positive number, the sign stays the same. When multiplying or dividing by a negative number, the sign changes.

x + 5 > -5 x + 5 - 5 > -5 - 5 x > -10	$x-3 \le 8$ $x-3+3 \le 8+3$ $x \le 11$	$-2x \ge 8$ $\frac{-2x}{-2} \le \frac{8}{-2}$	Dividing by a negative, so reverse the inequality	$\frac{x}{3} < -6$ $\frac{x}{(3)}(3) < (-6)(3)$
Check: Think: 0 is a solution because 0 > -10. Substitute 0 for x to see if your answer checks. x + 5 > -5 0 + 5 ? -5 $5 > -5 \checkmark$	Check: Think: 0 is a solution because $0 \le 11$. Substitute 0 for <i>x</i> to see if your answer checks. $x - 3 \le 8$ 0 - 5 ? 8 $-5 \le 8 \checkmark$	$x \le -4$ Check: Think: -6 is because -6 Substitute - if your answ -2 $-2 \bullet$ 12	sign. a solution ≤ -4 . 6 for x to see ver checks. $x \geq 8$ -6 ? 8 $\geq 8 \checkmark$	x < -18 Check: Think: -21 is a solution because -21 < -18. Substitute -21 for x to see if your answer checks. $\frac{x}{3} < -6$ $\frac{-21}{3}? -6$ $-7 < -6 \checkmark$

Solve each inequality. Check your work.

1. $n+6 \ge -3$	2. −2 <i>n</i> < −12
3. $\frac{n}{3} \le -21$	4. $n - (-3) \ge 7$
5. –15 + <i>n</i> < –8	6. 6 <i>n</i> > -12
76 + <i>n</i> < -9	8. $\frac{n}{-6} > -2$

Fill in the steps as shown above.

1. Five less than 3 times a number is greater than the opposite of 8.

- Step 2:
- Step 3: _____
- Step 4: _____

Step 1:

- Step 2:
- Step 3: _____

Step 4:

Solving Two-Step Inequalities *Reteach*

When you solve a real-world two-step inequality, you have to

- be sure to solve the inequality correctly, and
- interpret the answer correctly in the context of the problem.

Example

The catfish pond contains 2,500 gallons of water. The pond can hold no more than 3,000 gallons. It is being filled at a rate of 110 gallons per hour. How many whole hours will it take to fill but not overfill the pond?

Step 1: Solve the inequality.

Step 2: Interpret the results.

- The pond already contains 2,500 gallons.
- The pond can be filled at a rate of 110 gallons per hour, or 110*h* for the number of gallons added in *h* hours.
- The pond can hold no more than 3,000 gallons, so $2,500 + 110h \le 3,000$.
- Solve the inequality: 2,500 - 2,500 + 110h ≤ 3,000 - 2,500 110h ≤ 500, or h ≤ 4.5 hours.

The problem asks for how many *whole* hours would be needed to fill the pond with not more than 3,000 gallons. Since $h \le 4.5$ hours, 5 hours would fill

the pool to overflowing. So, the nearest number of *whole* hours to fill it but not to overfill it would be 4 hours.

1. A cross-country racer travels 20 kilometers before she realizes that she has to cover at least 75 kilometers in order to qualify for the next race. If the racer travels at a rate of 10 kilometers per hour, how many whole hours will it take her to reach the 75-kilometer mark?

With inequality problems, many solutions are possible. In real-world problems, these have to be interpreted in the context of the problem and its information.

Example

An animal shelter has \$2,500 in its reserve fund. The shelter charges \$40 per animal placement and would like to have at least \$4,000 in its reserve fund. If the shelter places 30 cats and 10 dogs, will that be enough to meet its goal?

Step 1

 $a \ge 37.5$

Write and solve the inequality:

 $2,500 + 40a \ge 4,000$, or $40a \ge 1,500$

Step 2

If the shelter places 30 cats and 10 dogs, or 40 animals, that will be enough to meet its goal, because a = 40 is a solution to the inequality $a \ge 37.5$.

2. Alissa has \$75 worth of bird seed, which she will put into small bags. She will sell each bag for \$7. What is the greatest number of bags she must sell in order to have no less than \$10 worth of bird seed left over?

Date _

12-1 Probability Reteach

Picturing a thermometer can help you rate probability.

At right are 8 letter tiles that spell AMERICAN.

If something will always happen, its probability is **certain**. If you draw a tile, the letter will be in the word "American."

P(A, M, E, R, I, C, or N) = 1

AMERICAN

If something will never happen, its probability is **impossible**. If you draw a tile, you cannot draw a "Q."

$$P(Q) = 0$$

The probability of picking a vowel is **as likely as not** because there are 4 vowels and 4 consonants.

 $P(a \text{ vowel}) = \frac{4 \text{ vowels}}{8 \text{ letters}} = \frac{1}{2}$

Picking the letter "C" is **unlikely** because there is only one "C."

$$P(C) = \frac{1"c"}{8 \text{ letters}} = \frac{1}{8}$$

Picking a letter besides "A" is **likely** because there are 6 letters that are not "A".

$$P(\text{not A}) = \frac{6 \text{ letters}}{8 \text{ letters}} = \frac{3}{4}$$

Another way to find P(not A) is to subtract P(A) from 1.

$$P(\text{not A}) = 1 - P(A) = 1 - \frac{1}{4} = \frac{3}{4}$$

Tell whether each outcome is *impossible*, *unlikely*, *as likely as not*, *likely*, or *certain*. Then write the probability in simplest form.

- 1. choosing a red crayon from a box of 24 different colored crayons, including red crayons
- rolling an odd number on a number cube containing numbers
 through 6

3. randomly picking a white card from a bag containing all red cards

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Impossible -

Certain

Likely -

Name	Date	Class
4.Ramo He cat	mon plays outfield. In the last game, 15 balls were hit in I le caught 12 of them. What is the experimental probabili atch the next ball hit in his direction?	his direction. ty that he will
a.	a. What is the number of favorable events?	
b.	b. What is the total number of trials?	
c.	c. What is the experimental probability that Ramon will oball hit in his direction?	catch the next
5. In o exp	n one inning Tori pitched 9 strikes and 5 balls. What is the experimental probability that the next pitch she throws will	e I be a strike?
a.	a. What is the number of favorable events?	
b.	b. What is the total number of trials?	
C.	c. What is the experimental probability that the next pitc will be a strike?	h Tori throws
6. Toi tho no i	Fori threw 5 pitches for one batter. Kevin, the catcher, cathose pitches. What is the experimental probability that K not catch the next pitch? Show your work.	ught 4 of evin will

Date _

In each diagram, parallel lines are cut by a transversal. Name the angles that are congruent to the indicated angle.

In each diagram, parallel lines are cut by a transversal and the measure of one angle is given. Write the measures of the remaining angles on the diagram.

Name _

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

180° – ____ = ____

Answer key

6.1

- 1. Answers will vary. Sample answer: one hundred minus five times the number of cars.
- 2. Answers will vary. Sample answer: twenty-five hundredths of the apartments and six tenths of the condos.
- 3. Answers will vary. Sample answer: one thirteenth of the difference between three times the number of hammers and eight times the number of pliers.

4.
$$\frac{1}{10} \left(\frac{1}{2}s + \frac{1}{3}e \right)$$

5. $0.3f + 25$
6. $(3e - 4) + (6 + 2w)$

6.2

$$1.m = 6\frac{7}{8}$$

2. t = -0.6
3. j = 13.1
4. y = 12
5. w = -20
6. a = -6

6.3

6.4

1.Subtract 11 from both sides. Then divide both sides by 4. x = 2

- 2. Subtract 10 from both sides. Then divide both sides by -3. y = 8
- 3. Multiply both sides by 3. Then add 11 to each side. r = -10
- 4. Subtract 5 from each side. Then divide both sides by -2. p = -3
- 5. Subtract 1 from each side. Then multiply both sides by $\frac{3}{2}$

(or divide both sides by $\frac{2}{3}$). z = 18

6. Multiply both sides by 9. Then add 17 to each side. w = 35

7.1

 $1.n \ge -9$ 2.n > 6 $3.n \le -63$ $4.n \ge 4$ 5.n < 7 6.n > -2 7.n < -38.n < 12

7.2

1.3*n*; 5 -; 3*n* - 5; 3*n* - 5 > -8 2.5*n*; +13; 5*n* + 13; 5*n* + 13 \leq 30

7.3

- $1.h \ge 5.5$, or 6 whole hours; 5 hours would not be enough to reach the 75-kilometer goal.
- 2. $b \le 9.29$ bags, so 9 bags would be the greatest number that could be sold and still leave \$10 worth of bird seed left over.

12.1

- 1.unlikely; $\frac{1}{24}$
 - 2. as likely as not; $\frac{1}{2}$
 - 3. impossible; 0

```
4.a. 12
```

b. 15
c.
$$\frac{12}{15} = \frac{4}{5}$$

5. a. 9
b. 14
c. $\frac{9}{14}$
6. $P(\text{catch}) = \frac{4}{5}$; $P(\text{no catch}) = 1 - \frac{4}{5} = \frac{1}{5}$

21.1

1.∠3, ∠5, ∠7 2. ∠*c*, ∠*e*, ∠*g* 3. ∠*y*, ∠*t*, ∠*r* 4. 30 150° 30° 150° 30 150° 150° 30 5. 135° 45° 135 35 45° 44 135 6. 155 155 155°, 155°

- 1. 55° + 72° = 127°; 180° 127° = 53°; 53° 2. 82° + 53° = 135°; 180° - 135° = 45°; 45° 3. *y* = 150°
- 4. 150°; 30°