

Find each intercept. Use these two points to graph each line.

5-3 Interpreting Rate of Change and Slope *Reteach*

The slope of a horizontal line is zero. A horizontal line has no steepness at all.

The slope of a vertical line is undefined. A vertical line is infinitely steep.

Find the slope of each line.

Find each slope and y-intercept. Then graph each equation.

1. $y = \frac{1}{2}x - 3$ 2. 3x + y = 2

3. 2x - y = 3

Name	Date	Class
slope:	slope:	slope:
y-intercept:	y-intercept:	y-intercept:
$\begin{array}{c} & \uparrow y \\ & 4 \\ & 2 \\ \hline & 2 \\ \hline & -4 \\ -4 \\ -2 \\ \hline & -2 \\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$
-4		-4

Point-Slope Form Reteach

You can write a linear equation in slope-intercept form if you are given the slope and a point on the line, or if you are given any two points on the line.

Write an equation that describes each line in slope intercept form.

slope = 3, (4, 2) is on the line

Step 1: Write the equation in point-slope form.

$$y - 2 = 3(x - 4)$$

Step 2: Write the equation in slope-intercept form by solving

for x

$$y-2 = 3(x-4)$$

 $y-2 = 3x - 12$
 $+2 + 2$
 $y = 3x - 10$

(10, 1) and (8, 5) are on the line **Step 1:** Find the slope.

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{8 - 10} = \frac{4}{-2} = -2$

Step 2: Substitute the slope and one point into the point-slope form. Then write in slope-intercept form.

$$y - y_{1} = m(x - x_{1})$$

$$y - 5 = -2(x - 8)$$

$$y - 5 = -2x + 16$$

$$\frac{+5}{y} = -2x + 21$$

Write the equation that describes the line in slope-intercept form.

1. slope = -3; (1, 2) is on the line

- 3. slope = 4; (2, 8) is on the line
- 5. (6, 2) and (-2, -2) are on the line

- 2. slope = $\frac{1}{4}$; (8, 3) is on the line
- 4. (1, 2) and (3, 12) are on the line

6. (4, 1) and (1, 4) are on the line

LESSON **Standard Form** 6-3 Reteach

The graph of a linear function is a straight line.

Ax + By + C = 0 is the **standard form** for the equation of a linear function.

- A, B, and C are real numbers. A and B are not both zero.
- The variables x and y:

have exponents of 1. are not multiplied together. are not in denominators, exponents, or radical signs.

Examples These are NOT linear functions:

2 + 4 = 6	no variable	$\frac{6}{x}=3$	x in denominator
<i>x</i> ² = 9	exponent on $x \ge 1$	2 ^y = 8	y in exponent
<i>xy</i> = 8	x and y multiplied together	$\sqrt{y} = 5$	square root of y

L

Tell whether each function is linear or not.

1. 14 = $2\sqrt{x}$	2. $3xy = 27$	3. $14 = \frac{28}{x}$	4. $6x^2 = 12$

The graph of y = C is always a **horizontal** line. The graph of x = C is always a vertical line.

Tell whether each equation represents a horizontal line, a vertical line, or neither.

7. $\frac{1}{2}x = 19$ 6. 6x + 7y = 108. x = 05. 9y = 27

Date ____

h

p and q are parallel lines, and r is a transversal.

- $\angle 2$ and $\angle 4$ are same side interior angles.
- $\angle 1$ and $\angle 4$ are corresponding angles.
- $\angle 3$ and $\angle 4$ are alternate interior angles.
- $\angle 1$ and $\angle 5$ are alternate exterior angles.

a and b are parallel lines, and c is a transversal.

- 1. Name a pair of alternate interior angles.
- 2. Name a pair of same side interior angles.
- 3. Name a pair of corresponding angles.
- 4. Name a pair of alternate exterior angles.

Alternate interior angles are congruent. Corresponding angles are congruent.

Alternate exterior angles are congruent.

Same side interior angles are supplementary.

Use the figure above to answer the following questions.

5. If $m \angle 5 = 65^\circ$, $m \angle 2 =$ _____. 6. If $m \angle 6 = 100^\circ$, $m \angle 7 =$ _____.

7. If $m \angle 4 = 78^\circ$, name two other angles that also measure 78° .

LESSON **SAS Triangle Congruence** 5-3 Reteach

Using the figure, fill in the missing information needed for $\Box RST \cong \Box LMN$ by SAS.

- 1. *x* = _____
- 2. *y* = _____

Complete the proof about the figure.

Statements	Reasons
1. $\angle 1 \cong \angle 2$; $\overline{AB} \cong \overline{BC}$	1. Given
2≅	2. Reflexive Property of Equality
3. ∐ <i>ABD</i> ≅	3

Find the missing values in the figure so that $\Box PQR \cong \Box STU$ by SSS.

- 1. *R*Q = _____
- 2. ST = _____

Statements	Reasons
1. $\overline{RU} \cong \overline{TU}$; \overline{US} bisects \overline{RT}	1. Given
2≅	2. Definition of bisect
3 ≃	3. Reflexive property of equality
4. └ ≃ └	4

Interior and Exterior Angles

Reteach

Name	Date	Class
The sum of the interior angles of a triangle is 1 polygon with <i>n</i> sides, the sum of the interior an	80°. For any convex $ngles$ is $(n-2)180^{\circ}$.	
In the figure, there are five sides. So, the sum angles is $(5 - 2)(180^\circ) = 3(180^\circ) = 540^\circ$.	of the interior	126°
Therefore, to find <i>x</i> , solve the equation:	$\nabla 2x^{\circ}$	85°
2x + 140 + 106 + 85 + 126 = 540		
2x + 457 = 540	14	40°
2x = 83	•	106°
<i>x</i> = 41.5		•

- 1. The interior angles of a triangle have measures of 55°, 25°, and *x*°. What is *x*?
- 2. What is the value of *x* in the figure? _____

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

А

145°

R

In the figure,

62 + x = 145

x = 83

Find the value of *x* in each of the figures below.

Date_

Class _

 $\frac{1}{3}x$

An isosceles triangle has two congruent sides. The angles opposite the congruent sides are also congruent. The remaining angle is called the vertex angle.

In the figure, since $\overline{AB} \cong \overline{BC}$, $m \angle A = 52^\circ$. To find *x*, solve 180 = x + 52 + 52. 180 = x + 10476 = x

Use the figure to find the value of *x*.

Use the following figures to find the value of *x*.

<u>Answer key</u>

ALGEBRA

LESSON 5-2 Reteach

- 1. *x*-int: 3; *y*-int: -3
- 2. *x*-int: -1; *y*-int: -2
- 3. *x*-int: -2; *y*-int: 4

5.

LESSON 5-3 Reteach

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Date____

Name_

2. *m* = −3; *b* = 2

3. *m* = 2; *b* = −3

Date_

LESSON 6-2 Reteach

1.
$$f(x) = \frac{1}{4}x + 3$$

2. $f(x) = -5x$
3. $f(x) = 7x - 2$
4. $f(x) = \frac{1}{2}x + 2$

5.
$$f(x) = 2x - 2$$

LESSON 6-3 Reteach

- 1. no
- 2. no
- 3. no
- 4. no
- 5. horizontal
- 6. neither
- 7. vertical
- 8. vertical

GEOMETRY

Reteach 4-2

- 1. $\angle 2$ and $\angle 7$; $\angle 3$ and $\angle 6$
- 2. \angle 2 and \angle 3; \angle 6 and \angle 7
- 3. $\angle 1$ and $\angle 3$; $\angle 2$ and $\angle 4$;
- ∠5 and ∠7; ∠6 and ∠8
- 4. $\angle 5$ and $\angle 4$; $\angle 1$ and $\angle 8$
- 5. 65°
- 6. 80°
- 7. Any two of $\angle 7$, $\angle 2$, $\angle 5$

Reteach 5-2

- 1. $\angle C \cong \angle F$
- 2. $\overline{AB} \cong \overline{DE}$
- 3. $\angle MKJ \cong \angle MKL$; right
- 4. *JK*; *LK*
- 5. $\Box JKM \cong \Box LKM$; ASA

Reteach 5-3

- 1.5 cm
- 2. 90°

Statements	Reasons
1. $\angle 1 \cong \angle 2;$ $\overline{AB} \cong \overline{BC}$	1. Given
2. <i>DB</i> ≅ <i>DB</i>	2. Reflexive Property of Equality
3. ∐ <i>ABD</i> ≅ ∐ <i>CBD</i>	3. SAS

Reteach 5-4

- 1.5 cm
- 2.8 cm

Statements	Reasons
1. $\overline{RU} \cong \overline{TU}$;	1. Given
\overline{US} bisects \overline{RT}	
2. RS ≅ TS	2. Definition of bisect
3. US ≅ US	3. Reflexive Property of Equality
4. <i>□RSU</i> ≅ <i>□TSU</i>	4. SSS

Name____ Reteach 7-1

- 1.100
- 2.20
- 3. 30
- 4.80

Reteach 7-2

- 1. 32
- 2. 15
- 3. 5
- 4. 9

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

_____ Date_____ Class _____

Name	
	_