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 Stable resonators



Stable resonator 4

 Assume the resonator has infinite aperture, at the initial plane z1=0, the 

electric field is E(x1,y1,0)=u(x1,y1,0)exp(-j0). Then, after one round trip at z=2L 

plane, the electric field becomes is E(x,y,0)=u(x,y,2L)exp(-j2kL). Again, the F-K 

relation gives
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 Then, the propagation Kernel is given by 
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 We already know the solution of K-F equation is Gaussian, Hermite-Gaussian 

or Laguerre-Gaussian beam for infinite apertures.
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 For the cavity eigenmodes, it requires that the beam reproduces itself after 
one round trip, that is, if the initial q parameter is q1, the q parameter q afer one 
round trip must equal to q1. That is, 
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 This means that a Gaussian beam solution can 

only be found for stable resonators, or that all 

stable resonators with infinite aperture have 

modes by Gaussian, Hermite-Gaussian or  

Laguerre-Gaussian solutions.
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 To caluclate the electric field distribution in the stable resonator, we only 

need to know the q parameter of the Guasian-X beams.

 The spherical mirror R1, R2 cavity is equivalent to the following cavity formed 

by a combination of plan mirrors with thin lens of f1=R1, f2=R2. 
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 The round-trip matrix is obtained from the two plane mirrors and the other 

optical elements of single-pass matrix A1B1C1D1. 
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 The q paprameter after one round trip is 

 q1 and q2 are purely imaginary values 

because BC<0, indicates the equiphase 

surface on the plane mirrors are plane (c), or 

on the spherical mirrors (b) are spherical 

with the the same curvature. 
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 A general conclusion is that in stable resonators, the wavefront (equiphase 

surface) at the cavity mirror always coincides with the mirror surface. That is, the 

curvature of the beam at the mirror is the same at the curvature of the mirror. 

Thus, the propagating rays at the mirror must be orthogonal to the mirror surface. 

Eigenmodes in stable resonator

 The single-pass matrix A1B1C1D1in (c) is The single-pass matrix A1B1C1D1in (c) is
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 The beam waist size and position inside the cavity (using pp. 157) is
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 From the q parameter, we can obtain the beam spot size on the mirrors in (b),

Eigenmodes in stable resonator
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 For a symmetric resonator R1=R2=R
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 The g parameter for confocal cavity is g=0

 The beam spot size at the mirror and the beam spot size are
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 In near-plane cavity, R>>L, g=1-epsilon, and epsilon is small &positive
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That is, the beam waist size is similar to the beam size at mirrors.
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 In near-concentric cavity, L~2R,  g=-1+epsilon, and epsilon is small &positive
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That is, the beam waist size is very small.

 Note that beam size at mirrors of every cavity is usually less than 1 mm.

Examples 5.5
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 Based on the ABCD law of G-H beam, and the self-reproducing requirement in 

one round trip q=q1, we obtain the eigenvalues, 
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2 2
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 The phase of the eigenvalue
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 From the round-trip phase condition, the resonance frequency is obtained as 
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 Resonance frequency of confocal resonator, g1=g2=0,

 2 1
4lmn

r

c
v n l m

n L
     

 For the same longitudinal mode index n, 
the frequency spacing of transverse mode is 
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 Frequency degeneracy: 
Modes having the same value of 
2n+l+m have the same resonance 
frequency, although they 
correspond to different spatial 
configurations.
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 Resonance frequency of near-plane and symmetric resonators g1=g2=g=1-L/R, 

with L/R<<1. 
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See pp. 181 for mode explanations
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 The electric field inside the cavity is

 exp lmnjk z 

 l is number of field nulls along the x direction
m is the number of field nulls along the y direction
 n is the number of half wavelength of the standing wave

 The standing wave eigenmode is the sum of the the two traveling electric field 
along the positive and negative directions along z.
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 Finite Aperture Effects



Finite aperture effects 21

 Infinite apertures of laser resonator has no diffraction loss, however, finite 

active medium size, mirror size and others leads to diffration loss. 

 The finite aperture sizes significantly modifies the field distribution, which 

would no longer be precisely Gaussian shape.

 The exact solution resorts to the F-K integral equation.
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 For a symmetric resonator with mirror radius of a and curvature of R, the 

electric field must reproduces its shape after one single pass.

 The integral equation becomes
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 The kernel K is determined by Eq. (5.5.1a) using the single-pass ABCD matrix,
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 Note that the integration is from –a to a rather than infinite, thus the 

eigensolution is no longer the Hermite-Gaussian solutions. 



Finite aperture effects 24

 The integration is usually solved by the Fox-Li iterative procedure, who first 

apply this procedure to obtain the eigenmodes of a Fabry-Perot resonator.  The 

procedure is as follows:

1. Assume some field expression, say plane wave E(x,y,0) on the right hand

2. Employ the integral equation, calculate E(x,y,L) on the left hand

3. Insert E(x,y,L) to the right hand, and calculated E(x,y,2L) on the left hand3. Insert E(x,y,L) to the right hand, and calculated E(x,y,2L) on the left hand

4. ……
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( , , ) ( , , ( 1) )

E x y E x y L

E x y L E x y L
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 The procedure usually converges in a fez hundred iterations, eventually lead 
to a field which doesnot change any more on each successive iteration, except 
for an overall amplitude reduction dude to diffraction loss and a phase factor 
which accounts for the single-pass phase shift. In this way, one can compute the 
field amplitude distribution of the lowest order mode and also of higher order 
modes, as well as the corresponding diffraction losses and resonance 
frequencies.

Initial field is assumed to be a plane wave
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 At z=0 plane, assume the field at the point (x1,y1) is E(x1,y1,0), then the field 
E(x2,y2,L) at the point (x2,y2) on z=L plane is

1 2 3

E(x2,y2,L) at the point (x2,y2) on z=L plane is
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 Similarly, the field E(x3,y3,2L) at the point (x3,y3) on z=2L plane is
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 Therefore, the round-trip propagation of the electric field becomes
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 In a F-P cavity, assume the initial field is a plane wave with amplitude of 1 and 
phase of 0, the field distribution after 1 round trip and 301 round trip is as follows,
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 The diffraction loss decreases with the increasing Fresnel number

 For the same g parameter and the same Fresnel number, TEM00 mode has the 

lowest diffraction loss.

 Fresnel number
2a

N
L
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 Unstable resonators Unstable resonators
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 In the g1-g2 plane, unstable resonators can be separated into two classes: 
(1) positive branch resonators for g1g2>1 
(2) Negative branch resonators for g1g2<0.

 The reason why unstable resonators are interesting:

In stable resonator,
(1) the beam size is usually on the order of the case for confocal resonator, which is 

usually less than 1 mm, because the beam is focused to the axis.usually less than 1 mm, because the beam is focused to the axis.
(2) In order to obtain TEM00 mode, the resonator aperture is limited to, say, 2mm.
(3) Therefore, the small beam volume limits the maximum available ouptut power.

In unstable resonator,
(1) It allows a large mode volume in a single transverse mode, because the field is 

not confined to the axis, and hence high power
(2) But is has much higher geometrical losses, and hence requires a high threshold.
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 In the stable resonator, the amplitude of the eigenmodes is of Hermite-Gaussian 
form, and the phase is of the spherical wavefront. The presence of the Gaussian 
function limits the transverse size of the beam and essentially arises from the 
focusing properties of a stable spherical resonator.

 In the unstable resonator, there is no H-G solutions, so the beam is no longer 
focuses towar the resonator axis, but rather spread out over the whole resonator 
cross section.

 The eigensolution in unstable resonator approximately has a uniform amplitude 
amplitude over the resonator cross section, while the phase is still spherical wave 
front.
 The q parameter of unstable resonator is real, thus the eigenmode is indeed 
standing spherical waves, which is a superposition of two counter-propagating 
spherical waves. 2

2

( ) 0

Unstable: ( ) 4 0

q is real number
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   

   



Geometrical-optics description 33

 To calculate the mode in the unstable resonator,  let P1 and P2 be the centers of 

curvature of the two spherical waves.

 The self-production of eigenmodes requires that the spherical wave originating 

from point P1, after reflection at mirror 2, must give a spherical wave originating 

from P2, and vice versa. 
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 The positions of P1 and P2 are determined by the dimensionless quantities 
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 Single-pass magnification factor is the increase in radius of the spherical wave  Single-pass magnification factor is the increase in radius of the spherical wave 
when propagating from one mirror to another:
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 Single-ended resonator (R1=R2=100%), round-trip magnification factor
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 The round-trip loss (due to output) (Q: what is the loss coefficient?)
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    Examples 5.10
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 The electric field distribution is obtained by the F-K intergral equation as well, 
using Fox-Li procedure.

 The first result is that the wave-optics description does indeed show that 
eigensolutions, that is, field profiels which are slef-producing after one-round trip, 
do exist also for unstable resonators.

Beam profile at mirror 2, inside cavity

 Different to the uniform field amplitude in geometircal-optics theory, the 
intensity profile in wave-optics description have several diffraction rings arising 
from the sharp edges of mirror 2, due to the field diffraction. 
Wave-optics description shows spherical wavefront as geometrical-optics. 
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 The second result is that unstable resonators have different transverse modes, 

that is, different self-producing spatial patterns. These modes generally differ 

from each other in the location and strength of the diffraction rings.

 The mode labled l=0 shows a field amplitude distribution more concentrated 

toward the beam axis. Thus, this mode will have the lowest loss, and is the 

fundamental mode.  
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 The third result is that the lowest loss mode or the fundamental mode 

changes with the equivalent Fresnel number Neq, that is, M, a2, or L. 
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2

eq
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









2eq L

 At half-integer values of Neq, there is a large difference between the lowest loss 
mode and other modes, that is, there is a large transverse-mode discrimination.

 At integer values of Neq, two modes cross each other, so the intensity profiles of 
the two modes are identical. However, the two modes still differ with respect to the 
total round trip phase shift, that is, they differ in the longitudinal mode and thus 
their resonance frequencies.
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 For the fundamental mode, the wave optics (solid lines) provides a smaller 

loss than the geometrical optics (dashed lines). Because the intensity is more 

concentrated toward the beam axis, rather than uniform across the mirror. 



Wave-optics description 40

 Advantages:

 Large, controllable mode volume

 Good transverse mode discrimination

 All reflective optics (metallic mirror)

 Disadvantages:

 The beam cross section is in the form of ring The beam cross section is in the form of ring

 The intensity distribution exhibits diffraction rings

 The cavity is sensitive to perturbations.

 Prefered in high power lasers, with high gain and large active medium 

dimensions (large mode volume).  On the other hand, the lasing threshold is 

high due to the high loss.  
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