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Abstract

In this thesis, we investigate three different phenomena in uniformly hyper-
bolic dynamics.

First, we study entry time statistics for -mixing actions. More specifically,
given a tY-mixing dynamical system (X, 7T, By, ) we find conditions on a family of
sets {H, C X : n € N} so that u(Hy)7, tends in law to an exponential random
variable, where 7, is the entry time to H,. We apply this to hyperbolic toral au-
tomorphisms, and we obtain that p(#,)7, tends in law to an exponential random
variable when {#,, C X : n € N} are shrinking sets along the unstable direction.

Second, we prove escape rate results for special flows over subshifts of finite
type, over conformal repellers and over Axiom A diffeomorphisms. Finally, we study
escape rates for Axiom A flows. Our results are based on a discretisation of the flow
and the application of the results in [39].

Third, we study the smoothness of the stationary measure with respect to
smooth perturbations of the iterated function scheme and the weight functions that
define it. Our main theorems relate the smoothness of the perturbation of: the
iterated function scheme and the weight functions; to the smoothness of the per-
turbation of the stationary measure. The results depend on the smoothness of: the
iterated function scheme and the weights functions; and the space on which the

stationary measure acts as a linear operator.



Notation

Symbol Meaning
N {1,2,...}.
Np Nu{0}.
Z {..,—1,0,1,...}.
R Real numbers.
R>P {r eR:z > p}.
|| Absolute value of = € R.
[x] or |z] Integer part of z € R.
[z] min{n € Z:n >z}, z € R.
(mod 1) z (mod 1) :=x — [z],z € R.
{zn} {zn : n € N}.
0N 0 & > 0 decreases to zero.
~ Homologous functions.
1 ifxrelX,
Tx (") Ly (z) :=
0 ifzxgX.
O Dirac measure supported on {z}.
|X] Cardinality of X.
X Closure of X.
int(X) Interior of X.
Bx Borel algebra on X.
X* Dual space of X.
E(f|Bx) | Conditional expectation of f with respect to By.

Continued on next page
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Symbol

Meaning

LYX, )
HLeb
ds
fn
Vict
>

Hip
S3

C

~
11
_

{f: X = R such that [|f(z)|du(z) < co}.
Lebesgue measure.

Density of the Lebesgue measure on R.
fl=f, f*tl = fo f"forneN.
Vieg i = {N A - A € oy}

x > y iff & is much greater than y.
(Mp)f-

Sif =0 fod".

Disjoint union.

f(x) =1 for every x.
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Chapter 1

Introduction

1.1 Motivation

This thesis on statistical and probabilistic properties of uniformly hyperbolic smooth

dynamical systems is inspired by three different questions:

(a) Can we prove entry time results for different shrinking sets?
(b) Can we prove escape rate results for smooth flows?

(¢c) How smoothly does the stationary measure change under smooth perturbations

of the parameters that define it?

The first two questions are about probabilistic properties and the third is
a statistical property. In this thesis we restrict the three questions to a particular
family of chaotic dynamical systems, called uniformly hyperbolic smooth dynamical
systems, that were introduced by D.V. Anosov and S. Smale in the 1960’s. In general
terms, a dynamical system is said to be uniformly hyperbolic if the tangent space
over the asymptotic part of the phase space splits into two complementary direc-
tions, one which is contracted and the other which is expanded under the action of
the system, both at uniform rates. With absolute continuity, the study of hyperbolic
dynamics started with H. Poincaré who studied homoclinic tangles, followed by the
proof of ergodicity of geodesic flows on manifolds of constant negative curvature by
G.A. Hedlund [47] and E. Hopf [50]. Beyond this assumption, Y.G. Sinai and A.N.
Kolmogorov introduced the notion of metric entropy for Anosov diffeomorphims
[58, 80]. In this case, it was necessary to work with a symbolic representation of the
systems called a Markov partition [81, 82], generalising the work of R. L. Adler and

B. Weiss [4]. After the results of Kolmogorov-Sinai, a crucial step was achieved by



R. Bowen, who used the machinery of thermodynamic formalism, that had been de-
veloped much earlier in physics by L. Carnot, S. Carnot, R. Clausius, L. Boltzmann
and J. W. Gibbs, for a class of uniformly hyperbolic smooth dynamical systems,
called Axiom A diffeomorphisms and Axiom A flows, that had been studied by S.
Smale. He constucted Markov paritions for Axiom A flows in [11, 17] and studied
thermodynamic properties in [12, 14, 15, 19] and [16]. At the same time, the work
of D. Ruelle [78] built the basis of thermodynamic formalism. In mathematics, it
has been successfully applied since then to systematically study uniformly hyper-
bolic smooth dynamical systems. This is indeed the main tool used in this thesis,
and the reason why we have chosen to restrict our work to this particular family of
dynamical systems. In order to explain how we addressed these questions, we state

a precise problem for each one.

Can we prove entry time results for different shrinking sets? Let
(X, By, 1, T) be a measure preserving dynamical system, where (X', T') is a uniformly
hyperbolic smooth dynamical systems and p is an ergodic probability measure. Let
H C X be a Borel set and 74 be the first entry time function to the set H, i.e.
m(z) = inf{n € N : Tz € H}. For sets
{Hn}, Hy, C X with the property that NpenH, =

Tn(z) =4
{z}, = € X, and under suitable hypotheses on
the transformation 7" and the measure p, one can
prove that the sequence of random variables X,, :=
w(Hy) Ty, converges to an exponential random vari-
able. T

Problem 1.1.1. For which sets {H,}, H, C X, does
the sequence of random variables X, converge to an

exponential random variable ?

We consider a subshift of finite type (X, T) and a family of sets {H, }, H,, C X
shrinking to H C X. We find conditions for the sets {H,,} that depends on X', ;1 and
‘H. This can be applied to study many different shrinking sets, for example, in the
case of toral automorphims of the two torus and the measure of maximum entropy,
we solve Problem 1.1.1 for families of sets shrinking to a segment along the unstable
direction. In the same setting, our method leaves open some interesting cases, like

horizontal shrinking strips.

Can we prove escape rate results for smooth flows? Escape rate

results for smooth flows are a natural generalisation of known escape rates for dis-



crete dynamical systems. Let us explain the discrete case first. Let T : X — X
be a continuous map, where X is a compact metric space, p be an ergodic prob-
ability measure and H C X be a hole (a Borel set). Typical points fall into the
hole after a finite number of iterates. Uniformly hyperbolic smooth dynamical
systems have nice invariant probability measures p (Gibbs), and we know that
plr € X @ my(x) > n} < Ce " for R = R(u,H,X) > 0. We consider shrinking
holes. For example, the ball of radius € centred at x¢y € X, that we denote by

B(xg,€). We are interested in studying the convergence of

R(/-La B(:L'Oy 6)7 X)
1 (B(zo, €))

as € tends to 0.

Example 1.1.2 (Theorem 4.0.9 in [22]). For the map Tx = 2z (mod 1) on the unit

interval [0, 1], we have that

e—0 2¢

. R (pipep, B(xo,€),[0,1]) 1 if o € YV is non periodic,
im =
1-— 2% if xo is periodic of period m,
where prep is the Lebesque measure on [0,1] and Y is a set of Lebesgue measure 1.
G. Keller and C. Liverani [54] proved a
o (I)t perturbation result that implies a similar for-
- \\\\\ f

mula for any expanding interval map. A. Fergu-

B son and M. Pollicott obtained analogous results
for Gibbs measures supported on conformal re-
pellers [39]. A natural further step is to study

; the case of continuous dynamical systems.

[0 1] x Z Tx ,
? e Problem 1.1.3. Given a uniformly hyperbolic
smooth flow or smooth semi-flow ®* : A — A
Figure 1.1 with an ergodic probability measure o on A. For

the escape rate through a hole H C A defined by
1
R(p,H,A) := —limsup Zlogu{x eN: Pz ¢ H,se€[0,t]},
t—o0

can we describe the asymptotic behaviour of R(u, H,A) as pu(H) converges to 07

In this thesis we are able to successfully answer this question on some partic-

ular cases. For example, let us assume that X is a smooth semi-flow or a conformal



repeller and consider the special semi-flow (Af, ®) with roof function f: X — R>!
and phase space Ay C & x R (see Figure 1.1, in which we have drawn a special
smooth semi-flow (A, ®%) with roof function f : [0,1] — R>! over the unit interval
[0,1] and a hole H, = Z, x [0, 1]). We can prove in this case that

. . R(V,B(.Z’(],ﬁ) X [Oad]vA)
lim lim
NO0e—0 v (B(zg,¢€) x [0,1])
B { 1 if (29, 0) does not belong to any closed orbit,

1 — el e@ot)dt it (1:00) € 7 and 7 is a closed orbit,

for every xzg € X.

For special smooth flows over Axiom A diffeomorphisms, and more generally,
for Axiom A flows, our results allow only to describe the asymptotic behaviour of
the escape rate of a Gibbs measure through small sets that come from the projec-

tions of cylinder sets.

How smoothly does the stationary measure change under smooth
perturbations of the parameter that define it? Assume that we have an
iterated function scheme 7 = {T;}! ; with weight functions G = {g;}";. Under
suitable conditions on G there is a unique stationary measure pi7 g. We are interested
in studying how smooth are the changes u7 g under smooth perturbations of 7 or

G (or both). It is natural to consider the following perturbations

ABAFVﬂ”:{TW}n and

b )i=t
eaeaﬁﬁzﬁ@y .

=1
The problem that we consider is the following:

Problem 1.1.4. Study the dependence of the stationary measure Ky go)y On A € A,
0 € 6.

We solve this problem in the particular case that T : [0,1] — [0,1] are
contractions on the unit interval for the C! norm. For fixed 6y € ©, we relate the
smoothness of A 3 A = pu = prx) gy to the smoothness of T and G); the
regularity of A 3 X — 7™ and the space on which y acts as a linear operator. We
similarly study the case when A\ = )g is fixed and 6 is not, and finally the case when
neither \ nor @ are fixed. We work on the spaces C*t® of C* functions with k-th

derivative a-Holder.



1.2 Basic definitions

This thesis is based on five main ingredients: subshifts of finite type (Chapters 2,
3 and 4), conformal repellers (Chapter 3), Axiom A diffeomorphisms (Chapters 2
and 3), Axiom A flows (Chapter 3) and stationary measures (Chapter 4). In order
to separate well known results from new ones of the thesis, we state these basic
definitions and important related results now and we only reference them from the

main body.

1.2.1 Dynamical Systems and Ergodic Theory

A dynamical system is a smooth action of the reals or the integers on another object
(usually a manifold). When the reals are acting, the system is called a continuous
dynamical system, and when the integers are acting, the system is called a discrete
dynamical system. A particular kind of continuous dynamical systems that we use
are the smooth flows and semi-flows. These concepts require the definition of a

homeomorphisms and a diffeomorphisms.

Definition 1.2.1 (Homeomorphisms and Diffeomorphisms). 1. A homeomorphism
is a continuous map f : X — Y which is one-to-one and onto, and whose in-

verse f~1:Y — X is also continuous.
2. A diffeomorphism is a smooth homeomorphism with smooth inverse.
We can now define a smooth flow and semi-flow.

Definition 1.2.2 (Smooth flow and semi-flow). 1. A smooth flow f' : X — Y
is a family of diffeomorphisms depending smoothly on t € R and satisfying
fstt = fso ft for all s,t € R. In particular, f° is the identity map.

2. A smooth semi-flow ft : X — Y is a family of smooth maps depending smoothly
on t € RZ0 and satisfying f5+t = f5o ft for all s,t € R29.

We will require to consider dynamical systems satisfying certain topological

conditions.

Definition 1.2.3 (Transitivity and Mixing). A continuous map f: X — X is said
to be:

1. Topologically transitive if, for every pair of non-empty open sets Y, W C X
there exists n € N such that f*(Y)NW # 0.



2. Topologically mizing if, for every pair of non-empty open sets Y, W C X, there
exists n € N, such that, for all k > n, one has f*(Y)NW # 0.

For flows it is similar.

From the measure theoretic point of view we work in this thesis with measure
preserving dynamical systems. For this we need the concept of invariant probability

measures.

Definition 1.2.4 (Invariant probability measure). A probability measure p on a
topological space X is invariant under a transformation f : X — Y if u(A) =
wu(f~LA) for all measurable subsets A, where f~1 A is the pre-image of A by f. We

say p is invariant under a flow f': X — Y if it is invariant under f for all t.

Definition 1.2.5 (Measure preserving dynamical system). A measure preserving
dynamical system is a system (X,Bx,p,T) where X is a topological space, Bx the
sigma-algebra over X, T : X — X a measurable transformation and p an invariant
probability measure. It also refers to a system (X, By, i, ft) where X is a topological
space, By the sigma-algebra over X, ft: X — X a smooth flow and p an invariant

probability measure.

A particularly useful family of measure preserving dynamical systems is when

the measure is an ergodic probability measure.

Definition 1.2.6 (Ergodic probability measure). An invariant probability measure
u is ergodic if every invariant set A has either zero or full measure, i.e., for every
set A such that A= f~1A, u(A) is equal to either 0 or 1.

The most important theorem in Ergodic Theory is the Birkhoff ergodic the-

orem that we state in what follows.

Theorem 1.2.7 (Birkhoff ergodic theorem). Let (X,Bxy,u,T) be a measure pre-
serving dynamical system. If f € LY(X, 1), then

lim M = E(f|Bx) for p-a.e. x € X,

n—00 n

where by p-a.e. we mean that there is a measurable set with full measure for which

the property holds.

If the measure p in Theorem 1.2.7 is also ergodic, then

T
lim M = /fdu for p-ae. x € X.

n—00 n

Finally, we define the measure theoretic entropy.



Definition 1.2.8 (Measure theoretic entropy). Let (X, By, p,T) be a measure pre-
serving dynamical system. Given a finite partition & = {W,} of X, where W,, € Bx.
We define H,,(§) = — ZWeg p(W) log n(W) and hy(T',§) = limp o0 %HM(\/;:Ol T3¢),

where
n—1

\ T = {2 T 7W; - Wj € &}

j=0
The measure theoretic entropy (or Sinai entropy) of T is denoted by h,(T) and
defined by h,(T) = sup hu(T,§), where the supremum is taken over all finite or
countable partitions & with H,(€) < oo.

Sinai theorem asserts that if we have a partition £ such that foruy-a.e. x,y € X
with z # y, there exists n € N such that = and y belong to different elements of the
partition \/7__, T/, then h,(T) = h,(T,£).

1.2.2 Subshifts of finite type

We will formally introduce the definition of subshift of finite type. Let A denote
an irreducible and aperiodic a X a matrix of zeros and ones with a > 2, i.e. there
exists d € N for which A? > 0 (all coordinates of A¢ are strictly positive). We call
the matrix A transition matrix. We define the non-invertibe subshift of finite type
Xt =xf c{1,...,a}"0 such that

XY= {(2)2% : A(Tn, Tpy1) = 1 for all n € Np}
and the invertible subshift of finite type X = X4 C {1,...,a}” such that

X = {(zp)02 : Az, Tp1) = 1 for all n € Z}.

n=—oo

On X7, the shift 0 : XT — X7 is defined by o(z), = x,41 for all n € Ng. On
X, the shift 0 : X — X is defined by o(z), = xn4+1 for all n € Z. Notice that
with our definition (X,0) and (X, o) are topologically mixing (i.e. when U,V are
non-empty subsets of X or X", there is an n € N so that c™U NV # () for all
m € Z,m >n). For x € XT and n € N, we define the cylinder

2], ={yeXT:y;=a; forie{0,...,n—1}},

we denote by &, the set of all the cylinders [z], with € XT and we call by By+
the sigma-algebra generated by the closed sets of X (Borel algebra on X*). For



x € X and n,m € Z,m > n we define the cylinder
[z]i={ye X 1y;=u;, forie{n,...,m—1}}

and also denote Z[,,,) = TpTpi1 .. Tm-1 = (xk)Z‘:_nl, which corresponds to the
concatenation of m — n elements in {1,...,a}. We denote by £ the set of all the
cylinders [z]7 with x € X. In the particular, when n = 0 we denote [z]]" = [z],, and
& = &p. There is natural projection 7 from X to X" defined by 7 ((2,,)52_,.) =
()5 - In this way, a non-invertible space X+ can be always seen as the projection
of an invertible shift space X by 7. Denote by M, | the space of o invariant proba-
bility measure on X+ and by M, the corresponding space on X. Given py+ € Mgy 4
we can define uy € M, by

px([2]7") = pa+ ([07"xm—n)
where n,m € Z,m > n. This induced measure will be called the natural extension

of an invariant probability measure from X* to X.

In the invertible case, for 8 € (0,1), we consider the metric dg(z,y) = 6™
where m = inf{n € Ny : x,, # y, or x_,, # y_} and d(z,z) = 0 for every z € X, we
have in particular that (X, dy) is a complete metric space. We say that f : X — R is
continuous if it is continuous with respect to dg. We denote the space of continuous
functions f : X — R by C%(X,R). Given f : X — R continuous and m € N define

Vil f) i= sup{|f(z) — f(y)]: 2,y € X and @; = y; Vi € {-m,...,m}},

and the Lipschitz semi-norm

| flo:= sup { Vzrg) tm € N} .

Since constant functions all have Lipschitz semi-norm equal to zero, one needs to

define the norm on the space of Lipschitz functions by

1fllg == 1Flo+1flloo;

where || f|loo:= supgca{|f(x)|}. The space of continuous functions with finite Lip-
schitz norm is called the space of Lipschitz functions (or #-Lipschitz functions).
Recall that a continuous function is a-Holder for dy if and only if it is Lipschitz for
dgo. We denote the space of a-Holder maps by C*(X, R).



In the non-invertible case, for 6 € (0, 1), we consider the metric on Xt given
by do(z,y) = 6™, where m = inf{n € N : z, # y,} and d(z,xz) = 0 for every
x € XT. Here (X*,dy) is a complete metric space. We say that f : XT — R is
continuous if it is continuous with respect to dg. We denote the space of continuous
functions f : XT — R by C%(X*,R). Given f : X — R continuous and m € N
define

Vin(f) == sup {|f(z) = F(W)]: 7,y € [2lm},

zeXt

the Lipschitz semi-norm

|flo:= sup{VTgrglf tm € N}

~—

and the Lipschitz norm

1£llg == 1Flo+1flloo;

where || f||co:= supgex+{|f(2)|}. The space of continuous functions with finite Lip-
schitz norm is called the space of Lipschitz functions (or #-Lipschitz functions).
Again, a continuous function is a-Holder for dy if and only if it is Lipschitz for dga.
Holder functions on X'* can be seen as a subclass of Holder functions on X [16].
We denote the space of a-Holder maps on Xt by C*(X T, R).

1.2.3 Thermodynamic Formalism and Gibbs measures

We introduce some results and definitions on thermodynamic formalism, in partic-
ular we define Gibbs measures, the pressure function P and the transfer operator.

Along this section, let X be a topologically mixing subshift of finite type.

Definition 1.2.9. Let P : C°(X,R) — R denote the pressure defined by

n—1
P(p) := ngg-loo % log ( Z exp <kz cp(akx)>>
ox=x =0

where ¢ € CO(X,R).

Remark 1.2.10. The pressure function is well defined. Indeed, it is not hard to

prove that if a sequence {uy,} of non-negative reals satisfies that
Untp < Up +up for alln,p > 1, (1.1)

then the sequence {“7"} is convergent (see for example Proposition 3.2 in [91]). The
sequence U, = 10g (Y n,_, €Xp (ZZ;S w(akm)>) satisfies (1.1), then the pressure

9



P(p) = limy, o0 “» emists.
The following result gives an alternative definition of the pressure.

Lemma 1.2.11 (Variational principle). We can write
P(p) = sup {h(l/) + / wdv : v is o-invariant probability measure} ,

where h(v) is the measure theoretic entropy with respect to v. Moreover, there is a

unique o-invariant probability measure p1, on X which satisfies

P(p) = h(u¢)+/soduga-

Definition 1.2.12 (Gibbs measure). We say that a probability measure p on X is
a Gibbs measure (or an equilibrium state) of Hélder potential ¢ : X — R if there is
c1,c0 >0 and P > 0 such that

p(2lm)

< <
= exp (—Pm + S3,¢(x)) — 2

for every x € X and m > 0, where S3,¢(x) := Z;":_Ol d(o*r).

Gibbs measures are related to the pressure function by the following propo-

sition.
Proposition 1.2.13. The probability measure p on X is a Gibbs measure of Holder

potential ¢ : X — R if and only if = pg.

These basic properties can be found in [16], [69], [78] for example. Another

property of the pressure function that we will use in Chapter 4 is the following.

Lemma 1.2.14. The function P : C*(X,R) — R is analytic. Moreover, the first

and second derivatives are given by:

1. %ﬁ-ﬁﬁ)h:o: [ ¥dpy; and

0% P(p+t19+t . .
2. W\(QO): aiw (1, &) where in (1,€) is the variance of i,

and ¥, & € C*(X,R).

This result can be found in [78] or [69]. For a proof including the details see
[91], Propositions 6.12 and 6.13 in Section 6.6.

10



The key ingredient in the proof of Lemma 1.2.11, Proposition 1.2.13 and
Lemma 1.2.14 is the transfer operator or Ruelle operator (also known as Perron-
Frobenius-Ruelle operator) defined on the space C°(X*,R) and Theorem 1.2.16.

Definition 1.2.15 (Transfer operator). Let ¢ : X+ — R. The transfer operator is
defined by

where f € CO(XT,R).

Theorem 1.2.16 (Perron-Frobenius-Ruelle). If ¢ € C*(XT,R) for some a > 0,
then

(PFR 1) there is a simple eigenvalue 8 > 0 of £ and an associated eigenvector
h >0 in CO(XT,R),

(PFR 2) there is a unique probability measure pi in X such that [ L fdu =8 [ fdu

for every f € CO(XT,R) and for every function v € CO(X*,R), the se-
Jvdu

Thap and

quence B~ L™ converges uniformly on XT to h

(PFR 3) the topological pressure of ¢ is = P(¢).

1.2.4 Conformal repellers

In order to state our second theorem in Chapter 3 we need to define conformal

repellers. We start with the definition of conformal linear maps.

Definition 1.2.17 (Conformal linear map). A non-constant linear map A : R" —

R™ is conformal (or conformal linear map) if and only if for every x,y,z € R"

|4z — Az|| _ |z — 2|
[Ay — Az||  [ly — ]|

(1.2)
In the case n > 2, Equation (1.2) is equivalent to A = AU where X\ # 0 is a scalar
and U is an orthogonal map.

We can now define conformal repellerss.

Definition 1.2.18 (Conformal repellers). Let M be a Riemmanian manifold, f :
M —= M aC' map and J C M a compact set such that fJ = J. We say that
(T, f) is a conformal repeller if:

(a) fl7 is a conformal map, i.e. the differential of f at every point p € J is a

conformal linear map between the Euclidean spaces TyM and Ty, M;

11



(b) Jc >0, X € R>L: ||dfv]| > e ||v]|, Vo € T, Vv € T,M, Vn € N;
(c) f is topologically mizing;
(d) 3V D T such that J ={x €V : f"z € V,Vn € N}.

An example of a conformal repeller is the Julia set of a hyperbolic rational
map, i.e. the closure of the set of repelling periodic points of a rational map R :
C— Cof degree greater or equal than two, where C is the Riemann sphere.

1.2.5 Axiom A diffeomorphims

Suppose that M is a compact C>° Riemannian manifold, the tangent bundle of M
is given by TM = Upepm Ty M, where T, M is the tangent space of M at x. Suppose
also that f : M — M is a diffeomorphism. First we need to define a hyperbolic set.

Definition 1.2.19. A closed subset A C M is hyperbolic if f(A) = A and each

tangent space Tp M with x € A can be written as a direct sum
T M=E'BE;
of subspaces such that

(a) Df(&;) = 5]80(@, Df(&) = 5?(@?

(b) there exist constants ¢ > 0 and A € (0,1) so that
IDf"(0)||< e ||v|| when v e E,n € Ny (1.3)

and
|IDf"(0)||< eA™||v|| when v € EF,n € No; (1.4)

(c) E5,EF vary continuously with x.
We can now define Axiom A diffeomorphisms.

Definition 1.2.20. (a) We define Q = Q(f) to be the set of all non wandering
points, i.e., the set of points x € M such that

unJ ru+0o,

neN

for every neighbourhood U of x.

12



(b) f satisfies Aziom A if Q(f) is hyperbolic and Q(f) = {x : x is periodic }.

Examples of Axiom A diffeomorphisms are the Anosov diffeomorphisms and

Smale horseshoe maps.

Anosov diffeomorphisms

Let M be a compact C*° Riemannian manifold. An Anosov diffeomorphism is a
diffeomorphism f : M — M such that M is hyperbolic. The simplest examples of
compact C*° Riemannian manifold admiting Anosov diffeomorphisms are the tori
T" := R™/Z"™, moreover, any Anosov diffeomorphism on the tori is topologically con-
jugate to one given by an isomorphisms of the tori with no eigenvalue of modulus
1 ([40]). In this thesis our basic tool, as we mentioned in Section 1.1, is thermody-
namic formalism, on the other hand, as we will see later in this section, a crucial
necessary condition is the existence of the so called Markov partitions. It happens
that Markov partitions are hard to find for Anosov diffeomorphisms on tori T"
with n > 2, so in this thesis we will deal indeed only with Anosov diffeomorphisms
on the two dimensional torus. An example is the Arnold’s cat map, given by the
diffeomorphism T : T?> — T2 such that

T (m) _ (a?—i—y (mod 1))
Y r+2y (mod1l)
An illustrative way to explain how this transformations acts on the two-torus is to
represent the phase space by a square picture of a cat and see the stretching and
folding process performed by the map T after we apply it to the original picture. In
practical terms, we are representing T2 by an array of size N x N (for example N =
1300) choosing a colour for each coordinate and move the colour of the coordinate
(i,7) to the coordinate (i+j (mod N),i4+2j (mod N)). To give a concrete example

of this, in Figure 1.2 we have chosen a picture of a cat to represent the phase space

T2, and in Figure 1.3 we see how the map T stretched and folded the original picture.

Smale horseshoe map

The Smale horseshoe map is defined by the diffeomorphism f : R? — R? in Figure
1.4 that acts on the unit square [0,1]> C R? (the unit square [0, 1]? is represented
by the square abed). It contracts in the horizontal direction, then expands in the
vertical direction, folds the space and places it back over the unit square. In Figure

1.4 we show the action of f and the action of its inverse f~1.

13



Figure 1.2: Representation of the phase Figure 1.3: Representation of the phase
space T?2. space T? stretched and folded by T

P
—)), -
£l

Figure 1.4: Horseshoe map.

ab cd
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Markov partitions, equilibrium states and semi-conjugacies

We start with some topological issues.

Lemma 1.2.21 (Lemma 3.1 in [16]). Every Aziom A diffeomorphism has an adapted
metric d, that is, Q(f) is hyperbolic with respect to d with ¢ =1 in (1.3) and (1.4).

A basic property is the following:

Proposition 1.2.22 (Spectral decomposition, Chapter 3, section B in [16]). Sup-
pose that f is an Axiom A diffeomorphisms, then one can write Q(f) = Q1 U QU

-+ UQg, where Q; are pairwise disjoint closed sets with
(a) f(Qi) =, and flq, is topologically transitive;

(b) Q; = X1;U---UAXy; for n =n(i), with the X;;’s pairwise disjoint closed sets,
f(XjJ‘) = Xj+17z‘ (Xn+1,i = Xl,i) and fn’)(j’i topologically mixing.

Definition 1.2.23. The sets €; in the spectral decomposition of Q(f) are called the

basic sets of f.

Let Qg be a basic set, given a Holder function ¢ : Q5 — R, define P = P(y)
by

Pimsup {(0)+ [t ne My},

where h,(f) is the measure theoretic entropy (see Glossary or [16]) and M f(£2) is
the set of f invariant probability measures with support in €.

The next theorem gives an essential property of the basic sets, this is the
existence of equilibrium states, i.e. of invariant probability measures y on 25 such
that

P = hu(f)+/sodu,

where h,,,(f) is the measure theoretic entropy.

Theorem 1.2.24 (Theorem 4.1 in [16]). Let Q5 be a basic set for an Aziom A
diffeomorphism f and ¢ : Qs — R a Holder continuous function. Then ¢ has
a unique equilibrium state p = p, (w.r.t. fla,). Furthermore, p is an ergodic

probability measure; p is Bernoulli if f|q, is topologically mizing.

In Chapter 3 we require some well known results that we include for com-
pleteness. These are the definition of Markov partitions, their existence for basic

sets and the semi-conjugation of the basic sets with a subshift of finite type.
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In order to define Markov partitions in a standard way we require some
extra definitions and propositions. Indeed, Markov partitions are a particular set of
rectangles, whose construction follows from the existence of the so called canonical

coordinates. To define the canonical coordinates we need the following:
Definition 1.2.25. For x € M define
Wi (x) ={y e M :d(f"z, f"y) — 0 as n — oo},

) (f"x, fMy) < e for all n € N},

f "z, f"y) - 0 asn — oo} and

(z) (
Wi(z) :={y e M :d(f "z, f"y) < e for all n € N}.

Proposition 1.2.26 (Canonical coordinates, Proposition 2.3.33 in [16]). Suppose
that f satisfies Axiom A. For any small € > 0 there is a § > 0 so that W?(x)NW(y)
consists of a single point [x,y] whenever x,y € Q(f) and d(x,y) < d. Furthermore

[z,y] € Q(f) and the canonical coordinates function

[ {(z,y) € Q(f) x Q(f)  d(z,y) <6} = Q(f)
18 continuous.

We can define rectangles once having canonical coordinates.

Definition 1.2.27 (Chapter 3, section C in [16]). A subset R C Q is called a

rectangle if it has small diameter and
[z,y] € R whenever xz,y € R.

A rectangle R is called a proper rectangle if R is closed and R = int(R). Forx € R,
we define
Wiz, R) :=W:(z) "R and W' (x,R) := W<(z) NR.

The particular set of rectangles that define a Markov partition are specified

in the next definition.

Definition 1.2.28 (Chapter 3, section C in [16]). A Markov partition of Qs is a
finite covering R = {R1,...,Rm} of Qs by proper rectangles with

(a) int(R;)Nint(R;) =0 for i # j,
(b) fW*(z,R;) D W*(fz,Rj) and
W3z, R;) C W3(fx, R;j) when x € int(R;), fx € int(R;).
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We have included the next lemma only because we require the definition of
0°R and 0"R in Chapter 3.

Lemma 1.2.29 (Lemma 3.11 in [16]). Let R be a closed rectangle. As a subset of
Qs, R has boundary
OR =0°RUJ"R,

where
PR = {l’ cER:x ¢ znt(Wu(ﬂU,R))}

OR={xeR:x ¢ intOV(x,R))}.

Thermodynamic formalism is useful to study Axiom A diffeomorphisms es-
sentially because of two theorems. The first is the existence of Markov partitions
for the basic sets, and the second is that each basic sets {25 is semi-conjugate with a
subshift of finite type, i.e. there exists a subshift of finite type (X, o) and continuous

surjection m: X — Qg with moo = fo.

Theorem 1.2.30 (Theorem 3.12 in [16]). Let Qs be a basic set for an Aziom A
diffeomorphism f. Then Qg has Markov partition R of arbitrarily small diameter.

Finally, we can find a semi-conjugation of the basic sets with a subshift of
finite type. Let g be a basic set for an Axiom A diffeomorphism f and R =
{R1,...,Rm} denote a Markov partition of ;. We define the transition matrix
A= A(R) by

0 1 if int(R;) N f~Hnt(R;) # 0
Y 0 otherwise.
One can prove that (X4, o) is semi-conjugate with (Qs, f|q, ), indeed we have

the following theorem.

Theorem 1.2.31 (Theorem 3.18 in [16]). For each a € X4 the set (;cy R,
consists of a single point, denoted w(a). The map 7 : X4 — Qs is a semi-conjugation.
Moreover, m is one-to-one on the residual set Y = Qs \ ¢y fH(O*R U O*R).

Let us give two concrete examples of applications of Theorem 1.2.30 and
Theorem 1.2.31.
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0.5F

-0.5F R3 =

Figure 1.5: Markov partition.

Markov partition and semi-conjugacy for an Anosov diffeomorphisms on

the two dimensional torus.

Let us consider the Anosov diffeomorphisms 7' on the two dimensional torus T2

M:G;)_

We can construct the Markov partition in Figure 1.5 with rectangles R1, R2, R3, R4
and R5. Define the matrix

given by

00011
10 000
A=10 0 0 1 1
01100
1 00 00

and the subshift of finite type X4 C {1,...,5}” with transition matrix A. The map
71 X4 — {0,1}%, defined by 7(a) = NiczT "Ra, € T? is a semi-conjugacy.

Markov partition and semi-conjugacy for the horseshoe map

Let us consider the Smale horseshoe map defined by the diffeomorphism f : R? — R?
in Figure 1.6, where we have marked each side of the horseshoe with a number 0
or 1. Call the unit square & = [0,1]> C R? and define the set Ry C R? as the
intersection of I with the side of the horseshoe marked with 0, and the set R; C R?

18
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2 b f a b cd

Figure 1.6: Horseshoe map.

as the intersection of U with the side of the horseshoe marked with 1. The invariant
set for f and f~! is the Cantor set

Q:={zel: ffx)ecU,Vkel).

This set € is conjugated to the subshift of finite type {0,1}%, i.e. there is a contin-
uous one-to-one map with continuous inverse 7 : Q — {0,1}%. In our case we can

define 7w(x) = ... w_jwowy ..., where

0 if f*(x) € Ro

Wg =
1 if ff2) e Ry

for k € Z, f°(x) = 2.

In Figure 1.7 we represent U by a black square. In figure 1.8 we represent
the set f~1(U) NU N f(U) by four black squares and so on. An interesting feature
of the pictures is that they allow to visualise the pre-images of the projections of
cylinders sets. Indeed, In Figure 1.8 each of the four squares contain exactly one of
the sets 771([0.0]%,), 7= 1([0.1]1,), #~1([1.0]},), #=*([1.1]L,), and so on.
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Figure 1.7: U.
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Figure 1.9:
FRU)NHU) nUn fU) N W)

Figure 1.11:
)y n Py n fAu)n )
NUNFU) N F2U) N LU N AU,

Figure 1.8: f=YU)nuUn fU).

Figure 1.10: f=3@U)n f2U)n f~1U) N
Unfu)nf2u)n ).

Figure 1.12: f=3U) N f~4U)n f=3U) N
U n AU nun fu) n AU n
Uy n ) n ).
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1.2.6 Axiom A flows

Let M be a compact C* Riemannian manifold and ®! : M — M be a differentiable
flow. Denote ® = {®'}. A closed ® invariant set A C M containing no fixed points

is hyperbolic if the tangent bundle restricted to A can be written as
Th=E+E°+ &Y,

where &£ is the one-dimensional bundle tangent to the flow, and there are constants
¢, A > 0 so that
(A) || D®!(v)||< ce ™ |jv|| for v € £%,t > 0 and
(B) [|[D®~(v)||< ce=||v]| for v € %t > 0.
A closed invariant set A is a basic hyperbolic set if
(a) A contains no fixed points and is hyperbolic;
(b) the periodic orbits of ®!|5 are dense in A;
(c) ®Y|A is a topologically transitive flow; and
(d) there is an open set U D A with A = (),cg PU.
We always consider basic hyperbolic sets that are neither a point, nor a single
closed orbit.
We can now define Axiom A flows.

Definition 1.2.32. (i) The non wandering set ) is defined by

Q:={z e M: for every neighbourhood V of z and every ty > 0, there is a
t € R7% with ®'(V) NV # 0}.

(it) @ is said to be Aziom A flow if Q = Q' U{x1,...,z,} is the disjoint union of
a set Q' satisfying (a) and (b) and the set {x1,...,x,} is a finite set (n € N),

where x; are hyperbolic fixed points.

Let A be a basic hyperbolic set for an Axiom A flows ® and let ¢ : A — R
be a Holder function. We define P = P(®|a, ¢) by

P :=sup {hu(él) + / @wdp @ is invariant for <I>|A} ,
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where h,(®!) is the measure theoretic entropy. An equilibrium state of ¢ is a

probability measure p on A such that attains the supremum, i.e.

P =h,(®") + /wdﬂ.
For z € A,t > 0 and € > 0 small, let
B, gale,t) :=={y € A: d(P°y, ®°2) < e for all s € [0,1]}.

We have the following theorem:

Theorem 1.2.33 (Theorem 3.3 in [20]). Assume that A is a basic hyperbolic set
for @ and that ¢ : A — R is a Holder continuous function. Then ¢ has a unique
equilibrium state pi,. Furthermore, p, s an ergodic probability measure and positive

on non-empty open sets of A, and for any e > 0 there is Cc > 0 so that

o (B.aja(6,8)) = Ceoxp (—P(@u,wt - @(‘@SZ)dS)

forall z € At > 0.

Assume for the rest of the subsection that A is a basic hyperbolic set for an
Axiom A flow ¢, ¢ : A — R is a Hélder function and g is the unique equilibrium
state of ¢ with support in A. In order to state our result we require an important

result by R. Bowen.

Theorem 1.2.34 (Main theorem in [13]). There is a special flow (Af, ®f) with
Lipschitz roof function f and a finite to one continuous surjection p : /~\f — A so
that

pd% = d'p

and for z € ]\f, the ®t-orbit of p(z) is periodic, transitive, strongly recurrent, or

almost periodic if and only if the <i>’}—o7‘bit of z is.

Using the map p in Theorem 1.2.34 there is a natural way to identify the
probability measure p, in Theorem 1.2.33 with an equilibrium state for a special
flow. For this, recall that in ergodic theory two measure preserving transformations
(Xi, Bx,,m;, ¢;) are said to be isomorphic if there exist measure preserving maps
P12 X — Xy, g @ Xy — A such that 111y (respectively ¥91)1) is the identity on
Xy (respectively X1) and g1 (z) = Y101 (x) for mi-a.e. x € X1, p11h2(x) = Vaga(w)
for mg-a.e. x € Xs.
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Proposition 1.2.35 ([20]). The map p in Theorem 1.2.34 is a measure theoretic
isomorphism between (®, A, u) and (fl:)f,]\f,/l), where [u is the equilibrium state of
@ op.

We finish by showing a concrete example of an Axiom A flow.

Example of an Axiom A flow

We consider the Smale horseshoe map defined by the diffeomorphism f : R? — R?
in Figure 1.6 that acts on the unit square & = [0, 1] x [0, 1] C R2. Recall the subsets
Ro, R1, the Cantor set €2, and the conjugacy 7 : Q — {0, 1}% defined in Subsection
1.2.5, “Markov partition and semi-conjugacy for the horseshoe map”. For every
m € Ny and = €  denote the composition of m times f by f™(x) := fo--- f(x)
(where fO is the identity map) and define

Shg9(@) =3 go fi(x).
=0

Let us consider the continuous function g : Q@ — {1,2} defined by

2 ifxeRy,
1 if z € Rg.

g(z) =

We define the continuous action ®; on Ay := {(z,t) : € Q,0 <t < g(x)} onto
itself defined by

@Z(l‘, s) = (fm(x), s+t— S,J;g(x)) for Sﬂ;g(a)) <s+t< S,J:H_lg(ac),

where m € Ng. We have that (A, <I>tg) is an Axiom A flow. In Figure 1.13 we “draw”
the flow: the Cantor set 2 has been represented by the set

Q=fru)nfPu)n U n iy nun fu)n f2u)n ) n i)

that we drew in Figure 1.11. The set A is represented by the green and red paral-
lelepipeds on © C U. The direction of the flow is upward in the picture. A point
in A flows along the vertical direction up to reaching the top of the parallelepiped
to which belongs to, then it goes down to the set  x {0}, according to the Smale

horseshoe map.

23



L
WW“W M W W “”"“N v il

I‘|[||I|||||
Figure 1.13: Example of Axiom A flow.

I

il

o

(1,1)

fow
arirection

il

_ ||| Il
il i

(1,0)

1.2.7 Stationary measures

In this thesis we are only concerned with the study of stationary measures for
iterated function schemes. To make this precise, consider two complete metric spaces
(M, d) and (N, d). Define the Lipschitz semi norm Lip of A : M — A by

. - d(A(z), A(y))
Lip(4) = LE d(z,y)

Definition 1.2.36 (Iterated function scheme). An iterated function scheme is a
finite family of contractions with respect to Lip, i.e. a family of maps T = {T;}},
wheren € N, T; : M — M and

max Lip(T;) < 1.
i=1,...,n
Given an iterated function scheme T, it follows that there exists a unique
closed bounded set I C M such that

We call K the limit set of 7. A basic example to keep in mind is the case of (M, d) =
([0,1],] ), for the unit interval [0, 1] and the absolute value | | on R, and T1(z) = %,
Ty(x) =5+ % The limit set in this example is the famous middle third Cantor set.

Associated to the iterated function scheme 7T, we can consider a family of
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weight functions G = {g;}I" ¢, gi : M — (0,1) such that

Zgi =1 and (1.5)
i=1

> llgillLip(T3) < 1, (1.6)
i=1

where ||g||= sup{g(z) : z € M}.

Definition 1.2.37 (Stationary measure). Given an iterated function scheme T with
weight functions G, let P(M) be the set of Borel reqular probability measures having
bounded support. A stationary measure pu € P(M) is a fized point for the operator
S =76 : P(M) = P(M) defined by

W)=Y / gi(x) f (T())dv (2),
=1

where v € P(M) and f: M — R is a continuous compactly supported function.

Remark 1.2.38. Two direct but important facts from the definition of stationary

measure are the following:

(i) A stationary measure for (T,G) is supported on the limit set of T (a proof is
given in [51], Section 4.4).

(i) A probability measure p € P(M) is a fixed point of . if and only if

S(u)(f) = / f(@)dp(z)

for every continuous compactly supported function f: M — R.
We have the following well known theorem:

Theorem 1.2.39. Suppose that M is a compact metric space. An iterated function

scheme T with weight functions G satisfying (1.5) and (1.6) has a unique stationary

measure.

A proof of this theorem can be found in [51] for constant weight functions,
using the contractive mapping principle. A small modification of the same argument
can be applied here. Recall also that the existence of a stationary measure is a classic
result [42] (Lemma 1.2).

25



Proof. The space P(M) can be equipped with the Kantorovich-Rubinshtein norm
(8]
lal ZSHP{/fdu:f:M SR Lip(f) < 1},

The operator . is a contraction on the space (P(M), || [||). Indeed, for u,v € P(M)
and a function f: M — R, we have that

FWE) = SN = [ 3 ) (T — ) o). (L.7)
=1
Ifg: M— (0,1) and T': M — M with Lip(T) < oo, then

sup{ [ F(T(2))g(@)du(z) : f : M — R,Lip(f) < 1
U b

< Lip(T) | gllsup { [ rauta) £ M= R Lip() < 1} |

From equations (1.7) and (1.8) we conclude that

I () = W)l < <Z Lip(Ti)HgiH) e =il = Ll = vl
1=1

where L = )" | Lip(T;)]|g:|]|< 1 by hypothesis, and thus .# is a contraction. On the
other hand, P(M) with the metric |||| is a complete metric space. It follows that
- has a unique fixed point on P(M) by the contraction mapping principle. O

Remark 1.2.40. A proof that P(M) with the metric |||||| is a complete metric space
can be found in [53], Chapter 8, §4, where it is proved that (P(M), ||ll) ¢s a compact
metric space. A more general result can be found in [59], Theorem 4.2. On the other
hand, it is also possible to prove the completeness of P(M) with the metric ||| by

using similar arguments to those in [66].

First example of stationary measures

Our first example appears in [71] (Theorem 2.1), it is quite simple and allows to get

an useful insight of how a stationary measure looks like.

Theorem 1.2.41 (Pincus). Let T; : [0,1] — [0, 1] be 1-1 Lipschitz transformations,
i = 1,2 with weight functions {g1 = p,g2 =1 —p =: q} for some p € (0,1). Suppose
additionally that:

1. Tl(()) =0 and TQ(l) = 1;
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2. Lip(Th) = a and Lip(Ty) = 3, where a, 8 € (0,1);
3. T1[0,1] N 1[0, 1] # 0; and
4. q> a’%ﬂ and (§>q (%)p < 1.
Then there is a unique stationary measure p on [0, 1], moreover:
1. p is nonatomic (has no atoms);
2. w is singular with respect to the Lebesgue measure on [0,1]; and

3. the support of p is the unit interval [0, 1].

Second example of stationary measures

We present in what follows an interesting example that relates iterated function
schemes and stationary measures with the product of random matrices and Lya-
punov exponents. More general examples built on similar ideas can be found in
[73]. Let us consider Ay, A; € SL(2,R>?) and denote by || || a norm on the space
R2*2, For i = 0,1 we define the map A; : [0,1] — [0,1] such that for = € [0,1]

Aila, VT =22)

X, :.7}/,/:142‘1',/ RQ‘
| 4s (2, V1 — 22)| (@y) = (Ai(2),y) €

The iterated function scheme {Ao, /11} with weight functions {gyo = p, g1 = 1—p} for
some p € (0,1), has a unique stationary measure v on [0, 1]. Moreover, v = u(r 1)

where 7 : X := {0,1}0 — [0,1] is the projection map

i
.. k
71'(10,21,...): E of+1

k=0

and p is the Bernoulli measure of parameters (p, 1 —p) on X'. The Lyapunov exponent

is defined for p-a.e. i = (ig,41,...) € X by

1
A= Jim [ loglld - Ay du)

n

Using thermodynamic formalism in [73] (Lemma 3.2) or using the Furstenberg mea-

sure in [42], it is possible to prove that

dA
A= go/log

T;(x) dv(x) (1.9)

dA,
%@7)

dv(z) + g1 /log
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The relationship that we mentioned in the first paragraph comes from equa-

tion (1.9) and the application of the following theorem.

Theorem 1.2.42 (Pointwise version of Furstenberg and Kesten Theorem). Let
{A1,..., Ax} be a finite set of non-singular d x d real matrices with d > 2. Let
(p1,...,pk) be a probability vector, and = (p1, ..., pr)"° be the associated Bernoulli
measure on the space of sequences X := {1,..., k}NO. Then, for u-a.e. i = (ig,i1,...) €

X one has

n—oo n,

.1 . .1
i [ gl Ay -+ A,y () = Jim, i i |

Remark 1.2.43. Theorem 1.2.42 is a direct consequence of Theorem 2 in [43]
and the application of the pointwise Birkhoff ergodic theorem for ergodic probabil-
ity measures. A short and complete proof of Theorem 1.2.42 can be given using
only Kingman’s subadditive ergodic theorem. For this, see [87], Chapter 3, § 3.1 ,
Theorem 3.3, § 8.1.4 , Corollary 3.1 and § 3.2 , Theorem 3.12. Finally use that
pw=(p1,...,pp)"0 is ergodic.

Iterated function schemes with stationary measures and Lyapunov exponents
for the product of random matrices are two different subjects that have been inde-
pendently studied. One may expect to use iterated function schemes with stationary
measures to study the Hausdorff dimension of measures, because the Lyapunov ex-

ponent has been used to study it [10, 30].

1.3 Organisation

The main body of this thesis is divided into three main chapters. Chapter 2 contains
our work related with the question: can we prove entry time results for different
shrinking sets? Chapter 3 contains our work related with the question: can we
prove escape rate results for smooth flows? Finally, Chapter 4 contains our answer
of the question: how smoothly does the stationary measure change under smooth

perturbations of the parameters that define it?
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Chapter 2

Entry time statistics

2.1 Introduction

We develop further results about higher order entry times. That is the rate at which
points enter to small sets.

Consider a measure preserving dynamical system (X, By, u,T) where u is a
finite, invariant and ergodic measure together with a sequence of Borel sets {U,,} =
{Up}nen with U, € X, u(U,) > 0 and for which the sequence {U,,} shrinks to a

point. Under an appropriate mixing assumption, one can generally show that for
m(2) = 74, (x) = inf{k > 1:TF(z) € U,},

the sequence of random variables X,, := u(Uy)7,, called (rescaled) entry time or
first hitting time, converges in law to an exponential random variable. The first
paper related to this result is [36] for continued fractions. More recently such con-
vergence results have been obtained for examples in which U, are balls or cylinders
shrinking to a point: for continuous time Markov chains see [5, 6], for expanding
maps of the interval see [32, 33, 31], for general ¢-mixing processes (consequently
also for -mixing processes) see [44], for a-mixing processes see [1, 3|, for Axiom
A diffeomorphisms see [48, 49], for Gibbs measures on shift spaces see [72], for uni-
modal maps see [21], for partially hyperbolic systems see [37, 24]. Some extensions
of the classic Poisson limit theorem can be found in [56] and further related reviews
in [2, 28, 45]. It is not clear however that the limit distribution of the sequence of
random variables X, is still valid if we remove the condition that {{,} are shrinking

to a single point.
In this chapter we consider the problem of finding conditions on the pair
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({Un}, ) so that X,, converges in law to an exponential random variable when
w(Uy) — 0 as n — oo, but the sequence {U, } does not necessarily shrink to a single
point (or finitely many points). The conditions we impose on U,, and p are also
used in [26, 46]. In Section 2.4 we discuss the relationship between the results in
this chapter and those of [26, 46].

In our main theorem we obtain the convergence of X, to an exponential
random variable for general families of sets {U,, } under some conditions that depend

on the return time to U,, defined by
Ny = inf{r,(x) : @ € U, }.

Indeed, let (X, 0) be a topologically mixing subshift of finite type with
o0
xcl[{L...,a}={1,...,a}".
—0oQ

We consider the pair ({U,}, 1), where U,, C X is in the sigma-algebra generated by
H’i;l{l, ...,a} and ft = fiparry is the probability measure of maximum entropy or

Parry measure.

Theorem 2.1.1 (Main Theorem). The sequence of random variables X, converges

in law to an exponential random variable if
L J*(”H)L{nﬂ C 0~ ™U, for every n >0 and nu (Z/ann/QJ) — 0 as n — oo,

II. the return times are given by n, = n+ k(n) + 1, where k : N — N is a non

decreasing function and nu (Uk(n)) — 0 asn — o0, or

III. there exists a sequence {Vy,} with {nu(V,)} — 0 as n — oo, where V,, D Uy, is a
set in the sigma-algebra generated by H:Zﬂn”/2J {1,...,a} or ngnn/% {1,...,a}

for every n > 1.

An application of our method is to the study of Gibbs measures and sets
which do not necessarily shrink to single points. Indeed, suppose that we have two
subshifts of finite type X and Y C X, and the family of sets {U, },U,, C X satisfies
N> Uy = {zy : y € Y}, where x is a forbidden sequence in Y. We prove that for
1 a Gibbs measure of Holder potential, and under suitable conditions, that depend
on p and the topological entropy of (X,o) and (), 0), the sequence X,, converges

in law to an exponential random variable.
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We can also apply our theorem to toral automorphisms. In particular we
obtain that if {U,} is a sequence of strips converging to a segment along the unstable

direction, then X, converges in law to an exponential random variable.

2.2 Motivation and basic definitions

The motivation to the study of the sequence of random variables X,, goes back to

the Poincaré recurrence theorem.

Theorem 2.2.1 (Poincaré recurrence theorem). Let (X,Bx,u,T) be a measure

preserving dynamical system with finite measure. Then for any measurable set A
p(A) =p{z € A:T"(z) € A for infinitely many n}.

Definition 2.2.2 (Entrance time). Let (X,Bx,u,T) be a measure preserving dy-
namical system. We define the entrance time (or hitting time) into a measurable
set A C X by

T4(x) == inf{k > 1:T"x) € A},

where v € X. If v € A, the map T4(z) is called return time (to A).

In terms of the return time map, the Poincaré recurrence theorem says that
if (A) > 0, then
p{r e A:14(z) < o0} =1,

i.e. p almost every point of A returns to A. If the measure p is also ergodic, then
p{r € X :7a(x) < 00} =1

This in particular implies that the sequence X,, := u(U,)7y, is well defined when-

ever the measure p is ergodic and pu(U,) > 0.

Entry and return times are related by the following observation.

Remark 2.2.3. Let (X, By, u,T) be a measure preserving dynamical system. Then,

for any measurable set A C X, we have that

n({e € X ra(x) = k) = ul{z € A: 7alz) > k}).
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Proof. By definition we have for every k£ > 1

{xeX my(x)>k}={xecX:T(x)¢ A 14(x) >k —1}
=T Y AN{z e X :14(z) >k —1}).

By the invariance of the measure p we have
pu{z e X :ma(x) > k}) = p({x € X : 74(2x) > k—1})—p(An{z € X : 74(z) > k—1}),

and this concludes the proof. O

An important theorem known as the Kac’s lemma gives more information
about the return times than the Poincaré recurrence theorem, but only in the case

that the measure is ergodic. Let us start with a definition.

Definition 2.2.4. Let (2, F,P) be a probability space, i.e. Q is a set, F a sigma-
algebra on 0 and P is a probability measure on (0, F). The expectation with respect
to P of a measurable function f :Q — R is defined by

E(f) = Ep(f) = /Q fdP.

Theorem 2.2.5 (Kac’s lemma [52]). If (X, Bx,u,T) is a measure preserving dy-
namical system with finite and ergodic measure. Then for any measurable set A C X

with strictly positive measure

Epa(u(A)7a) =1,

where pa(-) == u.(A) .
This theorem motivates the following problem:

Problem 2.2.6. Let (X,Bx,u,T) be a measure preserving dynamical system with
finite and ergodic measure. If we consider a sequence of measurable sets U, C X
with strictly positive measure. What can we say about the limit of the sequence of

random variables Xy, := pu(Up)my,?

Remark 2.2.7. The Kac’s lemma motivates also other problems that we do not
study in this thesis, for example: what are the statistics properties of p(A)T4? The
study of this problem requires additionally mizing conditions on the measure. See
for example [23].
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To study Problem 2.2.6 it is necessary an additional mixing condition on
the measure p. In particular, we will require ¥-mixing. See other kind of mixing
conditions in [45].

Definition 2.2.8. Let (X,0) be a subshift of finite type with X C {1,...,a}* for
some integer a > 1. The measure preserving dynamical system (X,Bx,p,0) is -
mizing if for every k € N, U in the o-algebra generated by ng_l{l, ...,a} andV in
the o-algebra generated by {1,...,a}* := Upen, [[5{1,- .., a} as the ‘gap’ A — o0 :

—AN—k
supsup pUNo V)

—1| = 0.
S | (V) va

Along this chapter we investigate Problem 2.2.6 from the view point of prob-
ability theory. Let us recall some basic definitions that we will use. First, the

exponential random variables.

Definition 2.2.9 (Exponential random variable). A random variable X : Q@ — R
on a probability space (Q, F,P) is said to be an exponential random variable with

parameter X if it has cumulative distribution

1—e ™M 4ft>0,
0 ift <O0.

Second, the convergence in law.

Definition 2.2.10 (Convergence in law). A sequence of random variables {X,,} on
a probability space (0, F,P) is said to converge in law to an exponential random
variable of parameter 1 if for every t € R, its cumulative distribution converges to
the cumulative distribution Fx (t), of an exponential random variable X of parameter

A = 1. In other words,
lim [P{w € Q: X,,(x) >t} — e *|=0 for every t > 0. (2.1)
n—oo

Our specific setting to study Problem 2.2.6 is the following.

Definition 2.2.11 (M-systems). We define a M-system as any system

(Xa By, N {Un}, {Xn})

where

(i) the system (X,Bx,u,T) is a measure preserving dynamical system and p 1is

an ergodic probability measure;
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(7i) the sequence {Uy} is a sequence of Borel sets U, C X such that p(Uy,) > 0 and
w(lUy) — 0; and

(iii) the sequence {X,} is a sequence of random variables X, : X — R defined by
X (z) == p(Un)mn(x).

Definition 2.2.12 (M,-systems). We define a M,-system as any M -system

(Xv Bx, p, 0, {Un}, {Xn})

where (X, ) is a topologically mizing subshift of finite type with X C {1,...,a}” for
some integer a > 1 and the system (X,Bx,p,0) is a ¥-mizing measure preserving

dynamical system where the sequence {Pa}pen is bounded.

We investigate the convergence in law of X, in a M,-system. A useful trick

that we learned from [31] is to consider

lim {p{z € X : (@) > [¢/plUa)]} — (1~ w(Uy,)) /UL = 0 for every t > 0,
(2.2)
that is equivalent to (2.1) in the case that u(U,) — 0.

2.3 Auxiliary results

The purpose of this section is understanding Theorem 2.1.1 with the help of a propo-
sition (Main proposition) and its corollary (First corollary), that are interesting by
themselves. The proofs of these auxiliary results will be used to prove Theorem
2.1.1.

Main proposition
We present an important proposition, indeed a few improvements of it will prove

Theorem 2.1.1.

Proposition 2.3.1 (Main proposition). Suppose that (X, By, p, o, {Un},{Xn}) is a
M, -system where Uy, is in the sigma algebra generated by Hg_l{l, ...,a} for every
n>1.1If

M =N (2.3)

and
nuUp) = 0 as n — oo (2.4)
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then the sequence of random variables X,, converges in law to an exponential random

variable of parameter 1.

Notice that the condition 7, = n is equivalent to 7, > n, because of the
definition of the sequence of sets {U,}. As an application of the proposition we can

give the following example.

Example 2.3.2. Suppose that X = {0,1,2}* and

un = I—':I:l $$n71€{1,2}[07 L1, T2, ... 71'n71]n-

-----

Let p be a Bernoulli probability measure on X defined by a probability vector (po, p1,p2) €
(0,1)3. Then (X, By, p, 0, {Un}, {Xn}) is a My-system and (2.3), (2.4) are satisfied,
therefore Proposition 2.3.1 applies.

Another application is to Gibbs measures, because they are automatically

1-mixing. We have the following remark.

Remark 2.3.3 (Gibbs measures are ¢-mixing). The explicit formula for 1 is written
in [16]: Theorem 1.7, Lemma 1.8, Lemma 1.9, Lemma 1.10, Lemma 1.12, Lemma
1.8 and Proposition 1.14. Suppose that we have a measure preserving dynamical
system (Xa,Bx,, 1, 0), where (Xa,0) is a subshift of finite type and p is the Gibbs
measure of Holder potential ¢ : X4 — R. We require here some extra definitions
in order to define the Perron Frobenius-Ruelle operator (or transfer operator) that
will be used to obtain the formula of 1. We define the one-sided shift of finite type
Xt =X1 by X = {(20)3% : A(@p,Tnt1) =1 for allm € No}. We can define the
shift action o on X+ by o(x)y, = xpy1 for all n € Ng. Two functions ¢, € C are
said to be homologous if there is u € C so that ¢(x) = ¢(x) — u(x) + u(oz) for all
xz € X. Given a function ¢ € F, there exists an homologous function ¢ € F such
that p(x) = o(y) if and only if x; = y; for every i € Ny ([16]). We can define from
¢ a function ¢ : X+ — R by taking d({:}32) = p({y:}32 o) for {wi}i2 = {xi}32

and some election of {y; i_:loo so that {y;}2_ . € X. The Perron Frobenius operator

ZLi@) = Y Wy

y€o—1(z)

acts on the space of continuous functions f : X:{ — R. Theorem 1.7 in [16] proves
that there exist A > 0, a continuous function h : XX — R>% and v € M, such that
ZLh = Mh, L*v = v, and [ h(z)dv(z) = 1. We fiz this h.

. Let M > 0 such that AM > 0.
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- Let a,b € (0,1) such that sup{|p(z) — ¢(y)|: z; = y; for i|< k} < ba¥ for all
k € Np.

- Define Bp, := exp(>_pe,,. 1 2ba¥) for m € No.
. Define K := \MMlel g,
- Take L > 0 such that By, B;,}, Big1e?" € [—L, L] for all m € Ny.

- Find a pair of constants 0 < uy,uy such that uy(z —y) < e* —e¥ <wug(x —y)
for all x,y € [-L, L], x > y.

. Define 1 := us(1 — a)(dauy ||| K) .

- Define p:= /1 —n.

+ Define v := (1 =)~ ([|A]l + K) supoe, < [|A7727]]
Then Y = kK2,

Before giving an example in the case of Gibbs measures let us mention that

Proposition 2.3.1 gives a condition that depends on the pressure.

Remark 2.3.4. Let (X,0) be a subshift of finite type and U, = [z'], U~ - - U [2™"],,

1

where x*, ..., 2™ € X, for every n > 1. If p is a Gibbs measure on X of Hdélder

potential ¢ : X — R, then
0 < uUn) < mpexp (—Pn+ [IS;oll) (25)
for some constants ¢ > 0. In particular, we deduce that the hypothesis
nmy, exp (—Pn + ||Sp¢||) = 0 as n — oo

is enough in order to satisfy the hypothesis (2.4).

Example 2.3.5. Let A be an irreducible and aperiodic matriz with entries 0 and 1 of
size axa with a > 2 and let B be a submatriz of A of sizebxb withb € {2,...,a—1}.
Denote by Ay and Ap the Perron eigenvalues of A and B, respectively. Consider
the subshift of finite type X4 C {1,...,a}* and Xp C X4. Suppose without lost of
generality that Xg C {1,...,b}~. Define for n € N,

Z/{n = uxl,...,mn_1€{1,2,...b} [a‘rl T xn—l]na
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then the sequence of random variables X, := pu(Uy,)7, converges in law to an expo-
nential random variable of parameter 1 for any equilibrium state with Hoélder poten-
tial ¢ such that 3||¢|| < Aa—Ap. As (2.4) is clearly satisfied, then Proposition 2.3.1
applies.

We extend Proposition 2.3.1 in order to allow short return times. In this case

we do need to care about considering shrinking sets, unlike in previous construction.

First corollary

Let us start with a definition.

Definition 2.3.6. We say that a sequence of sets {Uy,} is a sequence of shrinking
sets if Uy D Up41 for every n € N.

We can now state our first corollary.

Corollary 2.3.7 (First corollary). Suppose that (X, By, p, o, {Un}, {Xn}) is a M,-
system where Uy, is a Borel set in the sigma algebra generated by Hg‘*l{l, ...,a} for
every n > 1. If the sequence of sets {Uy} is shrinking and it satisfies

npy (Z/lmn/QJ) — 0 asn — oo, (2.6)

then the sequence of random variables X,, converges in law to an exponential random

variable of parameter 1.

Example 2.3.8. Let us choose x € X and consider {U,} = {[z], : n € N}. If
n ([2] ), /2) — O, then the sequence of random variables Xy, := p([x]n) 7y converges

in law to an exponential random variable of parameter 1.

Example 2.3.9. In particular, for the measure of mazimum entropy pparry. If {Un}
is a shrinking sequence and npparry(Uyy, 2)) — 0, then Xy = pparry(Un)T con-
verges in law to an exponential random variable of parameter 1. This result is not

sharp, but to have certain control on n, is necessary.

Example 2.3.10. Suppose that (X, o) is the full shift in two symbols, i.e its tran-
sition matriz A is a two by two matriz with 1 in each coordinate, and suppose that
w is the uniform probability measure, i.e. u([x],) = 27" for every x € X andn € N.
Then X. = pu(Uy) T converges in law to an exponential random variable of parameter
1 for any sequence of sets {Uyn} such that n, = logy(n) + ky, where {ky,} C N is a

divergent sequence.
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2.4 Related results

In this section we compare the results in [46] and [26] with the original results of
this chapter. We define in what follows the first hitting time distribution and the
first return time distribution, both will be related by Theorem 2.4.3.

Definition 2.4.1 (From [46]). Let (X, By, p,0,{Un},{Xn}) be a M-system.
(i) The first hitting time distribution is defined by

FXn (t) = M(Xn < t)

fort > 0.

(i) The first return time distribution is defined by

Fy, (t) == pU, N{X, < t})

1(Un)
fort > 0.

Remark 2.4.2. Notice that the first hitting time distribution coincides with the

cumulative distribution we defined in Subsection 2.3.
The main theorem in [46] is the following.

Theorem 2.4.3 (Main theorem in [46]). There exists a distribution function F such
that Fx, converges weakly to F if and only if there exists a distribution function F

such that Fx, converges weakly to F, moreover, F(t) = fot(l — F(s))ds.

In our results we consider a M,-system, therefore Theorem 2.4.3 will be
always available, because a M, -system is a 1-mixing M-system. In particular, this
theorem shows that the exponential distribution is the only distribution which can
be asymptotic to both Fx, and FXH. However, if the measure p is ¥-mixing, we can
provide a direct proof of the fact that the exponential distribution is asymptotic to

both Fx, and Fy,. This is the content of the next corollary.

Corollary 2.4.4 (Second corollary). Let (X, Bx,u, 0, {Un},{Xn}) be a M,-system
where Uy, is in the sigma-algebra generated by Hgil{l, ...,a} for everyn > 1. If

M =n (2.7)

and
nu(ly,) — 0 as n — 0o (2.8)
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then
i | AE € Un 70 > [t/ p(Un) |}

(1 — [t/uUn)]| _
lim po (1 ulth,)) 0. (29)

for every t > 0.

The proof of Corollary 2.4.4 is a direct consequence of Proposition 2.3.1 and
Theorem 2.4.3. We include in Subsection 2.5.4 a direct proof that only uses Propo-
sition 2.3.1.

We now move to study the relationship of our results with [26]. For this, let

us introduce two definitions.

Definition 2.4.5. Let Q) be a non empty set and U C 2 a subset. We define the
map 1y : Q@ — {0,1} by
1 ifxel,

]lu(&?) = )
0 ifz¢lU.

Definition 2.4.6 (From [26]). Let (X,Bx,p, T,{Un}, {Xn}) be a M-system. We
define the sequence of hitting times as the sequence of random variables Y, : X — M
with
Yo(e) =Y Tu, (TF2) e,
k>0
where M is the set of Borel sigma-finite measures on [0,00), §; is the Dirac measure

att >0 and {c,} is a chosen sequence such that ¢, — 0 as n — oo.

The main difference between the results in this chapter and the ones in [26] is
that, whereas we study the statistics of first hitting times, [26] studies the statistics
of hitting times. On the other hand, in [26] it is necessary to impose two conditions
on the measure p and the sequence of sets {U,}, the first in particular implies that
the limit lim, oo ¢, 'p(U,) exists and the second is a kind of -mixing condition.

In our results we require similar conditions (M,-systems).

Regarding the demonstrations, in [26], the proof relies on the application of
the Laplace Transforms Technique in a similar way than in [29] and the study of
the Pianigiani-Yorke measure in [34]. Our proofs instead follows an idea in [31],
Theorem 8.11, which refers the idea back to [9].
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2.5 Proofs

We have separated the proofs of our results into four subsections. In §2.5.1 we
introduce the notation that will be used along the section and we prove Proposition
2.3.1. In §2.5.2 we prove Corollary 2.3.7. In §2.5.3 we combine what we did in §2.5.1
and §2.5.2 in order to prove Theorem 2.1.1. Finally, in §2.5.4 we prove Corollary

2.4.4 using only ideas from the first subsection.

2.5.1 Main proposition

The goal of this subsection is to prove Proposition 2.3.1. In what follows we suppose
that (X, o, p) is a subshift of finite type where p is a probability measure on By and
that we have a sequence {U,} of Borel sets U,, C X such that u(U,) — 0. Instead
of (2.1) we consider the equivalent condition (2.2). We prove the assertion (2.2) in

several steps. The first is to replace (2.2) by a limit involving the sum of N terms.

Lemma 2.5.1. Forn € N, ¢, = p(Uy,) and N = [t/e,] with t > 0 we have that

N—

p{mn > N} — 1_€n (1—€n) N-a= 1(N{Tn >q+1} = (1= e)p{m > q}).
q=0

>—‘

(2.10)

The proof of Lemma 2.5.1 consists in noticing that most of the term in the
sum of the right hand side of the equation (2.10) cancel when summed with other
term, the unique terms that do not cancel are indeed the ones on the left hand side

of the equation.

For what follows we require additionally that p is an invariant probabil-
ity measure on By. For p,q € Ny we use the notation p{7, > ¢} instead of
p{x € X : 7p(x) > ¢} and for every n € N we define €, := u(Uy,) and N := [t/ey],
where t > 0.

For ¢ € {0,..., N — 1} define

pq(n) = (1 - en)Niqil(:U'{Tn >q+ 1} - (1 - en):U’{Tn > Q})a

Si1(N) == 22;01 pg(n) and So(N) = Zévz_nl pq(n). To obtain (2.2) we will show with
the help of a few lemmas that

p{rn > N} — (1 —€,)N = S1(N) + So(N) — 0 as n tends to infinity.
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The second step of our proof is to bound the term S; (V). It will be useful to denote
by E the expectation with respect to p.

We have the following lemma.
Lemma 2.5.2. For all n € N, we have that S1(N) < nep,.

The proof is a direct consequence of a useful identity in the next lemma that

requires the measure p to be invariant.

Lemma 2.5.3. For all n € N, we have that for all ¢ € {0,...,N — 1}

p{rn > q+ 1} — (1 — en) {7 > ¢} = enu{mn > ¢} — p{z € Uy, : 7.(z) > ¢}.

Proof. The result is direct from the definitions of the sets {7,, > ¢+1} and {7, > ¢}.

Indeed, we can write the following identities:
> q+ 1} = (1 —en)p{m > ¢}
q+1
—E (H Ty o ai>
i=1
q+1
—E (H Ly o a">
i=1
q+1 q
—E (H Tye 0 ai) —(1—€)E (]10,5 H Tye 0 az’) —(1-€)E (Jmn H Tye 0 m-)
ey ; ,

g+1
—E (H Ly 0 0
1=1
q q
+ EnE <1Uﬁ H ]lz,{TcL o O’i> - (1 - Gn)E (ﬂun H luﬁ o Ui>

=1

=1

q q
= e,E ((1 — Tg,) ] s o ai) —(1—¢,)E (Ilun | J R m-)
] =1
q . q .
= e, E (H Iyc o O'Z> —-E (]lun H Ty o 0’) .

=1

Therefore we have

p{mn >q+ 1} — (1 —ep)p{mn > ¢}

q q
=€, E (H e o 0i> —E (]lun H Tye © Ji> ,
=1 =1

(2.11)
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and this is enough to conclude the proof, because

q q

enlE (H Iy o ai> —E (ILMn H Ty o a’) = enu{Tn > q} — p{z € Uy, : Th(x) > q}.
i=1 i=1

O

In the third step, and most difficult one we bound So(N). This step requires
additionally that p is ¢-mixing. Or equivalently, that (X, By, p, o, {Un}, {Xn}) is
a Mg-system. In order to obtain an upper bound for S3(IN) we will state a lemma

with some intermediate bounds.

Lemma 2.5.4. For alln,k € N, we have

E(Ly, 1y, 0 0™F) < €2(1+ ), (2.12)

and for g € {2n+1,...,N — 1} we have

q q
E (M I 2ug o gi> —E (llun T 2 o ai>

1=2n i=n

n—1
<e(n+) v, (213
1=0

< ney (2.14)

q q
E (H ﬂuﬁ OO‘i> —E (Hﬂuﬁoai>
i=n

1=2n

and

< enthn. (2.15)

q q
enE (H Ty 0 ai> —E (h,n IT 1w o ai>

i=2n 1=2n

Proof. Inequality (2.12) requires the ¢-mixing condition and inequality (2.13) is a

consequence of (2.12).

Proof of (2.12) We can use the t-mixing condition to conclude that

]E(Ilunllun o O,n+k) — 6721

= [E(Lu, 1y, 0 ") = pthn)?] < i

Then trivially
E(ly, Iy, 0 0™ ) < enipy + €,

as required.
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Proof of (2.13) Let n,k € Nand ¢ € {2n+1,..., N — 1}. We have

q q

1=2n =n

q ‘ 2n—1 ‘
:E(Ilun- H LIyc oo - (1— H Jlugoaz»
=n

1=2n

2n—1 ‘
<E <]1un , (1 — I e oa’))
=n

where we have used (2.12) in the last inequality.

Proof of (2.14) Let n,k € Nand g€ {2n+1,..., N — 1}. We have

q q
E H Iluﬁan) —E(H]luﬁoal)‘

1=2n
q 2n—1
=K (H Tyc oo - (1 11 Iluﬁoaz))
i=2n i=n
2n—1 2n—1
<E (1— H Tye oai> < Z E(]lun oai) = neE,.
=n =n

Proof of (2.15) Let n,k € Nand ¢ € {2n+1,..., N — 1}. We have

q q

1=2n 1=2n

q
< Ype B (H ﬂu,g o Ji) < Ynén,

1=2n

because of the condition of ¥-mixing.

We can now bound Sa (V).

Lemma 2.5.5. For alln € N, we have that

n—1
So(N) < 4(n+1)(t + e + (t+ Db + New > i,
=0
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Proof. Recall that Sa(N) = Zf]\[;nl Pg(n). From (2.11) we have that

q q
pe(n) = (1 —ep)N 7071 <6nE (H Iy o O'i> —E (Ilun H Iyc o 0i>>
i=1 i=1
q ‘ q '
< e E (H Ty o a’) —E (11un T e o o’>
i=1 i=1

for every ¢ € {n,...,N — 1}.

For a fixed ¢ we bound py(n) by the sum of two terms:

=1

q q
e E (H e o 0i> — e, E (H Tyge © a’) ‘
i=1 i=n

q q
enE <H Ly o 0i> —-E (Ilun Iyc o ai> ‘ =: 521(N, q) + S22(N, q).

q q
=1

<

+

Notice that we have used (2.3) to obtain that

q q
E (Ilz,{n H Ty o O'i> =E (Ilun H Tye o O'i> .

i=1 i=n

Our goal now is to bound S2; (N, ¢) and Sa2(V, q). For the first term we have
the simple inequality Sa1(IN,q) < ne2, because

S21(NV, q) < e, E <

n—1
H lycoo' —1
=1

q .
Ttz 00
i=n
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To bound Sa3(N, q) we use Lemma 2.5.4. Suppose that ¢ > 2n, then

q q
S22(N,q) = |, E (H Iy o a’) —E (]lun H Ty o ai> ‘
=n 1=n
q q
< e B (H Tye o Ji> —E <]lun H Tye o 0i>
1=2n 1=2n
q q
+e, |E (Hﬂuﬁoai> —E (H luﬁoai>'
i=n 1=2n
q q
+ |E (1114” IT 1 ooi) —E (1% T 2 oaf> |
i=2n i=n

=:I1(N,q) + I2(N,q) + I3(N, q).

I3(N,q) < &3 +ne2 by (2.13). In the case n < ¢ < 2n we can use that
S22(N, q) < €,. Finally,

We have that I1(N,q) < etb, by (2.15), I(N,q) < ne2 by (2.14) and

M=

So(N) < ) (S21(N,q) + S22(N, q))

<
Il
3

2n N
So1(N, q) + 2522(]\7, q) + Z S22(N, q)
q=n q=2n+1
< Nnep + (n+ e + N(I1(N,q) + I2(N, q) + I3(N, q))
n—1
<en(n(t+ 1)+ (n+1)) + (t+ 1)y + 2(t + )nen + Nea > i,
=0

I
WE

<
Il
3

which concludes the proof. O

2.5.2 First corollary

The proof of the corollary is very similar to the one of Proposition 2.3.1, but we
need to modify some details. To complete the proof we require the following lemma,

where n € N and ¢ > n.

Lemma 2.5.6. Ifn, =n then

q q
E(H%Hﬂugoai> —E [ 1, H Iyc oo’ || =0

=n i:nn

45



BN

=

S
7

Uy, = [zl], U U [z™],

n

Figure 2.1: Proof of the inequality (2.16).

and if 9, < n then

q q
E <]1Mn H Tye o O'i) —E | 1y, H Ty o o

i=n 1="Nn
< nen€ly, /2] (1 + Vi, j2))-
Proof. The case n, = n is trivial, so suppose that 7, < n. It is clear that
q q n—1
E(Ilunnlluﬁoai> —E | 1, H Iluﬁoai < ZE(ﬂun-lunoai).
i=n i=nn i=nn

In Figure 2.1 we have chosen ¢ € {n,,...,n — 1} and we represent the set
Uy =[], U--- U [2™], for some z!,... 2™ € X, m, € N and the set o'U,. We
have also draw a representation of the set U]; 5. We can see that the action of the
shift moved the rectangle at the bottom to the left, the result is the rectangle that

we draw at the top. It is clear that
E (L, - Tty ©0") S B (Vg - Tugy 00%) = 1 (Un 00" Ujyy)
From the ¥-mixing condition of the measure u we obtain that

|,u(Z/ln N O'_iZ/{[i/z}) — Ene[i/2]|§ w[i/Q]e[i/Z]€n>
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and therefore

n—1 n—1
Z E (1y, - Ly, o 0') < Z (Yri/21€1i/21€n + €nclijz))
= = (2.16)
< nen€in, /2] (1 + Yy, /2))-
]

The proof of Corollary 2.3.7 comes from the observation that for ¢ € {n,..., N—

1} we have

q q
enE <H ]luTcL o Ji> — K (]lun H ]11/{7%; o 0’1’) ‘
i=1 i=1
q q
e B (H Iy o ai> — €, E (H Iye o 0i> ‘
i=1 i=n
q q
+ |enE (H Ty o ai> —E (M 1] 2w o ai) |
=n

i=n

q q
+ E(]lunHIluﬁoai> —E | 1y, H Iluﬁoai

i=n 1="Nn

<

= So1 (N, Q) + 522(N7 Q) + Sextra(N7 Q)~

We can use Lemma 2.5.6 to bound Sexira(V,q) and the proof of Corollary 2.3.7
follows directly from the proof of Proposition 2.3.1.

2.5.3 Theorem 2.1.1

We can use the same notation and definitions used in the previous proofs and write

(tn > N) — (1 — )Y = S1(N) + So(N),

where
N-1
Sa(N) < Z S21(N, q) + S22(N, q) + Sextra(IV, ¢) and
q=n
4q ) q ' 2n—1 '
Sextra(N7q> = E<]1L{nH]lL{ﬁOUZ> —E ]l[/{n H ]lurcLOO'l < ZE(HZ/{"-HZ/{”OUZ).
i=n 1=Nn 1=Nn

Notice that the case I. is exactly the condition required in Corollary 2.3.7. Therefore,

47



we only need to prove the theorem in the cases II. and III. The unique difference in
these cases and the one of First corollary is that we need to find a new bound for
E (1y, - 1y, o 0') when i € {n,,...,2n —1}.

Lemma 2.5.7. If (X, Bx, u, 0, {Un}, {Xn}) is a My-system where Uy, is in the sigma
algebra generated by HT_L:LI{L ...,a} for every n > 1. Then, for everyn > 1
E (1y, - 1y, o o)
p(Un ) Uk) + P aceren ifom=n—+k-+A withk+ A >1,
pVn)pUn) + Y1, 21 (Vn)en  if nn <n+1,
for all i > ny,.

Proof. Let us fix n € N. We have two cases: 7, = n+k+ A withk+ A > 1
or 1, < mn 4+ 1. Suppose first that n, = n + k + A with £k + A > 1 and that
i€{nn,...,2n — 1}, then

E (ﬂu” Ly, o ai) <E (ﬂuk Ly, o Ui) =u (uk N UﬁiUn)

and
1 (U 0 0™ Un) — U U)| S Y aeren: (2.17)

Therefore
E (Ly, - Ly, 0 0") < p(lU) p(Un) + aeren.

In Figure 2.2 we represented the sets U, N o~"U, and Uy, N o~U,,. The light
grey rectangle at the top represents the set U, and the one at the bottom the set
0~ U,. The darker grey rectangle represents the set Uy, D U,. The “gap” /A between
the coordinates fixed by the sets Uy, and o ~'U,, allows to use the ¥-mixing condition

of the measure p to conclude inequality (2.17).

Suppose now that 7, < n + 1 and that V, has coordinates fixed only
in {-n,...,—n + [n,/2]} (the case that V,, has coordinates fixed only in {n —
|7n/2],...,n — 1} is similar), then

E (1y, - Iy, 00") < E(Ly, - Ly, 00') = p (Vo Mo~ Uy)

and
Iz (Vn N U_iun) = p(Vn)u(Un)|< ¢Lnn/2jﬂ(vn)€n- (2.18)
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2n

2k
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:
-
A
7
2n
U, = [z*,,, ,x(l), ,x}%l]’jnl_l...l_l R R il L

Figure 2.2: Proof of the inequality (2.17).

Therefore
E (]]'Mn : ILZ/ln © Ui) < N(Vn):u(un) + ¢Lnn/2JN(Vn)6n'

In Figure 2.3 we represented the sets U, N o ~‘U,, and V,, N 0~'U,,. The light
grey rectangle at the top represents the set U, and the one at the bottom the set
0~ U,. The darker grey rectangle represents a set U, O U,, for some k < n. The
“gap” |n,/2] between the coordinates fixed by the sets V,, and o~ ‘U,, allows to use

the -mixing condition of the measure u to conclude inequality (2.18).
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Figure 2.3: Proof of the inequality (2.18).
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2.5.4 Second corollary

Proof. Recall that for every n € N, €, = u(U,) and N = [t/e,]. The result reduces

to the following inequalities

lpu{x €Uy, : 7, > N} — p{mn > N}e,|
N ' N 4

- E (]1% T e o U’) ) <H Tye 0 al> ‘
i=1 j
N A N

= |E (Ilun H Iye o Jl> — e, E (H Iy o 0’1> ‘
i=n ;

=1
N N
< |E (11% T 2 oai> —E (Mn I 2 oai> '
i=n 1=2n
N N
+ |E (]lun H Tyse oai> — e, E (H Tyse oai>‘
1=2n i=2n
N N
+e, |E (H Iluﬁan) —-E (H]luﬁoal)‘
i=2n =n
N N
+ €, |E (H]luﬁoai> —E (Hﬂuﬁoai>|
i=n =1
n—1
<é Z Vi + ne2 + enthy, + 2ne2,
=0

where the last one follows from Lemma 2.5.4. Dividing by €, we conclude the

proof. O

2.6 Other results

2.6.1 An application

A continuous ergodic automorphism of the two dimensional torus or also called
hyperbolic toral automorphism of T? = R?/Z2, is a transformation T : T? —
b dl1
T? such that T ) = az +by (mod 1) , where a,b,c,d € R and the matrix
Yy cx +dy (mod 1)
a

b
M = does not have eigenvalues of modulus 1. In 1967, Adler and Weiss in
c

[4] proved that for any hyperbolic matrix (real matrix whose eigenvalues all have
nonzero real parts) with integer coefficients and determinant +1 there exists a sym-

bolic coding with a subshift of finite type. We suppose that the matrix M has two
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real and strictly positive eigenvalues, one strictly bigger than 1 and the other strictly
smaller than 1. We call the eigenvalues by A = A\, > 1 > Ay > 0. In [4] is consid-
ered the partition of T? into two parallelograms R; and R whose sides consist in
two connected segments through the origin in each of the characteristic directions
of M. One can take the partition into r parallelograms Py, ..., P, determined by
R; NTR; for i, = 1,2 and consider the associated transition matrix A. The sym-
bolic coding is then given by (X4, ). In [4] is proved that the matrix A is irreducible
and aperiodic, then by the theorem of Perron-Frobenius there is a unique measure of
maximum entropy or Parry measure fiparry on By, . It is also proved that the Perron-
eigenvalue of A is A, so in particular hyop(o) = log(A) (this is a well known result
that can be found in [62]). One can consider the map 7 : T2 — X4, when x € T2,
m(x)y, corresponds to the element i € {1,...,7} such that 7" (z) € P;. By definition
cgom =moT and hgsyy,. (T) = h

a probability measure on By,. This implies that 7*piHaar = fParry, and so 7 is a

sitons (@) = log(N), where 7% fipaar = p(m™1) is
conjugacy between (T2, Bz, fifaar, T') and (X4, By, [Parry, 0). Because of the vari-
ational principle we know that for ¢ € F (recall that we defined F to be the space
of Holder functions on X4) the pressure P = P(¢) = sup{h,(o)+ [ ¢du : p € My}.
So in particular, the probability measure pipary satisfies the inequality

c < pParry ([2]m) _ pparry ([2]m) < ¢y (2.19)

~ exp(—mhiop(0)) A—m -

for every x € X4, m € N and some fixed constants ¢y, co > 0.

Shrinking strip along the unstable direction
In this subsection we find strips S,, converging to a segment on T? as n tends to
infinity, for which

lim pg,en {z € T?: piren(Sn)7s, (2) > t} =t

n— oo

for the Lebesgue measure prep, on T2,

To make the exposition simpler, we restrict us to the hyperbolic toral auto-
11

10/
The Lebesgue measure ure, on T? is preserved by T, because M has de-

morphism T given by M =

terminant —1. We construct the Markov partition in Figure 1.5 with rectangles
Rl,Rg,Rg,R4 and R5.
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Figure 2.4: Strip along the unstable direction.

Definition 2.6.1 (Shrinking strips and cylinders). For each k € N, we define for
n = 2(k+1) the strip S, := N}__5, TRy, and the cylinder A, = [1515...1514]% .,
where T_op, = 1,941 = 5,T_9k42 = 1,Z_ok13 = 5,...,2_0 = L,x_1 = 5,29 =
1,21 = 4.

Definition 2.6.2 (Entry time to the strip). For each n € N, define the entry time
to the strip S, by 7s, : T? = N, T2 3 z = inf{k e N: T*(2) € S,,} € N.

We consider

0 0011
10 000
A=|[0 0 0 1 1
01100
10 000

and the continuous s.urjectiOJrl1 T X = T2 Xy ﬁieZT*iRm e T2.

The Lebesgue measure jiy,¢1, on T? corresponds to the equilibrium state for the
function 0 on T?. Calling fiparry the Parry measure on X4, we have that (T?, T, urep)
and (Xa, 0, Wparry) are conjugate?.

This implies that for any number ¢ > 0 and any k € N

pireb {2 € T2 ¢ iren(Sn)Ts, (2) >t} = tpary {T € Xa & parey (An) () > t},

'Theorem 3.18 in [16].
*Proof of 4.1 in [16].
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where n = 2(k + 1) and 7, is the entry time to .4,,. We also have:

Proposition 2.6.3. For any number t > 0 and n = 2(k + 1) with k € N, we have
that

klim I Leb {z €T?: prey(Sp)ts, (2) > t} =e L
— 00

Let A\s < 0 <1 < Ay be the eigenvalues of M. Call by v, v, their respective
1

VI+(1=2)2"

Definition 2.6.4 (Shrinking strips with arbitrary width and its entry time func-

normalised eigenvectors. Define [ =

tion). For each ¢ > 0. We define the strip S. to be the rectangle with vertices
I(As — 2)M~Yug, Ly, lv, — elvs and [(As — 2)M ~vs — elvs. Define the entry time to
S, 75 (2) == inf{k € N: TF(z) € S¢} for z € T2

Corollary 2.6.5. For any number t > 0, for every § > 0, there exists ¢ > 0 such
that for any 0 < € < e

etX _§ < WLeb {z eT?: NLeb(ge’)Tge,(Z) > t} < et 16,

Proof. Fix t > 0 and 6 > 0. For each n = 2(k + 1), let {4,,} be as in Definition
2.6.1. For any ¢ > 0, there exists k. € N such that IA?%¢ > ¢ > [\2F<*2. Define
ne = 2(ke + 1). We have

Hleb (Sn6+2 ) }
MLeb(Sne)

= pireb {2 € T : T q2(2) pineb (Sno2) > tAZ}

HTeb {2 € T?: MLeb(ge)Tgs(Z) > t} < [iLeb {Z € T? : 7 +2(2) Leb(Snog2) >t

We know that for n = 2(k + 1)
. 2

lim pipen {Z eT?: Tn+2(z),uLeb(Sn+2) > t)‘g} =e€ t)\37
k—o00

then for e sufficiently small choose k. such that n. is big enough to satisfy

2

fiLeb {z € T? : 7o 12(2) fiLeb(Sno2) > tAZ} < e 46

We have that for any 0 < ¢’ < ¢

HLeb {Z eT?: ULeb(Se’)TS,(z) > t} < e 46,

The lower bound is similar. ]
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Example of shrinking to infinitely many parallel strips

Definition 2.6.6 (Cylinders and shrinking strips). For each n € N, we define the

set of cylinders
A, ={[11...12]L ), [211...12)0 g (22100 12)t L 220212 )

and the set of strips

— 0 —1 . 1
Sn T {mi:7n+1T lei . [x—n+17 Len42y---3 L1, $0]7n+1 € An}7

Sn = U'RESnR C Tz.

We can consider the entry time time to the set of strips S, Tt corresponds
to the function defined by 7, : T2 = N, T2 5 z — inf{k e N: T*(2) € §,} e N. A

direct consequence of Proposition 2.6.3 is the following;:
Proposition 2.6.7. For any number t > 0,
lim fizep {Z € T2 : fu1ep(Sn)Tn(2) > t} =e".
n—oo

2.6.2 A related result

On the setting of hyperbolic toral automorphisms and Gibbs measures, we show a
stronger result than the Borel-Cantelli Lemma. Consider a hyperbolic toral auto-
morphisms T’ given by a matrix M with eigenvalues A = A\, > 1 > Ag > 0. For
n € N let R be a finite Markov partition with R™ := \/?__ T*R. Let l,, C R" and
I, == Uyyer, W C T2. Define

V, = T_nin,

Fo(z):= Z 1y, (z) for z € T? and
k=1

Eni=> plly).
k=1

Our result is the following:

Proposition 2.6.8. Forn € N,

Fo(z) = E, + O(EY?10g%?* E,,), € > 0
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w-a.e. for any Gibbs measure p with a Hélder potential ¢ that is W-mixing with

U(n) == 1p(n)\" exp {\ Sﬁffw‘bu}

summable.

Proof. Suppose that p is a Gibbs measure and -mixing with

S7-wmd}

summable. Remember that for n € N, for every W € R"™ we have

U(n) :=1P(n)\" exp {‘

c1 exp {—271 log A + ig(!SSM(m)!} < u(W) < cpexp {—2nlog A + |53, 9]}
Suppose now that m,n € N,n > m are fixed, then

(Tl N T ™) — (Tl ) (T ™)
— Y WQNW) k(@)

QeT "y,
WeT ™ ™y,

> p(QNW) — u(Q)u(W)

QeT "y WeT ™™,
ONW#D

< N2 (1) U |
ssup {p(QNW) — u(QuW) : Q € T "y, W € T ™, QNW # 0}
< )\2n_2m#(ln”lm|

i oF -m / 2n—2m—k
kG{O,..A,l2rrlLf—2m—1} {w(k)ﬂ(W)N(Q) WeT lm; Q eER }

< )\2n72mﬂ(ln)’lm‘

et i 5y 20U exp {20 o 2m oK) log A+ |55,y }

sup {pW) : W e T ", }

IN

- sup

< Zulldtin) _inf 9N exp {185,219}
2
C n—2m g
< )l (V20— 2NV exp {8 o o}
2
= Zplln) (L)W (20— 2m]).

The inequality above proves the condition (2) of Theorem 3 in [70], from which our

theorem follows. O
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Chapter 3

Escape rates for smooth flows

3.1 Introduction

Suppose that we have an ergodic and finite measure preserving dynamical system.
If we consider a subset of the phase space, we know that the orbit of almost ev-
ery point enters it. A natural object to study in this case is the measure of the
points that have not entered this subset up to a time n € N. It is natural to think
in some classical examples of uniformly hyperbolic smooth dynamical systems that
this measure will decrease exponentially as n increases. The escape rate through
a subset of the phase space corresponds to the asymptotic rate between n and the
logarithm of the measure of the points that have not entered our subset up to time
n. Once one has understood the escape rate of a set, one may wonder how the escape
rates of sets whose measure converge to zero and the measure of the sets itself are
asymptotically related? The answer is that for some uniformly hyperbolic smooth
dynamical systems and some particular probability measures (Gibbs measures for
example) one can explicitly describe this asymptotic behaviour ([39]). The question
that motivates this chapter is: Can we say something similar for smooth flows? A
general answer is out of the scope of this thesis, however, we will present a set-
ting in which it is possible to obtain results for smooth semi-flows analogous to that

for Gibbs measures in discrete dynamical systems. This is the content of the chapter.

Suppose A is a set of possible states (a compact metric space) that evolves
in time according to the transformations ® : A — A, t > 0. If we know the state
of the system at time zero, say x € A, then at time ¢ it is ®!(z). To be consistent
we need that ®7(x) = ®%(d!(z)) for any s,¢ > 0. This defines a flow {®'}. We

assume that we have an invariant ergodic probability measure p on A, so that in
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particular (A, By, p, ®!) is a measure preserving dynamical system. For an open set
H C A and t > 0, we define

K(u,t,H,A) :=logu{xr € A: ®°x ¢ H,s € [0,t]}
and the escape rate through H by

R(u,H,A) := —limsup 1K(u,t,?—[,A).
t—oo 1t
We are interested in the asymptotic behaviour of the escape rate R(u,H,A) as the
measure of H decreases to zero. For discrete dynamical systems, this has been
studied in [39] and in the references therein. In the discrete case we have a measure
preserving dynamical system (X, By, u, T') and define for an open set H C X and a
positive integer k € N

K(u,k,H, X) :=logpu{z € X : T'z ¢ H,i € {0,...,k —1}}.
The escape rate through H is defined by

R(u,H,X) := —limsup lK(M,k,7-[,/l’).
k—o0 k
In [39] is considered a discrete dynamical system (X, T'), where the space of invari-
ant probability measures is denoted by M, and fix an appropriate Banach space
Ex C X*. For the pressure function P : £y — R, that corresponds to P(-) =
sup,epn, Q1) for the function @ : Ex x Mr — R, Q(p, ) = hyu(T) + Jo du,
where h,(T) is the measure theoretic entropy, in [39] there is a well defined func-
tional .# : Ex — My such that for ¢ € Ex, #(p) = p, corresponds to the
unique solution of P(¢) = Q(¢, ;). The measure p,, is called the equilibrium state
(or Gibbs measure). Their result is that for (X,7) a non-invertible subshift of fi-

nite type or a conformal repeller, for some shrinking sequences {Z,,},Z, C X with

MnenIn = {Z},
limwzv(z)ongoe&y (3.1)
n—oo uw(In) v ’

where 7, : X — [0,1] is defined for ¢ € Ex,z € X by

1 if x is not periodic,
’YSO(:E) = ST —_pP . . .
1 — % #@=PP(®)  if 2 has prime period p.
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A special semi-flow (A, ®%) over a discrete dynamical system (X, T), corre-
sponds to a semi-flow in which every point in A moves with unit speed along along
the non-contracting and non-expanding direction until it reaches the boundary of
A and it jumps according T. That is, for a continuous function f : X — R>9 we

consider the continuous action ®f = <I>§c on
A=Ap:={(z,t):2€ X,0<t < f(x)}
onto itself defined by
<I>'}(x, s)i=(T"z,s +t— Sﬁf(:v)) for ST f(z) <s+t<SH . f(x),

where m > 0. The main result of this chapter establishes an analog of (3.1) for
a special semi-flow (A, ®?) over a discrete dynamical system (X,7T), where (X, T)
is a subshift of finite type or a conformal repeller. We call by Mg: the space of
invariant probability measures on By and fix an appropriate Banach space £y C A*.
Again we consider the pressure function P : £, — R that corresponds to P(-) =
SUP e M. Q(+, p) for the function Q : Ex x Mgt — R, Q(¢p, p) = h, (@) + [ edu,
where h,(®!) is the measure theoretic entropy (see [16]). We consider the well
defined functional .# : £, — Mg: such that for p € Ex, A4 (¢) = p, corresponds to
the unique solution of P(¢) = Q(¢, f1,). The measure p, is again called equilibrium

state, and one can prove that u, = vl with

df dv X dppen
Sy fdv 7

where v = v is an equilibrium state associated to ¢ € £x and pgep, is the Lebesgue
measure on Br. We prove that under certain smoothness condition for the roof func-
tion and the assumption that f : X — R>!, for any shrinking sequence {Z,},Z, C X
such that (3.1) is satisfied with N,enZ, = {2z}, we have that

hm hm R(/"LSD7T nIn X [076}7X)
§N\,0 n—00 o (Zpn < [0,1])

= ,(2) on &y, (3.2)

where {r,} C Z is a monotonic decreasing sequence and 7, : X — [0,1] is defined
for p € Ep,x € X by

(@) 1 if (z,0) does not belong to any periodic orbit,
A(x) =
1 — elrel@tdt ¢ (x,0) € 7 and 7 is a periodic orbit.
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We prove (3.2) in several steps. We start by considering the case that (X, T)
is a non-invertible subshift of finite type and after the case that (X', T') is an invertible
subshift of finite type. The non-invertible case follows from a discretisation of the
flow and an application of (3.1). From these results combined with [39], we obtain
(3.2) in the case that (X', T) is a conformal repeller. A natural question at this point
is what can we say about escape rates for Axiom A flows? In the case that A is a
basic set for an Axiom A flows ® we are only able to prove that on an appropriate

Banach space £y C A*, for ¢ € £y we have that as 6 > 0 decreases to zero

R<M¢7 /57717 A)
tp(Hn)

accumulates on Sy, (3.3)

where ’Hg’n,?-ln are some specific shrinking sets, ’Hgm converges to some z € A as
n — 00,0 = 0 and S, C [0,1] is a discrete set, i.e. every every point in z € Sy
has a neighbourhood U C [0, 1] such that & NSy = {z}. The set S, depends on z
and on ¢. By “specific shrinking sets” we mean that our result only works for some
projection of cylinders sets that lack of geometric interpretation. We formalise this
in Corollary 3.4.14.

3.2 Results

We introduce a necessary condition from [39].

Definition 3.2.1. We say that a family of open sets {Uy,},U, C X satisfies the

nested condition if it satisfies that:

1. each U, consists of a finite union of cylinder sets, with each cylinder having

length n;
2. Up+1 C Uy, for every n € N and Npenly, = {2};
3. there exist constants ¢ > 0 and 0 < p < 1 such that u(Uy,) < cp™ for alln € N;

4. there is a sequence {l,} C N and a constant k > 0 such that k < l,,/n <1 and
Uy, C [z, for allm € N; and

5. if oP(z) = z has prime period p, then o=P(Uy) N [2]p, C U, for large enough n,
where z € X is a global variable.

Our first theorem is the following:
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Theorem 3.2.2. Let (Af,@}) be a special flow over (X,o). Suppose that f : X —
R>! is 6%-Lipschitz and that {I,},T, C X% satisfies the nested condition with
MnenZy, = {2} for z € XT. Then

- R(ud, o"/3T, % [0,1], Af)

= q,(z) for all Holder functions ¢ : X — R.
o (T x [0,1]) )

In our proof an important role will be played by a similar behaviour of the

escape rates for a non-invertible subshift of finite type.

Theorem 3.2.3 (Theorem 5.1 in [39]). Suppose that {Z,},I, C X satisfies the
nested condition with NpenZ,, = {2} for z € XT, then

T, X+t
lim —R(,u@, m A7)

= ~,(2) for all Holder functions ¢ : X — R.

Let J be a conformal repeller. Given z € J, we definte B(z, €) to be the ball
centred at z of radius € > 0. Our second theorem is the following;:

Theorem 3.2.4. Let (A, ®%) be a special flow over (T, f). Suppose that F : J —
R>1 is Hélder and z € J, then

i R(pk, B(z,€) x 0,1], Ay)
n—00 ,ug(B(Z,E) X [0, 1])

= J,(2) for all Hélder functions ¢ : J — R.

3.3 Proofs

We have separated the proofs of our results into three subsections. In §3.3.1 we state
and prove Proposition 3.3.2, this a one-sided version of Theorem 3.2.2. In §3.3.2 we
prove Theorem 3.2.2 by using the constructions of the previous subsection. Finally,

in §3.3.3 we prove Theorem 3.2.4 by using the work of the first and second subsection.

3.3.1 Auxiliary constructions

We require certain smoothness for the roof function, indeed, we will make clear that

it is enough to consider any #-Lipschitz function. Let start with an easy observation.

Remark 3.3.1. Given a -Lipschitz function f : X+ — R>0, there exists n : N —

R>0 converging to 0 such that

max{ sup f(z)— inf f(x):y€ X+} < n(m) (3.4)

ZE[Y]m z€[Y]m
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for all m € N. Moreover, n(m) = |f|g0™ for m € N.

Recall that given a special flow (A, ®!) over a measure preserving dynamical
system (X, By, i, 0), where (X, 0) is a (invertible or non-invertible) subshift of finite

type, we defined a probability measure uf on By by

dut = dp ¥ dVLeb'
S fdp

Our proof relies on the next proposition:

Proposition 3.3.2. Let (Af,@}) be a special flow over (XT,By+,py,0), where
(XT,0) is a non-invertible topologically mizing subshift of finite type and i, is
the equilibrium state associated to Hélder potential ¢ : X+ — R. Suppose that
f: XY = R>Y is 0-Lipschitz and that {Uy,}, U, C X satisfies the nested condition
with NpenUn, = {2} for z € XT. Then

R(ub Uy % [0,8),A7)  7,(2)

lim lim =

NGRS o (Un) [ fduy

Proof of Proposition 3.3.2. We can find € > 0 such that f > e. Once fixed €, we can
choose 6 € (0,¢/3) and m € N such that 26 +n(m) < 0.5 | fdu. We require this last

condition in inequality (3.8). We define an approximation of f from above by

+2) 3,

L (@) = ([yeiﬁfm f)/ 5} - 2) 5.

Fms(@) = ([ sup f(y)/6

YE[T]m

and an approximation of f from below by

To make the notation shorter we denote f = ?m#; and f = im s- We consider the
special flows (A7, @t?) and (A, (I)ti) We can discretise them by considering (A, @?5)
and (Ay, @I}‘s), where k£ > 0. We can associate a subshift of finite type to each discrete
flow by doing the following. Define

Xr = {20 : i = O ([2]m), x € XF k€ N, A(yi, yir) = 1},

where

1 if Cl or 02,

(03 (47, =
Az (95 (12, 5 (@) = 0 if not,
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and
C1©k:kl&$€[x/]m,

(k+1)5=f(z) &
Coe (K +1)6 = f(z') &

zip1 = ) for all 4 € {0,...,m — 2},

with the shift o7 : X — X%, 05 := @%. We denote @?‘S([az]m) by ([2]m, k mod f([z]m)/5).

Given a set N C Ny and W € §,,, define
dN|jo 7oy 5 N) = [{n € N :n < F(W)/5}],

the measure

1

~'f = —_— 5dN )

e D> Hhwx 3Nl F0x) ) (3.5)
[ fdw i

is an invariant probability measure for the subshift of finite type (2(?, 07) and cor-
responds to the equilibrium state of a Holder potential ¢ = qu : X7 — R (Lemma
3.3.3). Again, we can do the same by replacing f with f. Notice that for a given

roof function g, the measure with tilde 19 is a discrete version of the measure u9.

We define for f* = f or f

Uy, x {0} = U, X {O}f* =A{[yo, - - yr—1], : [0, .-, Tn—1]n € Up}

where
n—2

r=1(To,...,Tn2) = Zf*(ifz) +1,

1=0

Yr—1 = Yr-1(¥n—1) := (xp—1,0), and for i = 0,...,r — 2

vi = Yi(z;) = (24,0) (25, 1) - -+ (@, f* () — 1).

f*
When we are on the space X'- we will assume that U, x {0} = U, x {0} .

Applying Theorem 3.2.3 to the subshift of finite type that we have con-

structed we obtain

N? ,
i RO
< {0)

and the same can be done for f.
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(10,11,5) | (1,01,5) | ([1,11,5)

fas ([0,01,4) | ([0,11,4) | (11,01,4) | ([1,11.4)
([0,01,3) | (10,11,3) | ([1,01,3) | ([1,11,3)

([0,01,2) | ([0,1),2) | ([1,01,2) | ([1,11,2)

(0,0,1) | ((01L1) | (1,011) | (12,13
Y} (w0 |00 | oo [uo |}

2 5

Figure 3.1: Example of our discretisation of the flow for X+ = {0,1}No, where [4, j]
for i,j € {0,1} are the cylinders of length 2.
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Suppose that n,k € N. By definition we have for f = im 5 that

K (i, by Uy % {0}, X7) = K (i, 6k, Uy x [0,3],Ay),

for f = f,, s that

K (i kU < {0}, Xp) = K (7, 6k, Uy x [0,6], Ag),

and finally, that the map t — K (uf,t,U, x [0,4], Ay) is decreasing in ¢ > 0. From
this we have that independently of n € N and for any ¢ > §

K (i, [t/8] Uy x {0}, Xp) < K (i, t,Uy x [0,8], Ay) (3.6)
and —
K(u b, Uy x [0,0], A7) < K(iF, [£/8] .Uy x {0}, X7). (3.7)

We will need the following inequality

1
K(Mi7taun X [076]7Ai) +10g§ < K(#fatvun X [075]aAf) (3 8)

< K(pf Uy x [0,6], A7) + log 2.

In order to prove it, let consider the inclusions
A= {(x,s') € Ap: B (,s') ¢ Uy x [0,6],0 < s < t}
C{(z,s) e Ay: s < f(x),P5(x,s") ¢ Un x [0,6],0 < s <t}

C {(z,¢) €Ay % (x,8") ¢ Up x[0,0],0 < s < th=:V.

Then pl(A) [ fdp < p/ (V) [ fdp and log(ul(A)) + log([ fdp) < log(u/ (V) +
log(f fdu). Thus by definition K (uL, t,t, x [0,6], Ay) +log([ fdu) < K(uf, t,Uy x
[0,8],Af) + log([ fdu). We chose m and ¢ so that 26 + n(m) < 0.5 [ fdu, then
f= imﬁ satisfies

d
/fdMZ/fdu—n(m)—%Z ”2”

and f = fm,(; satisfies

[Fin< [ o) +25<2 [ gan
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From this is clear that

J fdu

1
f < f
K(pul,t,Uy, x [0,0],Ay) + log 5 K(pul,t, Uy, x [0,0],Af) +log f

< K(u!,t,Uy, x [0,0], Ap).

The second inequality in (3.8) is completely analogous, in this case we obtain

fd
K (it Uy < [0,0], Ap) < K (ud, t,Up x [0,6], Ap) +log %dﬁ

< K(ul,t,Uy x [0,0],Ap) +log 2.

In the next inequality we will use this identity:

For all t € R>9,

1 1
M(un)gK(uf,t,Z/ln x [0,6],Ay)
1 1 = log 2
< gy R 18/0) 20} ) + e
|t/ 1 1 T Tl log 2

In the last inequality, taking lim sup,_,., on both sides, then letting n tend to infinity,

and finally multiplying by —1, allows us to write

. R(,ufaun X [0,5],Af) 1
lim > Yo(2)—=—. (3.9)
n—00 w(Uy) ® f fdu
Similarly we obtain
. R(pf Uy, < [0,8],Ay) 1
lim < ,(z . 3.10
e uthy) )T (3.10)
Taking f* = f or [, by definition we have
/\f—f*!dué 20 +n(m). (3.11)

This combined with inequalities (3.9),(3.10) and the fact that m can be taken arbi-
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trarily large concludes that

R(MZ;Z/{” X [075]7Af) _ 'Y@(Z)

lim lim = , 3.12
SN\ 0 n—oo Lo (z,{n) f fd,ugo ( )
and this finishes the proof. d

The following claim used in the proof of Proposition 3.3.2 is well known,

however we include a demonstration for completeness.

Claim 3.3.3. The probability measure

- 1
- 5dN|. ~
e > Hlwx3dNlg 70y 6)
J fp WeEm

s an invariant probability measure for the subshift of finite type (Xf, 07) and corre-

sponds to the equilibrium state of a Holder potential ¢ = gzﬁf : Xf — R.

Proof. We introduce some notation. For n € N we define the set of allowed words
of length n, X, := {x[o,n) ‘=120...Tp—1 : ¢ € X}. In what follows we take m and §
fixed in the definition of f* = f or f. We define the function @ = 7, 5 : Xy« — 0 s0
that the image of

T = (af(),l()), (1‘1,[1), ce (.%'n,ln>, -

is given by 7(Z) = wi,zi, i, ... where ip = 0 and for n € N, 4, = min{k > 7,1 :

I, = 0}. We extend the definition of 7 to the case of finite sequences and given

w =T k) = (T0,l0)s -+ -5 (Th—1, k1)

for some k € N where T € X+, we define #w := {n e {1,...,k—1} : [, = 0}|+1.

By definition, given T € Xy+,1,j,k > 0 with ¢ < j and w = T; ;) we have
that 5
~f* ktj—iy _ -
B (i) = g @)
This can be seen as an alternative way to write the same measure defined in (3.5).

For f* = f or J we need to prove that the measure

.
il = wX0dN[o £+ (0
P T >l 0.7 (w)/5)

w€£m

is an invariant probability measure for the subshift of finite type (Xj«, o¢+) and cor-

responds to the equilibrium state of a Holder potential.
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From a corollary of the Kolmogorov consistency theorem on a subshift of
finite type X C {1,...,a}Yo, where a > 2, the set of o-invariant probability measures
is identified one-to-one with the set of maps p : By — R>%U {0, 00} such that

D oullsh) =1 (3.13)
s=1
and for all z € X, for all integers 7,7,k > 0 with ¢ < j we have for w = z; j
j—i k+j—i
p(w] 77 = plfw, s 77 (3.14)
s=1
and "
k+j—i+1 k+j—it1
Ul = 37 s, wl . (3.15)
s=1

In what follows let consider m and ¢ fixed in the definition of f* = f or f

Then, for the first part of the proof we need to check that /" satisfies (3.13),
(3.14) and (3.15). We start by proving that /" satisfies (3.13), indeed

*(C)/5-1 Su(C) )
Z Z Z ff*dﬂ - ff*d,u Z M(C)f*(c) =1

[7]1:7€X Cetm i=0 Ce&m

In order to prove (3.14) and (3.15), let us suppose that T € Xy« and 4,5,k > 0
with i < j. Denote w = Zy; ;) where Z; ;) = (z0,10), - ., (zj-1,lj-1), and for shorter
notation define also v(x) = (5 2) for x € X,,. We have that:

DN (CACN)) sy

(z,0):
TEXm,lE[0,v(x))

) C]Z+#w+2)

—ﬂ{lJrl] 1} x] 1) Z ff*

Ceém

+ (1—]1{1+zj,1}(06($j 1 ) ff*du p([7(w)] g+1)

= T Fw )

=il (w77
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from which (3.14) follows; and

Z ﬂf* ([(937 ), wH;iHﬁl)

(z,0):
TE€EXm,lE(O, ’U(x))

Z f f*du ~ (w)]/]z+#w+2)

rEXm
= Pt
= 3 ([wlf )

hence (3.15).

To prove that i/ is the equilibrium state of a Holder potential we will find
explicitly a Holder potential ¢ = ¢, 5 associated to it. Suppose that p is the equi-
librium state of an a-Hoélder potential ¢, then the candidate is ¢(Z) = @(7(T)).

We observe that d(Z,7) < 0*I71/9 implies d(7(z), 7(7)) < 6™ and
d(7(z), 7(y)1/° < d(@,m)™

Therefore

d(¢(7), (@) _  d(e@(@)),¢((7)))

su <su ~ =\ (7
S d(@,g)ee/ T = 20 T AR (@), 7(@))°

because we assumed that ¢ is a-Holder. This proves that ¢ is (T\(;TIT -Holder.

To prove that ji/” is an equilibrium state (or Gibbs measure) we need to
check that it satisfies Definition 1.2.12. Suppose md/||f|| = 1, and for notational

convenience call s = |mdk/|| f||] . We have the following bounds:

sp P (ol
zeX;. exp{—Pk + S7o(T)}

10,51 1)ls+1)

0
- ff dpi v exp{—Ps[[md /[ F]] + 57 p(x) /Imd /[ FIT}

_ ) sup ([$[0,s+1)]s+1)
J frdp zex exp{—Ps + STp(x)}
< 502
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and

i ([Zjop)lk) ) 1 ([zg0,)]k)
sup = > sup =
zeX;. exp{—Pk + S7o(@)} — [ frdp vex exp{—Pk + S7p(x)}
> 561
— [ frdp
This concludes the demonstration. O

3.3.2 Proof of Theorem 3.2.2

In the hypothesis of Theorem 3.2.2 we have a special flow with roof function f :
X — R>!, as we will use Proposition 3.3.2 to prove it, we will require to induce a

roof function f : Xt — R>0. An useful lemma for this is the following:

Lemma 3.3.4 (Proposition 1.2 in [69]). For a continuous v there exists ¢ such that
Y~ ¢ and ¢(x) = ¢(y) if and only if x; = y; for all i > 0.

Given a 602-Lipschitz function f : X — R>! let f : X — R>Y such that
f ~ f and f(x) = f(y) if and only if z; = y; for all ¢ > 0. We define the function
fHoxt SR> by f+ ((#2)22) = f ((2,)2,) for some election of (z,),L_ . such
that (z,,)2° € X. The function f*: Xt — R>? is §-Lipschitz.

n=—oo

Lemma 3.3.5. Let (Ay, <I>§c) be a special flow over (X, Bx,u, o), where (X,0) is an
invertible subshift of finite type and u is the equilibrium state associated for a Holder
potential on X. Suppose that f : X — R>L is 0%-Lipschitz and that {I,,},Z, C X+
satisfies the nested condition with NyenZ, = {z} for z € X*. Then

R(p!, T, x [0,6],A5) — ~(2)

lim lim =

Proof. For sake of brevity denote xy = myx € XT for x € X. For s, > 0, if
s+ ¢ {89 f(x) : m € N}, then @j;(x,s’) ¢ 7, x {0} and <I>jc+(as+,s’) ¢ T, x {0}.
On the other hand, if s,5' > 0 such that s+’ € {87 f(z) : m € N}, i.e. there exists
mo € N such that s + s’ = S7,_f(z), then

@j;(a:, ¢TI, x{0} & o™zé¢T,

54 O'mOIE+ ¢ Z,.

This implies that for § > 0 small enough, for all ¢ > 0

1 x uLeb{(x,S’) € Aj: @(x,s) ¢ T x 0,00 < 5 gt}

=i x uLeb{(x,s’) € A]; : CI)‘}Jr(er,s’) ¢ T, x[0,0,0<s< t}.
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It is a consequence of the proof of the existence of p in [16] that there exists an

equilibrium state py on By+ associated for a Holder potential on X't such that
X ULeb {(x,s’) €Aj: CIJ‘}Jr(er,s’) ¢TI, x[0,0,0<s< t}
— 1y X firen {(x,s/) € Ape: By (4, 8') ¢ T x 0,6],0 < s < t}.
Using Proposition 3.3.2 we have that

R(uL . T, % [0,6], A
lim lim (MJF’ X[7]7 f+): 7(2)

SN0 00 p1+(Zn) [ frduy’

which combined with the previous identity and the fact that

/fdM:/f+dM+

concludes the proof. O
The previous lemma will be used to prove the following:

Lemma 3.3.6. Let (Ay, <I>'}) be a special flow over (X, Bx, u, o), where (X,0) is an
invertible subshift of finite type and i is the equilibrium state associated for a Hélder
potential on X. Suppose that f : X — R>1 is 02-Lipschitz and that {I,,},Z, C X+
satisfies the nested condition with NpenZ, = {2z} for z € X*. Then

R(uF, on/21T, x [0,6],AF)  ~(2)
lim lim T [ fdy
5\,0 n—o0 (Zn) ffd,u

Proof. For any x € X, denote Sg(z) = {59 f(x) : m € N} and Spi(xy) =
{89 f*(z) : m € N}, where z; = myx € XT. By definition we have for n € N

the equivalences:

%z, 5') ¢ oM, x {0} & s+ 5" ¢ Sp(x) or o™ ¢ o)L, x {0}
s+ ¢ S(x) or o™ 2 ¢ T, x {0},

for every x € X. If n,m € N and m > n we replace S, f(x) by

m—1
S @+ Y. flo*w),
k=m—[n/2]
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Choose € > 0 such that f > € on X. We have the inequalities:

m—1

[n/2]e < f(oa) < /2|11

k=m—[n/2]

for every x € X. Using the inequality above and the monotonicity of log, we conclude
that for § > 0 small enough and for all ¢ > 0

K (! t+[n/2]e, T, x [0,0], A7) <

and therefore,

> Kl 1,01, < [0,5],A)

t—[n/2|f 1 ; .
> L2l Kt /271, T % 0,61, A )
t—[n/2|| 1]
Using Lemma 3.3.5 we conclude the result. O

As we have replaced the original roof function f by f, we require to prove
that the escape rates for the special flows with f and f are close. This is the content

of the next lemma.

Lemma 3.3.7. Suppose f : X — R>Y is continuous. Let u be an equilibrium state

for a Hélder potential on X. Suppose U C X and call

THU) = {(x, §') € Aj: ®%(z,s) ¢ U x {0}, 5 € [O,t]}

and
TiU) = TU) n{(z,s) € ¥ xR f(x) > s > f(z)}.

Then for allt > 0 and for every e € (0,infcx{|f(x)|}), we have that

TR ,ULeb(IjF(u)) — X ,U«Leb(j;(u)) > ”}H X NLeb(IJtF(U))'

Proof. Fix t > 0. Then there exists 8; € £'(X, 1) such that

e Z40) = [ fita)uta).
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In particular B;(z) < f(x) for all z € X and

% e (THU)) = (Bil) — f(2)) du(x).

/{l‘:ﬁt(w)>f(w)}

Too see this, we “think” of 5;(x) as the fibre {z} x [0, B;(z)). By definition of the
space A we have that 8¢(z) < g(z). Then

JTAD MLeb(I}(u)) —puX ,uLeb(jE(u))

f
-/ Bila)dua) + [ F(2)du(z)
{w:B: ()< f(x)} {w:B:(2)> f ()}
Bi(x)

> Bi(z)dp(z) + f(@)=

/{xzﬂt(r)<f(af)} r(e)dp() /{w:ﬁt(r)>f(x)} ( )f(x) )
> / Bu)dp(z) + — B dp(z)

{@:Be(x) < f(x)} 1 £1l J{:8e()> f ()}
> H}H 11X pren(Z5(U)).-

O]

In the proof of the main result we require to consider a small modification
of the previous lemma, this is the content of the next remark.

Remark 3.3.8. Suppose f: X — R>C is continuous. Let ju be an equilibrium state
for a Hélder potential on X. Suppose U C X and call

I}(Z/{) = {(x,s') € Ay : ®5(z,5") ¢ U x {0},5 € [0,t]}

and

TiU) :=TyU) N {(z,s) € X xR : f(z) > 5" > g(x)}.
Then for all't > 0 and for every € € (0,infcx{|f(2)|}), we have that
X NLeb(I}(u)) — B X ,uLeb(j;(u)) > ﬁ X ,U’Leb(I}(u))

for allt > 0. To prove this we can use the same proof that Lemma 3.3.7 but replacing

fby fandfbyf.

Lemma 3.3.9. Let (Ay, (I>je) be a special flow over (X, o). Suppose that f : X — R>!
is 0%-Lipschitz and that {I,,},Z, C X+ satisfies the nested condition with NpenZ, =
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{z} for z € X*. Then

R(ul,, ot"/AT, % [0, 6], A g
lim lim i, 0 < 10,9, A7) = Yo l2) for all Holder functions ¢ : X — R.
5\0 n—o0 ey J fdug

Proof. Under the assumptions of the theorem we can find a constant C = C such
that |S9 f(x) — ST, f(x)|< C for all m € N. Then, omitting (in particular all that
follows up to the inequality (3.19) is independent of n € N) the dependence of T
and If on I = o™,

T A Jite (3.16)
and
T; C 7 v T (3.17)

where t € R>C.
Use Lemma 3.3.7 and Remark 3.3.8 in (3.16) and (3.17) to obtain:

€
A~ preb(Z7C) < o x e (T5) (3.18)
and
€ -
m X MLeb(I}) < px MLeb(Ijtv ). (3.19)
Using Lemma 3.3.6 we conclude the result for f. This together with the
inequalities (3.18) and (3.19) conclude the proof. O

We prove inclusions (3.16) and (3.17), the inequalities (3.18) and (3.19) and
the last step in the proof of Theorem 3.2.2.

Proof of Inclusions. To prove the inclusion (3.16) take
(x,8") € I?C
with s’ < g(x). By definition
Di(x,s") U {0} if 0 <s <t +C,
that can be read as
o™(z) U ST f(x)=s+s and 0 < s < t+ C,

then, because S} f(z) — C < S7g(x) < S7f(x) + C is valid for all x € X and all
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k > 0 we deduce that
o™(x) ¢ U if STg(z) =s+ s and 0 < s < ¢,

which meaning is

P (z,s") ¢ U x {0} if 0 < s <t

This concludes the proof of the first inclusion. The second inclusion can be obtained

in a similar way by replacing the roles of f and g. O

Proof of Inequalities. We will prove inequality (3.18).
From the inclusion (3.16) we deduce that

px e (T5FC) < o pnen (ZE) + X piren (TH€)

so we can apply Lemma 3.3.7 to the left hand side of
px Len(Z5C) = px pren(JTFC) < i x e (Z4)

to get
€ t+C t
||f|| X :U’Leb(If ) S pn X MLeb(Ig)‘

The inequality (3.19) comes from replacing the roles of f and g, using inclusion
(3.17) instead of (3.16) and Corollary 3.3.8 instead of Lemma 3.3.7. O

Proof of Conclusion. We use inequality (3.18) and replace the measure p X pien, by
[ fdu- u! in the left hand side and by J gdp - 19 in the right hand side. We obtain

€. F(TtHCY < C9(Tt
7 /fdu ! (Zy )_/gdu 1 (Zy).-
This allows to conclude that

lim sup

1
L~ log uf(TEC)Y) < limsup = log 19 (TY).
msup —— gu’ (Zy )_Hoopt g 19(Zy)

~

Multiplying both sides by —1, dividing by u(U,), taking limit when n tends to
infinity and applying Corollary 3.3.6 to g we obtain that

1
lim . <— lim sup

A 1 fIt-‘rC An > /7(2)
i - (<m0 )

~ Jgduw
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Doing analogous calculations with inequality (3.19) we conclude that

. 1 1 . v(2)
lim ———— —limsu lo It ¢ Uy, )
lim (s g low (@0 ) < Tk

This two inequalities and a change of variable when taking the lim sup we find

im L —limsu 1 o) t { = 7(2)

Finally, because of the ¢ invariance of p and the definition of g we have that

1z) _ (%)
Jgdp [ fdu

hence the result. O

We conclude this subsection with the proof of our theorem.

Proof. The invariant probability measure v is an equilibrium state of ¢ : Ay — R>0,
then if we define ¢(z) := Of(w) o(z,t)dt and p is its equilibrium state, we have that

v = uf and we can use Proposition 3.3.2 to conclude that

o Ry U x (0,0, Af)  1(2)
lim 1 = .
51\0 nthoo p(Un) J fdu

However, v(U, x [0,1]) = & (u”lz so

lim lim R(v,Uy, x [0,0],Ay)

o B = <oy

To prove that we can write 4 instead of + it is enough to notice that P(¢) = 0 if
and only if P(¢) = 0, and that, if z is periodic, then there exists a periodic orbit 7
such that z € 7 and S"(b f pdt, if z is not periodic, then there does not exist
any periodic orbit 7 such that z € 7. This allows to conclude that v(z) = J(z). O

3.3.3 Proof of Theorem 3.2.4

Consider a conformal repeller (7, f), F : J — R~ L a Hélder function and let Lo
be the equilibrium measure associated for a Holder potential ¢ : J — R. The main
result of this subsection is the following lemma, that continues the work done in
[39], Section 6.
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Lemma 3.3.10. Given z € J, we have for B(z,¢€), the ball centred at z of radius

€ > 0 that h
lim lim R(MW,B(Z, 6) X [07 5}7AF) _ ’Ygo(z)
SN0 0 po(B(z,€)) [ Fdp,

Under the extra hypothesis /' > 1 we conclude the proof of Theorem 3.2.4.

Before going through the proof of this lemma, we state without proof a useful

result.

Proposition 3.3.11 (Stated in [39], proof of Theorem 1.1). Let {V,} be a family of
sets satisfying the nested condition (Definition 3.2.1) with NpenVy = {2} and z € J

periodic or satisfying:
1. for everyn € N, V41 C V, and V,, is a finite union of cylinders;
2. NpenVn consists of finitely many non periodic points {z%,2%,..., zl};

3. 3c > 0,0 < p < 1 such that u(V,) < cp* for all n € N, where k, is the

maximum of the length of the cylinders in V,; and

4. Hln} € N and k > 0 constant such that k < lp/k, and V,, C U§:1 [zi]ln for
alln € N.
Then

R(:utpv VTL7 j) o

lim = 7,(2).

n—00 M@(Vn)

The following remark will be essential to prove Lemma 3.3.10.

Remark 3.3.12. We can allow the family of sets {U,} in Proposition 3.3.2 to
satisfy 1-4 (in Proposition 3.3.11) instead of the nested condition (Definition 3.2.1).
Indeed, Proposition 3.3.2 is indifferent of the nested condition or 1-4 in Proposition

3.8.11, because it only requires the conclusion of Theorem 3.2.35.

To prove Lemma 3.3.10 we recall that there exists a semi-conjugacy 7 : X+ —
J, where XT is a non-invertible subshift of finite type of s symbols for some s € N,
that is, m is a continuous surjection and f ow = 7w o ¢ for o the shift action on
XT. Choosing A™* < # < 1, and considering the metric space (X', dy) we have
that ¢ := pom : XT — R is dg-Lipschitz. Define F:=Form: Xt o5 R,
$:=ypom: XT = R>Y and call by /i the equilibrium measure associated to .
Clearly, [ Fdji = [ Fdy and for § > 0 small enough

R, B(z,¢) x [0,8],Ar)  R(u",771B(z,€) x 0, 0. A7)

p(B(z,¢€)) B m =1 B(z,€))
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Suppose that {e,} € R>? tends to zero as n tends to infinity. Then we would
like to find families of sets {V,, }, {V,,} with V,,,V,, C X' satisfying 1-4 in Proposition
3.3.11 when lim,, o B(z,€,) — {z} and z € J non periodic, or satisfying the nested
condition when lim,_,~ B(z,€,) — {2} and z € J periodic, such that

RV x[0,8],A5) _ R(uF 7 B(z,e) x [0,6], A )
S TOY = (B en)) S
and
R, 7 'B(z,en) x [0,6],A5) _ R Vy x [0,6],Az)
e Bea) o S0Y V) o2

where 1/2 > n > 0 can be taken arbitrarily small.

We can find explicitly the families of sets {V,,},V,, C X and {V,,}, V,, C X™.
For this we will need the next lemma (that we prove in what follows) and Lemma
3.3.16 (that we state at the end without proof).

Lemma 3.3.13. Suppose that {e,} C R>? tends to zero as n tends to infinity. If
B(z,€,) — {2z} as n tends to infinity with z € J non periodic; then we can find a
family of sets {V,}, Vi, C X7 satisfying 1-4 in Proposition 3.3.11 and the inequality
(3.20) for 1/2 >n > 0 fized but arbitrarily small.

We use the following propositions from [39].

Proposition 3.3.14 (Lemma 6.4). For all z € J, there exist constants c1,s > 0
such that u(B(z,€)) < c1€® for every e > 0.

Proposition 3.3.15 (Proposition 6.5). There exist constants D,ca > 0 such that
forallze J,e >0 and 0 < § < 1 we have that p satisfies

p#(B(z,€) \ B(z, (1= 8)e)) < 20" u(B(z,€)).

Proof of Lemma 3.3.13. Given {e,} C R>Y and k > 0, define
k=1
Uy = {U € \/ fT'R:UNB(z,€6,) # @} .
i=0

Because f is uniformly expansive, there exist ¢c3 > 0 and 0 < p < 1 such that
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diam(U) < c3p for all U € Uy, - This implies that
U C B(z, e+ c3p”) = B(z, (1 — ag) " e)

for oy, = %. Choose ko > 1, then using Proposition 3.3.15, for 1/2 > n > CQCkkDO

we have that for all &£ > kg
(1= mpUyn) < p(B(2,€)).
For each n € Z,n > ng with ng fixed, we find k(n) € Z, k(n) > ko such that

k(n) n < -1
P = e P —1) =F

The candidate for V), is W‘luk(n)’n, that clearly satisfies 1 and 2. The way in which

we chose k(n) and Proposition 3.3.14 implies

ﬂ(ﬂ-_luk(n),n) = M(Uk(n),n) < (1 - n)_IM(B(Z, En))
< el < er(es((can™ )P — 1)) p* =),

So our candidate satisfies 3. Suppose that 771z = {2, 29,...,2%}. To prove 4, we
notice that V,, C U, [z%];, where [, is the minimum such that c; o' > 2¢, and
¢4 > 0,0 < p < 1 are such that for any k € N,i € {1,...,d}, chgk < diam(7[2%]).
To prove the inequality (3.20), we notice that for every § > 0 small enough the
escape rate R(uf",U x [0,6], Ar) is increasing in U, then

R(u", B(z,€) x [0,6), Ar) R(u", Vi % [0,8], A )

lim su < (1 —=n)""imsu —
M T Bz e) L T

Finally, we can choose ky € N arbitrarily large and then n > 0 can be chosen

arbitrarily close to 0. O
Similarly, we can prove the following lemma.

Lemma 3.3.16. Suppose that {e,} C R>Y tends to zero as n tends to infinity.

(a) If B(z,€,) — {2} as n tends to infinity with z € J periodic; then we can find a
family of sets {V,},V, C X satisfying the nested condition and the inequality
(8.20) for 1/2 > n > 0 fized but arbitrarily small.

(b) If B(z,€e,) — {z} as n tends to infinity with z € J non periodic; then we can
find a family of sets {Vu}, Vo C X7 satisfying 1-4 and the inequality (3.21) for
1/2 > n > 0 fized but arbitrarily small.
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(c) If B(z,€,) — {z} as n tends to infinity with z € J periodic; then we can find a
family of sets {Vp}, Vo C X satisfying the nested condition and the inequality
(8.21) for 1/2 > n >0 fized but arbitrarily small.

This finishes the proof of Lemma 3.3.10.

3.4 Consequences

3.4.1 More general roof functions

If we think in the full-shift on two symbols represented by the unit interval, and
a suspension over it with a roof function with discontinuities. It seems that there
should not be any difference if we repair in some way the discontinuities of f and
apply Proposition 3.3.2 for the repaired map. We should try to repair f with func-
tions close in £! and then repeat the argument in the proof of Proposition 3.3.2.

This is what we do in this subsection.

Suppose p is a probability measure on X7,

Definition 3.4.1. We say that a function g : X* — R is adapted to u, if there
exists a pair of constants C,e > 0 with C > g > € and there exists a family of set of
points {Vn} where Y, = {y',9%,...,y™} C XT, for r, > 0 such that for all n € N,

max{ sup g(z) — sup g(z):ze X" \yn} < n(n),
yE[z]n USES

where n : N — R>Y and n(n) — 0 as n — oo. Additionally, we require that there
exists ' : N — R>Y and n/(n) — 0 as n — oo such that

S ullyl) < ' (n).

YEVn

Corollary 3.4.2 (Corollary of Proposition 3.3.2). Suppose p is an equilibrium state
of Holder potential. Then, the conclusion of Proposition 3.3.2 is still valid if we
replace the condition of Lipschitz roof function by the condition of roof function

adapted to L.

Proof. Consider g the adapted roof function to p of the statement. Notice that to
prove the result it is enough to find {g },{g,} sets of adapted to p functions such
that:

1. for some fixed €; > 0, inf,, inf, gn(:n) > €1,
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2. for every n € N, 9, <9< Gn,

3.‘

§n—gnH£1 — 0 as n — oo.

Indeed, suppose we are able to find those sets of functions, then for any k, for all
t > 0, independently of the sets ¢ that K depends on

K(/Lgn,t,u,Agn) + log/gndﬂ é K(MgatauvAg) g K(lugn’t?u?A?n) + log/gnd:u

Therefore,

V(2) 1
li lim LK (e .U, Ay
Tg dn—  no0 u(ty) 150 t (1? R

1 1
> —
1}520“(@,)&%0#((” b Ae)

1
2 - Ji s i K (0 U )
)
S G

However, because of our assumptions,

f\gn g, ldu
€0€1

v(2)
[g,du fg du

n—00 07

and this allows to conclude the result.
For a fixed k, we “repair” g to define g, and g, by:

9l (Wleweviye= Trl{wleveriie= 9{leveyie

and for all y € Vg,

Trlpy,= sup g(2),
2€[Ylk

9ylp=inf 9(2)-

Clearly, by definition, g, < 9 < gy and both g, , g satisfy the following two condi-
tions for f = 9o Gk

(a) f > ¢ for some § > 0, and
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(b) there exists v:{1,2,...} — Ry converging to 0 such that

ZE[Y]lm TE[Ylm

max{ sup f(x)— inf f(as):yEZ} < ~y(m)

for any positive integer m.

We can replace the condition of Lipchitz roof function by the condition of roof
function satisfying these two conditions and Proposition 3.3.2 remain true, indeed

the same proof works. Finally,

/ng —g,ldu

<>y (sup g(z) — inf g(Z)) p(lyle)
yEVk

2€[ylk z€[ylk

<(C =) > ullylk) < (C = (k) “ko0 0.
yeVk

O]

Clearly, we can replace in all the statements in Chapter 3 the assumption of
Lipchitz roof function by adapted to u, and the results are still valid.
3.4.2 Borel-Cantelli lemma for special flows

Motivated by [27] and following the ideas in the previous chapter, we plan to extend
in a natural way to suspension flows the Borel-Cantelli lemma. Let T : X — & be a
transformation preserving a probability measure p. Suppose that {A,} is sequence
of subsets of X. Define V,, = T""A4,, and

limsupV, =Ny Us2 .V,
n—oo

the set of points that belong to infinitely many V,,’s. The Borel-Cantelli lemma says
that:

Lo If Y pu(Vn) < oo, then p (limsup,,_,oo Vi) = 0.
2. If > u(V,) = oo and V), are independent, then p (limsup,,_,., V») = 1.

Define for n € N Fj,(z) := >}, 1y, (z) and E,, := > }_; u(Ag).
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The strong Borell-Cantelli lemma says that if > u(V,,) = oo and V), are in-

dependent, then FE—SE) — 1 p-a.e. as n — oo.

Definition 3.4.3 (SP condition). We say that the sequence {A,} satisfies SP if

there exists a constant C such that

n

Y (V0 V) = u(V)u(Vi) £ C Y V), for all m,n € Nyn = m.

1,J=m
When V,, are not independent we have the following theorem.

Theorem 3.4.4 (Theorem 1.4 in [27], Walter Philipp’s Theorem). If {A,} satisfies
SP, then it satisfies the strong Borell-Cantelli lemma and for e > 0

F,=E,+ (’)(E,IL/2 logs/%'E E,) p-a.e.

Theorem 3.4.5 (Essentially Theorem 2 in [70]). Let T' : [0,1] — [0,1] and p a
mizing probability measure on [0,1]. Let {A,} be an arbitrary sequence of intervals
in [0,1]. Then fore >0

F, = E, + O(E}?10g%?* E,,) p-a.e.

The extension to suspension flows of this result needs a setting. Suppose
that ([0, 1], By 1), 1, T) is a topologically mixing and measure preserving dynamical
system, and consider the suspension flow <I>§ by a roof function g : [0, 1] — R>? such
that ¢([0,1]) D [0, 1]. Consider the special smooth flow

(@4, Xy = {(z,y) : z € [0,1],y € [0, g(2))})

has an invariant probability measure v. Define a family of sets V; := Z; x [0, 1]
indexed by t > 0, where Z; C [0,1] are intervals. An immediate consequence of

Theorem 3.4.5 is the following result.
Corollary 3.4.6. If [, Vidv — 0o as T — oo, then the set {t > 0: ®L(T) € V;} C

R>0 is unbounded for v-a.e. T € X,.

3.4.3 Alternative proofs with an application of its method

The main idea in this subsection is to use a result about the sharp concentration

of the ergodic average around its space average and the Birkhoff ergodic theorem.
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Doing this we can find a lower bound for the escape rate avoiding the discretisation
of the special flows used in the proof of Proposition 3.3.2. Nevertheless, the result

obtained in this way is weaker. The theorem that we require is the following:

Theorem 3.4.7 (Corollary 3.3 in [25]). Let f : X — R be 0-Lipschitz and p be the
equilibrium state of a Holder potential ¢. Then

u{xw;ﬁwhﬁ—/ﬂWkﬂ}§2€&W

or every t > 0 and for every m € N, where B := (4D|f|2)™! and D = D s a
0 2

constant independent of f.
Let us introduce a definition to state our result.

Definition 3.4.8. Given a family of open sets {U,},U, C X, define for eachn € N,

~ 1
R(p,Up, X) := —limsup - log u{x : S’%L(m)f(x) > t},

t—o00 t
where recall that 7, : X — N is defined by 7,(x) := inf{m € N: 0" (z) € U, }.

As a consequence of Theorem 3.4.7 we obtain the next proposition which
provides a lower bound for the escape rate. Compare this results with Proposition
3.3.2.

Proposition 3.4.9. Suppose that {Uy,}, U, C X satisfy the nested condition. Let
p: X = R be a Hélder continuous function, let u denote the equilibrium state of
and let f: X — R>Y be 0-Lipschitz; then

. R(p,Uy, X) Ve (2)
1 .
L (7 R iy 7

Proof. Fix 0 < e < 1/||f|| and define B as in Theorem 3.4.7.
We have that

—Be — —oo as n tends to infinit
- y
pn(Un)
and R(.thy, X)
Hy Un, . .
——————— = —7,(#) as n tends to infinity.

Therefore, there exists ng € N and A/ C N an infinite set such that for any

84



n € Z,n > ng and for any k € N/

log pu{x : 7 (x) > k} - —Bé?
M(Un)kffdﬂ w(Un)’

[ {x L 7 (2) (/ fdp + e) > k} > e Bk (3.22)

We write 7, instead of 7,(x), S7 f instead of SZ f(x) and SYf instead of
S? f(x) when s > 0. For any n € Z,n > ng and [et] € N, using inequality (3.22) and
the identity

0>

which implies that

u{x:anth}:,u{x:Sgant,Tn>et,

1
Hsﬁt]f — /fdu‘ < 6}

(3.23)
1
[et]sﬁt]f—/fdﬂ‘ > 6}

+u{x:S$nf2t,Tn>et,

we conclude the inequality

plz: 82 f>t}<p {:U D Th (e +/fdp + ||f||) > t} + 2¢~ Bletle®, (3.24)
Using (3.22) in the inequality above we obtain for €, > 0 and n € N :

plo: 82 f2th < (14265 ) p{aim- (e [ fdp+ |fI) =t} (3.25)

Applying logarithms to both sides in (3.25), dividing on both sides by ¢ > 0, then
taking — lim sup,_, ., and finally dividing both sides by u(U,,) and letting n tend to

infinity, we conclude that

R, Un, X) _ vp(2) + €|l /]

lim > . 3.26
T R b TR (320
Because € > 0 is arbitrary, we conclude the result. O

We now complete the proof of some identities and inequalities used in the

proof of Proposition 3.4.9.
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Proof of (3.23). We prove the statement:

u{x:sgnfzt}—u{xzsgnfzt,rn>et

il = [ ] <<}
[Et]sﬁt}f—/fdu‘ >6}-

—I—u{:ﬁ:anf>t,Tn>et,

In fact
,u{x:S;'ant}:u{x:SanZt,Tnget}—i—u{x:S;'ant,Tn>et},

but
plz: S f>tm <e}<plz:et|f|>t}=0

because 0 < e < 1/|f|.

Proof of (3.24). It is enough to prove the following inequality
sl - | ] <}
= Qo >
[€t] S[et]f /fd:u' el 6}
Tn—1
<pu xm(e—i—/fd,u>>t—2foa + 2¢~ Bletle®

k=[et]

u{m ST [>T, > et,

+u{x:S‘T’ant,Tn>et,

It involves two inequalities:

(i) the first is

u{a;:S;'nfzt,Tn>et,

[elts[aet]f—/fdﬂ' <6}
<,u{a: Tn<6+/fdu>>t—2f00' }

k=|et]

86



that comes from

M{x D ST f >t > et

[elt]Sth]f — /fd,u' < e}

Su{x:anf2t7Tn>et,[;]szﬂfg/fdy—}—e}
t—= fodok(x ST f—=> fodok(x
M{JC: Zk_[t} ( )< n Zk_[t] ( )S/fdu+6

IN

Tn T’I’L

Tn—1
<M{x Tn(€+/fdu>>t—2foa }

k=|et]

(ii) the second is

NHrT—

1 2
@Sﬁt]f - /fdu‘ > 6} < 2¢~Bletle

that comes from

M{x D S7 f >t > et

[ Sty f = /fd/t' > 6}
<pu {$ : ‘[jt]sfzﬂf — /fdlu’ > 6} < 2e—B[et}e

We can apply Theorem 3.4.7 and this concludes the proof.

Proof of (3.25). We have the following inequalities:

plo:sgr=t)

Tn—1
<,U{$I (E—I- fd,u>>t_2f00' }+2 —Blet]e?

k=|et]

e+ [ fd >>t— —[et])||f||}+2e—3[eﬂez

/

oo/
Sﬂ{xiTn <6+/fdu+ |f\|> (1+er\|)} + 2¢ Bletle”

from e/

T:T, e+ fd,u—i—\fH>>t}+2eBE {a; Tn<e+/fdu>>t}
QeBES)M{x:T” <e+/fd,u—|—HfH> Zt}.

INA

— =
—_
+
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Proof of (3.26). Inequality (3.25) implies

1
limsupflogu{a::ngzt}
t—o00 t "
1
Slimsuptlogu{:z::rn <e+/fdu+\|f||) zt}.

t—o00

Finally, we can write an inequality that does not depend on € > 0 that concludes

the result:

1 1
lim —7limsupflog,u{m ST f > t}

n—00 N( n) t—oo 1t
1 1

hmsuplog,u{m:Tn (e—l—/fd,u—}—”f”) Zt}
n) t—o00 t

e+ [ fdu+IlfII

3
1
3
|
=
Ny

O]

Application to large deviations. Now we apply Theorem 3.4.7 to obtain
a large deviation result for smooth semi-flows. Recall that large deviations estimate
the asymptotic measure of the bad points for the Birkhoff ergodic theorem, i.e.,

given a continuous observable ¢ : X — R, estimates the function

1 T
R+96|—>/1,{:UEX:‘T/ @o(bs(x)ds—/god,u,|>e}
0

as T goes to infinity. Results about large deviations for discrete dynamical systems
can be found in [90, 25, 55] and references there. Our proposition about large
deviations for special smooth semi-flows over non invertible subshifts of finite is the

following:

Proposition 3.4.10. Let f : X+ — R>! be a 0-Lipschitz function, p an equilibrium
state of Holder potential, (Ay, <I>§c) a special smooth semi-flow over X+ and F : Ay —
R a map for which there is a constant C' > 0 such that for every x € X* and for

every m € N

min(f(z),f(y))
sup / |F(z,s) — F(y,s)|ds < Co™. (3.27)
0

YE[T]m

Then there exist constants C1,Co > 0 depending on f and I such that for all e > 0,
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TAENQNAD
for all ¢ € R (MU 21 71)

)

1 t
M{$€X+:’t/ Fo@}(w,O)ds—/quf’>e}
0

2
< 2t 7] exp {—01 (7= 2) (e~ Y v psm) }
2
+ 2t 7] exp {—02 (7= 2) (= = i) HFH)Q} ,

where

IfIl == sup [f ()],

reXt

|F||:= sup sup {|F(x,s)|} and
zeXT s€[0,f(x))

dp X dpirep
dpt = — 122
: [ fdp

Notice that a Holder map F' : Ay — R satisfies (3.27), and that under the

same hypotheses we have in particular the following well known result.

Corollary 3.4.11. For every € > 0 we have that

logu { € X ‘%fotFo@jc(:c,O)ds—deuf‘ =3 »

lim sup
t—ro0 t
The proof of Proposition 3.4.10 uses standard arguments, see [65], Section 5,

in particular the arguments in proofs of Theorem 5.1 and 5.3.

Proposition 3.4.10. The proof is a consequence of Theorem 3.4.7 and some inequal-
ities.

Suppose t > | f|| and define F : X+ — R,z — fof(x) F(z,s)ds. Given z € XT we
can write ¢t = Sg(x)f(x) + t(x) for some n(zr) € N and f(o"z) > t(x) > 0, then
n(z) <t = Sg(m)f(x) +t(x) < (n(x) + 1) ||f]] - In particular, ¢ > n(xz) > ﬁ -1
Keeping this in mind we have the following inequalities:
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x| tF % (x,0)d Fduf| >
e v o]
S, F(x) + ft(m) F(o™®)g, s)ds [Fd
— + n(z) 0 _ o
s {“" €t S0 o) (@) + () JFdu| =€
SomF @) S, f(@) [ Fd ft(z) F(o™®)g, s)ds
+. (z) (=) _ H 0 ;
S H {m cr e f (@) S5y f(@) +t(x) [ fdp t =
SpF@) 1) SqwF @) [ Fau|  |f1IF]
+. (z) _ (z) _ H
= {x R 5 By 1o By 77]
SpwF@) [ Fd LA IEN | IAIE]
() 1 .
SM{:UGX+. Sg(x)f(x)_ffdu+ ;o t o zep=(%),
vhere 1AL
=e—————(1+Ifl)-
Furthermore,
(%)
Sy F(@) n(x) ~ n(z) -~ n(z) [ Fdu
— X+ . (z) . d d N
3 {”” - n(@) 55, /(@) /7 M5 f@) s sz @ |7

n(z) 1
Sg(x)f(x) f fdu

_l’_

v, n(z)
Su{xeX 'Sg(z)f(x)

So  F(z -
Tnle)” 7 ( )—/qu

n(z)

So  F(x -

/qu‘

261}

Su{xeX*:

. Se
—i—u{xeX*: /Fd,u‘ W—/fdu 2621}— (%),
where -
= a = ‘1 d = { — J .
= 5 = gyE O =
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Finally,

(3k) < Z L {:c ext:
[t1}

n€{ni(t),n1(t)+1,...,

+ Z u{x€X+:

nefny (t),n1(6)+1,...,[t]}

Sgﬁ(x)_/ﬁdlu

n

262}

Sg{l(x)—/fdM‘Z%}

C C
< 2t|[f|lexp <_|}3’\12 “n(t) - 6%) + 2t [ f| exp <_|f|22 -n(t) - 5%) .
0 0

The map Fis 6-Lipschitz, indeed, suppose z,y € [z],, for some z € X, m € N, and
f(z) > f(y) then

IN

5 B fy)+1fle0™ fy)
F(z) — F(y) / |F|lds + / \F(z,5) — F(y,)|ds
fly) 0
< (fl6I P + C)om.

Thus, we can write

1 t
M{$€X+:'t/ Fo@}(m,O)ds—/quf‘Ze}
0

/(D) | 1 e LU )
< 27 exp —%@)'{HJ’HAJ( i )

2
L2 |1 e~ L+
ol | =1 | 1( Z IFTIE] |

where D is the constant that depends on p in [25], Theorem 3.1. O

Using Proposition 3.4.10 we can obtain a similar proposition for conformal
repellers. We set some notation first. Given a conformal repeller (7, f) with Markov
partition R, for w € J and m € Ny, we define [w],, to be the element W €
\/?i_ol ~'R such that w € W.

Proposition 3.4.12 (Corollary of Theorem 3.4.10). Let (J, f) be a conformal re-
peller, F : J — R>! be a 0-Lipschitz function, i an equilibrium state for a Holder
potential and G : Ap — R a map for which there is a constant C such that for every
z € J and for every m € N

min(F(y),F(z))
sup / |G(z,s) — Gy, s)|ds < CO™.
yE[z]m 40O
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Then there exist constants C1,Cy > 0 depending on F' and G such that for all e > 0,
>max< IFNIGIA+IFID 2||FH)
forallt € R € ' )
6}

1 t
,u{zEj: ‘t/ Go<b%(z,0)ds/deF
0
F
<zt||Fuexp{—cl (H;H—2) ( LG gy }

+2t||F||exp{ o (o —2) (= Sy e HGII)Q},

— dpXxdprep
JFdp -

where HFH = Supz€j|F(z)|a ||G|| ‘= SUPzeg Supse[O,F(z))‘G(Z7S)| and dMF

3.4.4 Axiom A diffeomorphisms

In this subsection we state and prove an escape rate result for Axiom A diffeo-
morphisms. We will require the results and definitions in Subsection 1.2.5. Let
f: M — M be an Axiom A diffeomorphism where M is a compact C*° Rieman-
nian manifold. Let 25 be a basic set, ¢ : 0, — R be a Hdlder continuous function
and p = p1, be the unique equilibrium state of . Suppose in addition that f|q, is
topologically mixing, R is a Markov partition of €2 and 7w : X — €y is the con-
jugation in Theorem 1.2.31. We can now state an escape rate result for Axiom A

diffeomorphisms.

Corollary 3.4.13. For any z € Qs \ Ujezf/ (R U 9*R) such that x = 712 € X
satisfies Birkhoff ergodic theorem, we have that

R(p, m([2]",), )
pu(m([z],))

accumulates in {1} U {1 — eShe(2)=pP(¥) . p € N} as n tends to infinity.

Proof. Suppose that u is the equilibrium state of . Let ¢* = pom and let u* be the
equilibrium state of ¢*. For brevity, callz = 712 € X. Let n € Nand k € Z, k > n,

then
p{z € Qo fi(2) ¢ m([z]",),Vie {0,...,k—1}}

]
= {d' e X :0'(2) ¢ [z]",, Vi€ {0,....k—1}}

because 7 is 1-1 u-a.e. We also have

pr((a]2,))) = ([2]2),
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because for any p*-measurable set S, u*(S) = p(r—1S).
Considering i* := p*|y+, we have that

—n

= ﬂ* {q;’ € X+ : o’i(x/) ¢ [g—nx]gn,‘v’i S {O,,k —-—n— ].}}

pr{a € X:o'(z) ¢ [x]",, Vi€ {0,....k—1}}

and
p([a)”,) = @ (lo "5

Birkhoff ergodic theorem implies that for every p € N there exists a subsequence
(n})qen such that

lim (o~ "x) = a?,
k—o0

[&.9]

where 2P € X' is periodic with period p. Also, we can find a subsequence (ng°)qen

such that

lim (o7 z) = 2,
k—o0

where 2°° € X is non periodic.

For every p € NU {oo} we can apply Theorem 3.2.3 to conclude that

. P
limsup,, o — logji* {x’ EXT: o' () ¢ [a‘”zx]gn’“,w €{0,....,m—nj} — 1}}

lim
ke i (fokaly™)
= ’YW (l‘p)v
which completes the proof. O

3.4.5 Axiom A flows

In this subsection we present an escape rate result for Axiom A flows. In order to
state it, we require the definitions and results in Subsection 1.2.6. Assume that A
is a basic hyperbolic set for an Axiom A flow @, ¢ : A — R is a Holder function
and p is the unique equilibrium state of ¢ with support in A. Let p and (® I A £ )
be as in Proposition 1.2.35 and suppose that ]\f is a special flow over a subshift
of finite type X. In particular, we have that p = p*fi, i.e. u(S) = fi(p~tS) for all
p-measurable set S C A.

Corollary 3.4.14. Suppose that P(®|p, ¢) = 0 and that the roof function is strictly
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Figure 3.2: Horseshoe map.

bigger than 1. Let x € X be a point satisfying the Birkhoff ergodic theorem; then

i L B P % [0,4]), A)
s\on—oo  u(p([z]”,, x [0,1]))

accumulates in {1} U {1 — eJ-#(0x)dt . 7 45 o periodic orbit} as n tends to infinity.

Proof. We have that for all n € N, > 0 and § > 0 small enough

pi{zeN: 0%z ¢ p([z]”, x[0,8]),V0<s <t}
=i {(az’,s’) e A, s) ¢ []", % [0,0],¥0 < s < t},

and
w(p (2", x [0,1])) = & ([z]", x [0,1]).

Using same proof of Proposition 3.3.2 and the last part of the proof of Corollary
3.4.13, we conclude the result. O

We can consider consider a concrete application of this corollary to the ex-
ample of Axiom A flow in Subsection 1.2.6. Indeed, we can consider the Axiom A
flow (A,®") that coincides with the special flow (Ag, ®) over the horseshoe map
(f,9),Q c [0,1)? (showed in Figure 3.2) and roof function

2if y < 1/2
9(z,y) =
Lif y > 1/2.

The horseshoe map (f,Q) is conjugated by a map 7 : {1,2}¥ — Q with
the subshift of finite type {1,2}%. On the other hand, the Axiom A flow (A, ®?)
is conjugated by a map p : A — A for A a special flow over {1,2}%. For some
xo € {1,2}% and § > 0, the holes p([zo]L; %[0, d]) = 7[zo]L %[0, 0], p([z0]25%[0,4]) =
7[wo)%4 % [0,6] and p([z0] 5 x [0,d]) = 7[z0]> 5 x [0, 5] are shown in Figure 3.3.
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Figure 3.3: Example of a shrinking hole for an Axiom A flow.
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Chapter 4

Smoothness of the stationary

measures

4.1 Introduction

In this chapter we study how the stationary measure changes under perturbations
of the (conformal ) iterated function scheme and the weight functions that define it.
Stationary measures in this setting are sometimes called self-similar measures when
the weight functions are constants, and they have been studied by many authors.
Self-similar measures were originally defined in [51], the same paper provides a
proof of its existence and uniqueness for constant weight functions. In [83, 84] finer
analytical properties of self-similar measures are studied, in [74, 60, 68] it is studied
the case with overlaps, in [73] it is explored a relationship with Lyapunov exponents
for random matrix products, in [67, 7] the authors study some iterated function
schemes that are contracting on average. Stationary measures are believed to be
strong extremal measures for irreducible systems of real analytic contractions on
R™ [57]. New ideas in [41] considers the problem of estimation of the Wasserstein
distance between stationary measures for a particular case of contracting iterated
function schemes on the unit interval, the author obtains an explicit formula for
the 1st Wasserstein distance and provide non-trivial upper and lower bounds for
the 2nd Wasserstein distance. On the other hand, the most well studied features of
iterated function schemes are their fractal properties, like the Hausdorff dimension
of its limit set [38]. The Hausdorfl dimension of the limit sets of iterated function
schemes [38] is a vast topic of research and we omit references, as the results in this
chapter only require basic knowledge of this field.

Here we focus on a complete different problem from the ones referenced
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above: we study the smoothness of the stationary measure and relate it with the
smoothness of the perturbation of the iterated function scheme and of the weight
functions that define it. Our results use basic facts of iterated function scheme and
are closely related to [86]. However, our proof relies on a result of composition of
operators in [35] and structural stability, whereas the proof in [86] uses Proposition
2.3 in [86] and [85]. Classical techniques from thermodynamic formalism allows us
also to obtain results for the smoothness of the Hausdorff dimension of the limit
set. In order to postpone technicalities for the next section, rather than stating our

results here, we show two concrete examples of application.

Let us start with a definition for the convergence of measures.

Definition 4.1.1 (Convergence of measures in the weak topology). A sequence of
probability measures {un} on a metric space X converges in the weak topology to a
probability measure p on X if and only if for every bounded, continuous function
[+ X = R the sequence {x,} with x,, := [ fdu, converges to x := [ fdpu.

Our first example is an application of the results to affine maps.

Example 4.1.2. Let T1,T5 : R — R be the affine maps T1(x) = aqx + B1 and
To(x) = asx + P2 with 0 < ag,as < 1. Let us consider the weights p1,pa > 0 with
p1 + p2 = 1. The unique stationary probability measure |L = [ia; ay,8,,82,p1,p2 11 this
case is given by the limit in the weak topology

W= "ET“Z-L...%;{LQ}% ©* Pin 0Ty o00T;,, (0)
where 5Ti10..AoTin (0) denotes the Dirac measure supported on T;, - - - T;,, (0).

If we further assume for simplicity that a1 +as = 1 and 1 = 0, B2 =
then the two images T1[0,1] = [0, 1], T2[0,1] = [a1, 1] partition the unit interval
and p will be supported on the unit interval. Finally, in this case it is simple to see
that p is then the Lebesgue measure if and only if p1 = a1 and ps = «a.

We can consider the dependence of the stationary measure on the parameters
aj, B and p; (j =1,2) which form a two dimensional space. For any C*9 function
w:[0,1] = R (with 0 < 6 < 1) we then have that the map

(0,1) 3 ay +— /wd,uahpl €R,

is Ct, and

(0,1) > p1 — /wd/,LO[l,p1 € R,
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Figure 4.1: The two contractions 77,75 : [0,1] — [0, 1]

y o0 y —
is C°°, where we write Hai,pr = Hon,1—a1,0,00,p1,1—p1
A more geometric example is the following;:

Example 4.1.3. For A € I, = (—¢,¢), let I'y C SL(2,C) be a classical Schottky
group such that T, > X — T* € SL(2,C) is C™. Consider the conformal probability
measure (y that satisfies

g* iy = |dg|” py,

where J, is the Hausdorff dimension of the limit set Ay for T'y. Ifw:C —- R is a
compactly supported C°T0 function then the map

IEB)\l—)/deU)\

is Cmin(m,sfl)

4.2 Results

In this section we are concerned with conformal iterated function schemes. A par-
ticularly natural special case is that of a finite family of contractions on the unit
interval, since one dimensional maps are automatically conformal. For definiteness,

let us consider the following setting:

Definition 4.2.1. Assume that € > 0 small, ,e > 0, k,l,m € N\ {1}, r € N and
call the interval (—e,€) C R by Z.. Then

1. let T = {Ti()‘)}f:1 with A\ € I, be a family of C™*P contractions on [0,1].

Assume that we can expand for A € I,

T;()\) =T+ X+ -+ )\m_lTi,mfl + O(Xm_l)’

98



where T;, T; ; € C™P([0,1],[0,1)), ||dT;||cr< 1, dT; = dTj for i € {1,...,k}
and j € {l,...,m—1}; and

2. let GO = {g ', with 0 € T, be a family of C'74(]0,1],RT) positive weight

functions on [0, 1] satisfying the following two conditions:

k
Zgz(e) =1 and (4.1)
=1
k
3 g§0>H60 Lip (TZW) <1 foral)6eT, (4.2)
=1

where

91(0) =gi+0gi1+--+0"gir+0(0") and

iy gij € CE([0,1],RT) fori € {1,...,k} and j € {1,...,r}.

In this case the stationary measure jt = p ¢ is the unique probability measure
on [0, 1] that satisfies

[ t@ute Z/gz F(Tia)dp) (43)

for any continuous function f : [0,1] — R.

The existence of such a measure is well known and discussed in Subsection
1.2.7. Observe that if the sets T;[0,1] for ¢ € {1,...,k} are pairwise disjoint then
the cumulative distribution of the stationary measure p is a Devil staircase, i.e.
the map f : [0,1] — [0, 1], defined by f(¢) fo du(x) is singular (continuous and
differentiable with derivative equal to zero ppep-a.e in [0, 1], non decreasing and
f(0) < f(1) ) however it may also happen when T;[0,1] for i € {1,...,k} are not
pairwise disjoint. There is an equivalent definition of stationary measure which
is perhaps somewhat more intuitive and particularly useful for simulations that is

given by the following rather well known lemma.

Lemma 4.2.2. For any x¢ € [0, 1] we can write p as the weak star limit of finitely

supported probability measures, indeed

_ (9)
(L D DR (DL

99



where for each of the k™ strings i = (i1, -, i) we write (forn € N):

7O . )

[ i1

o--~oT(>‘)

in

:R—=R; and

o @) = o) (100 70 @0)) -0l (1 @0)) - o7 w0,

in in

Our first main result is about the differentiability of the dependence of this

measure.

Theorem 4.2.3. Assume 6 € (0,1), k,l,m,s € N\ {1} and r € N, then:

1,;m,s)

1. Given 0 € I, the measure py g has a Cmin( ~1 dependence on X € I, as an

element of C579([0,1], R)*.

2. Given X\ € I, the measure puyg has a C" dependence on 0 € I, as an element
of C*([0,1], R)*.

Remark 4.2.4. In Theorem 4.2.3, when we study the dependence of the mea-
sure 1 = pyg on A, it is essential to consider the measure p as an element of
C*t9([0,1], R)* for s € N\{1}, i.e. we identify u with the functional .4 : C*T0([0,1],R) —
R defined by C**9(]0,1],R) > w fol w(Z)dp(z) € R.

In the case that all of the contractions, weights and test functions are smooth

enough it is possible to show a smooth dependence of the stationary measure directly.

Definition 4.2.5 (Real analytic). A function f: & C R — R where £ is an open
or closed interval, is said to be real analytic on & if there exists an open interval

D D & such that for any point y € D one can write
oo
f(z) = Zan(x—y)” =ag+ai(r —y) +a(z —y)* + -
n=0

where {a,} C R and the series is convergent to f(x) for x in a neighborhood of y
We have the following theorem for real analytic functions.

Theorem 4.2.6. In the case that T™ and G are real analytic, with a real analytic
dependence on A € I, and 0 € Z., we have that the stationary measure has a real
analytic dependence i.e., for w: [0,1] — R real analytic, [wdpy g is real analytic in
both A € I, and 0 € T..

Proof. We consider fixed points xé)‘) € [0,1] for T;A) = 1}(0)‘)0‘ . -oTZ.(:) :[0,1] — [0, 1]

-1 "
where i = (ig,...,in—1) € {1,...,k}". We can then associate a function of several
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complex variables

o0

2" Hj:(] 9i;
2(z,t,\,0) = — E — E
(Za 9 /Ny ) exp n:1 n

\)
dT.
— n—1 “74j )
|i|=n 1 Hj:() 7 (:1:sz>

n—1 _(0) (m(’\.)> ot i w(=$))

ol

where 07§ = (ij,...,i;_1) is the cyclic permutation and w : [0, 1] — R real analytic.
It follows from a result in [75] that = is entire as a function of z € C and has

a zero at z; = exp(P(—log ¢g®) + tw)). Moreover,

0=(z=1,t,\,0) ‘ 0

ot t=0 __
9= (2,000 = / wdjiy g
= =1

by the implicit function theorem and the usual formula for the derivative of pressure
(see [78, 76, 79]). To deduce the analyticity of [wduyg only requires the corre-
(M)

sponding property for the function Z. However, it is easy to show that A — x;

are individually real analytic (by the implicit function theorem) and, moreover, an-
alytic on a common domain ¢ O [0, 1]. The analyticity of = (and thus of [ wduyg)
follows. O

We have the following simple corollary from Theorem 4.2.3.

Corollary 4.2.7. Let w : [0,1] — R be a C*° function. Given 6 € I, the function
(—€,€) DA~ IWdHA,e e R ig cmin(tm)—1

The next corollary applies under the hypothesis that the weight functions

are C*°. In particular, this is true in the special case of constant weight functions.

Corollary 4.2.8. Suppose that the family G = {gl(e)}le of weights satisfies gZ@ €
C>=([0,1],R*") for every i € {1,...,k}. Let w:[0,1] = R be a C* function. Given
0 € I, the function (—e,€) 2 A [wduyg € R is C™ 1.

Our second result is on the differentiability of the Hausdorff dimension of the
limit set Ky of 7).

Theorem 4.2.9. Let T be as before for A € I, with the property that the images
T;0,1], fori=1,---,k, are pairwise disjoint. Then the dependence (—¢,€) 5 X —
dimp (Ky) of the Hausdorff dimension of the limit set of TN, is 2.

In Section 4.3.1 we start by defining the spaces of functions in Section 4.1 and
we rewrite some lemmas on composition of operators that we will use many times in
this chapter (cf. in [35]). In Section 4.3.2 we prove that Z. 3 A — 7V € C*(X,R) is
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C™~ ! where (X,0) is a subshift of finite type. In Section 4.3.3 we introduce some
thermodynamic concepts that we use in section 4.3.4 to prove Theorem 4.2.3 and
Theorem 4.2.9. Our work follows ideas in [76].

4.3 Proofs

This section gives a systematic review of the components of the proof of the main
theorems in this chapter. It is subdivided into four subsections. The first, about
composition of operators, settles some of our notation and shows results required
in our proof. The second proves a useful result for smoothness of projection maps.
The third reviews some basic thermodynamic formalism results that we apply to

solve our problem in the last subsection.

4.3.1 First requirement: composition of functions

We will use results on composition of functions which are related to those in [35].

To introduce our setting we need to define the metric space
Xi={z=(zn)olg: zn€{l,....k},ne Ny} = {1,...,]{:}NO

with the metric

> 1- 5 Tn (yn)
dla,y) =y ——or
n=0

We consider X with the action of the shift 0 : X — X, defined by (o(z)), = @ny1 for
n € N, where x = (2,)72, € X. In order to apply the machinery of thermodynamic
formalism we will need to consider our composition operator on the space of a-Holder

continuous functions f : X — R.

Definition 4.3.1. Given 0 < «a < 1, let C*(X,R) denote the Banach space of

a-Hélder continuous functions f : X — R with norm

[[f1:= max{[[ f[la; K[| flloc},

where
f|la:= sup —‘ (2) W)l and || flleo:= sup{|f(z

and K > 0 is a constant.

For the first part of the proofs, we do not really need to work with the full

composition operator, whose definition depends on further smoothing conditions of
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its domain, but with a simpler map whose definition only depends on the space
C*(X,R).

Definition 4.3.2. Given a function v : [0,1] — R, we define the map

ve: CYX,[0,1]) - C(X,R)
fr= u(f)=volf.

Most of the results in this section deal with the regularity of the map v..
In order to state them precisely, we need to introduce the spaces of functions
C"*9(]0,1],R), for 0 < § < 1 and n > 0, which correspond to the classic spaces of
n times continuously differentiable functions with the n-th derivatives are §-Holder.

We define these spaces rigorously.

Definition 4.3.3. For each i > 0, we denote the i-th derivative of v : [0,1] — R,
when it exists, by d'v (where d°v = v).

Givenn > 0 and 0 < & < 1, the space C"9([0,1],R) is defined to be the space
of functions v : [0,1] — R such that v is n times differentiable and

[v]lco:="sup |v(Z)|< oo,
z€(0,1]

|v]len:=max ||div||co< 0
1€10,...,n

and

||dnUHC62: sup ’dnv(,ﬁ) — dnv(g)‘

o < Q.
T#£Y ‘:L’ - y‘d

We endowed it with the norm
[0llgn+s= sup([|d"vllcs, [|v]|cn)-
This is a Banach space and in the case n € N we have that
[vllen+s= sup([|vllco, l|dv]lcn-1+5).

Remark 4.3.4. Given an integer n > 0, any function v € C"*1(]0,1],R) has i-th
Lipschitz derivative for i = 0,1,...n, i.ec.
|d'v(&) — d'v(7)|

Lip(div) = sup O
TG 1T — 9

< 00,

forie{0,...,n}.
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This implies that C™([0,1],R) C C™*9([0,1],R), for every 0 < § < 1 and

m < n, because Lipschitz functions are automatically 0-Hélder for 0 < § < 1.

Warning! Warning! We have used the letter d to denote a metric on X

and to denote the derivative of a function v : [0,1] — R, i.e. dv = 22. When the

notation dv may be confusing we prefer to use the notation %.

The following result is analogous to the proof of Proposition 6.2, part ii.2)
in [35].

Lemma 4.3.5. If v € C'*°([0,1],R), then the map v, is C°.

Proof. We can choose arbitrarily fi, fo € C*(X,[0,1]) and z,y € X. We can then
consider a path 1 : [0,1] — [0, 1] joining fi(x) and fi(y) defined by 1 (t) = (1 —
t)f1(x) + tf1(y) and a path v9 : [0,1] — [0,1] joining fo(x) and fa(y), defined by
Y2(t) = (1 —t) fa(x) + tf2(y). We then have the following inequalities

P ()~ (50 + o)
/ vl () T (2) = o) T2 1)t

1
<[ |<dv<m<t>>—dv(w(t)))ddt<>|dt+ [ o) (G0 - G20 e
< Jollerss(1fole) ~ fa(x)
L) — AN AE) ~ Al i) - ) — i) + o)

In particular, dividing both sides of the inequality by d(z,y)* and taking the supre-
mum over the set {x,y : z,y € X,z # y}, we obtain

o) — v _ o WO fi—vo fo)(2) — (vo fi —vo f2)(y)]
H *(fl) *(f?)”a x;ég d(:t?,y)a (4.4)

é é
< 2 wller+sllfe = fillsollfrllatllvlier 1 fr = falla-

The result follows. O

The next lemma is similar to the proof of Proposition 6.7 in [35]. In prepa-
ration, we need to introduce some definitions of differentiable operators.

Let £, F be Banach spaces with norms |[|-||¢ and ||-|| 7, respectively. We denote
the space of bounded linear functions from £ to F by L(E,F). Let U C & be an
open set. We recall that a function f : U — F is Fréchet differentiable at u € U if
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we can find a bounded linear function df (u) such that

Lk ch) = f () — cdf(uhllr

e—0 €

0

for every h € £ and uniformly with respect to h € B1(0) := {y € & : |lylle< 1}.
We say that f is differentiable in i/ if f is differentiable at every point u € U. We
say that f is of class C! if it is differentiable and the mapping df : U — L(E,F),
u + df(u) is continuous for the topology induced by the norm. Inductively, we
define d"f to be the differential of d"~!f and we say that a function f is C" (n
times continuously differentiable) if df : U — L(&,F) is (n — 1) times continuously
differentiable.

Lemma 4.3.6. If v € C*T([0,1],R), then v, is C* and for all f,h € C*(X,[0,1])
the derivative of vy is given by d(v.)(f)(h) = (dv)«(f) - h.

Proof. If v € C**°([0, 1], R), then it has a C**? extension to an open neighbourhood
of [0,1], i.e. v € C?>T((—e1,1+€1),R) for some €; > 0. This induces an extension of
vy to C*(X, (—e€1,1 +€1)). Let f € C¥(X,[0,1]) and h € CY(X,R).

To complete the proof we will need two simple inequalities: choose 0 < €2 < 1

sufficiently small such that max,c(o 1)/l f + te2h|loc< 1 + €1, then

1
/ ldv o (f + teah) — dv o flloodt < ||Al|([[0]lc2+1)e3 (4.5)
0
and
ldoo (f + tesh) — dvo fla< 2 ullzssllecahllollfllat ol leshlla.  (46)

To prove (4.5), we use that for every ¢t € [0,1] and z € X

|dv o (f(z) 4 texh(x)) — dv o f(x)
€2
_ |d?v(f(2)) - teah(z) + o(tezh())|
€2

< |d*o(f(@)|-|h(@) |+ k()|

o(e2)

< [Ipll(lollc2+1)-

To prove (4.6) we notice that by definition dvo(f+teah) —dvo f = (dv).(f +teah) —
(dv).f and use inequality (4.4) with dv instead of v, f + teah instead of f; and f
instead of fs.

105



Fix 0 < ez < 1 sufficiently small for equation (4.5) to hold, then

~lloa(f + eah) = vu(f) =~ ea(dv)alF) - Bl

_ 12Hvo(f—i—62h)—vof—eQ(dvof)-hHa

‘ 1
:||/ (dvo (f + tesh) — dv o f] - hdt]
0

1
< ||h||oo/0 lldv o (f + teah) — dv o f]|adt

1
+ |hHa/ ldv o (f + teah) — dv o f]|sodt
0

< (26||v||c2+5||62h||§o||f||a+||vllc2||62h||a) +[[All(l[vllc2+1)ed
< (4l[vligzssmax{]| flla, 1} + DllR] €3,
which proves the second part of the lemma. We used inequalities (4.5) and (4.6) in

the penultimate inequality.

Now that we have the formula for the derivative of v, :

d(vx)(f)(h) = (dv)«(f) - (4.7)

for all f,h € CY(X,[0,1]), we can prove that v, is C!. For this, it is enough to show
that d(v,) is continuous. From (4.7) we can see that d(v.) corresponds to (dv),

followed by the continuous linear map

Z:C*(X,L(R,R)) — L(C*(X,]0,1]),C*(X,R)),
£ [L() hm £,

Thus we have that d(v.) = £ o (dv),. is continuous, since (dv), is continuous by
Lemma 4.3.5. Ul

The next corollary follows by induction.

Corollary 4.3.7. Ifv € C"*9([0,1],R) for some integer n € N, and thus v, is ",

as required.

Proof. The case n = 1 is covered by Lemma 4.3.5. If the result holds for n and
v € C"P119([0,1],R), then (dv). is C"~! by the inductive hypothesis. We can use
the same argument as in the last lines of the proof of Lemma 4.3.6 to obtain that
d(vs) = ZLo(dv),, where £ is a continuous linear map, then d(v,) is C* L. Therefore,

by definition, v, is C™, which concludes the proof. O
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A simple argument based in the previous corollary gives the following result

that we use to prove the smoothness of the stationary probability measure.

Corollary 4.3.8. Suppose that we have a family of maps {v; € C*9([0,1],R) :
i€ {l,...,k}} for some integer n € N, and consider the map F' : C*(X,[0,1]) —
CY(X,R), defined' by F(IT)(z) := vy, (Il(ox)), where I € CY(X,[0,1]) and z € X.
Then F is C"~1. Moreover, for all f,h € C*(X,[0,1]) the derivative of F is given by

d(F)(f)(h)(x) = (d(vao))«(f (o)) - hlow) for z € X.
Proof. The map Iy : C*(X,[0,1]) = [C*(X,R)]¥, defined by
h(II(2) = [o1(I1(2)), ..., vp((x))] € [C*(X,R)]F
is C"~! by Lemma 4.3.6, and the map Is : [C%(X,R)]* — C¥(X,R), defined by

L([fi(x), ..., fu(x)]) = foo(om)

is linear and continuous. It follows that the map F = ly01; is C* L.

To prove the formula for the derivative of ' we can use the chain rule and the
fact that Iy is linear to deduce that dF = lyodly and dl; = [d(v1)«, ..., d(vk)s]. This
together with the formula for d(v;), for i € {1,...,k} in Lemma 4.3.6 concludes the
proof. O

To prove the smoothness of the Hausdorfl dimension of the support of the
stationary measure we additionally need the following results, whose proofs are anal-
ogous to the proofs in [35] combined with simple arguments similar to the used in

this section.

Definition 4.3.9. Givenn > 0 and 0 < d < 1, we define the composition operator

by
Comp: C"*°([0,1],R) x C*(X,R) = C%(X,R)

(v, f) — Comp(v, f):=vo f.

Proposition 4.3.10. Givenn € N and 0 < § < 1, the composition operator Comp :
C"H9([0,1],R) x C(X,R) — C*(X,R) is C" L.

This leads to the following corollaries.

!The notation v, (II(cx)) denotes v;(TI(ox)) if 2o = .
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Corollary 4.3.11. The map [C"T0([0,1],R)]* x C*(X,R) > ([v1,. .., vk, f) > Vg ©
f(x) € CY(X,R) is C"L.

Corollary 4.3.12. Letn € N, 0 < § < 1, € > 0 and suppose that we have for
each X € Z. a family of maps {vl-(/\) € C"9([0,1),R) : i € {1,...,k}} and a map
fX e c¥(x,R). If the map T, > \ — [v?‘),...,v,(;\)] € [c™([0,1],R))* is C™ for
some ny > 0, and the map I, 3 X\ — fO) € C*(X,R) is C™* for some ny > 0, then
the map I, 9 X — véﬁ) o fN(z) € C¥(X,R) is Cmin(nin2n=1),

4.3.2 Second requirement: projection map

We will introduce a projection map 7 : X — [0,1] for A € Z, that will be essential

to study the differentiability of the stationary measure.

Definition 4.3.13. For each A € Z. we define the projection map 7N x = [0, 1]
by
7['()\)(1') = lim Taga\) o Tx(f‘) 0---0 Té)‘) (())7

n—00 n

where v = (x;)2,.
The following result is easily seen.

Lemma 4.3.14. There exists o > 0 such that each individual map 7™ : X — [0,1]

is a-Holder continuous.

Proof. Define a := max;eqq,. i sup)\eIE{HdTi()‘)Hco} <land a:= —}ggggg Suppose

that z,y € X and chose n = n(z,y) such that z; = y; for i < n and x, 11 # Yn+1,
then

7N (z) — 7N (y)|< o™ = 1< d(a,y)".

20&77,

This completes the proof. O

To make further use of the functional analytic approach it helps to choose a

specific Banach space of Holder continuous functions.

Remark 4.3.15. We are now at liberty to choose values of o and K which are most
convenient for us in definition of Hélder norm on X (i.e., Definition 4.3.1). Denote
0y == HdTl(O)Hco and then fix a choice of 0y < 6 < 1. We can then choose 0 < o < 1
sufficiently small such that 2%6y < %. Finally, let us choose K > 0 sufficiently
large such that
20&
Lip(dZh)[[7 @ la 2 < 0 — 6o

where Lip(dTy) is the Lipschitz constant of the derivative of the contraction T.
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We may now prove the main proposition in this section.

Proposition 4.3.16. Provided o > 0 is chosen sufficiently small, the map Z. >
A= 7M) e cr (X, R) is ¢

Proof. For each A € (—¢,€) we let RY : C*(X,R) — C*(X,R) be defined by

(RVI)(2) = T (L(ox)),

Z

and we construct the map F' : Z, x C*(X,R) — C*(X,R) defined by F (A1) =
(I - R()‘)) (IT), where II € C*(X,R). As usual DyF(0,7(?)) denotes the partial
derivative of F' with respect to the second coordinate and evaluated in (0,77(0)),
ie. for F(0,) : C*(X,R) — C*(X,R) defined by F(0,-)(II) = F(0,1II), we define
DyF(0, 7)) := dF(0,-) (7).

We begin with some preliminary observations.

1. First observe that 7 is a fixed point, i.e., RN 7N = 7z (V).

2. We next observe that the family of maps (—e¢,€) x C*(X,R) > (\1I) —
RM(II) € C*(X,R) is C™ 1. Clearly it is C™! in X, whilst it is C™~! in
IT by Corollary 4.3.8.

3. DoF(0,7(9) is a linear homeomorphism of C*(X, R) onto C*(X, R). Moreover,
we will prove that (I — Da(R©7(0)) is invertible. We call

A .= Dy(ROO)).

OnII € C*(X,R), Z) is given by
ZO(11)(z) = dT©) (N) (ax)) (oz),2 € X,

and this is clear using Corollary 4.3.8. Since each T; is a contraction it is
easy to see that Z() : CO(X,R) — CO(X,R) satisfies |2 ||oo< 1, i.e. Z0)
is a contraction on C°. Using Remark 4.3.15 we will prove that Z( is also

a contraction on C*(X,R). For this, assume ||II||< 1 (and thus, in particular,
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|II][o< 1 and ||II||c< 1/K). We can then use the triangle inequality to bound

2 0()(z) — 2 (11)(y)|

)dT ((0)0x>(3: 0 (r(oy)) Ty ‘

)dT ((0)0x> (ox) dT0>( a:c) (

+ |41 (7O (o)) Woy) — a1 (O (0y) ) N(oy)|

< a1 oo [M(ow) — T(ory) | + ]de? (79 (02)) = ar® (7 O(ow) )| 1MWl
< a7 ool Tad(ow, 79)" + Lip(dT (") (o) — 0 (o9)]

< (2001ler) dto.)® + (Liplar) e a3 ) e

< 0d(,y)°,
where we have used Remark 4.3.15 in the last inequality. This implies that
1O la< 1.

To end the proof we will use the implicit function theorem for Banach spaces
(see for example [89]). The map F is C™ ! in a neighbourhood of (0,7(®) of

T. x C*(X,R) and since max{[| 2|, |Z©]o} < 1 we see that DyF (0, 7)) =
I — 29 is invertible. Thus the hypotheses of the implicit function theorem are
satisfied and the result follows. O

Example 4.3.17. If To(z) = Az, Ti(z) = Az +t and X = {0,1}0, then we can

explicitly write the map m: X — R as an infinite series:

T ((zn)og) =t Y A,
n=0

4.3.3 Third requirement: thermodynamic formalism

The basic definitions and results on thermodynamic formalism in Section 2.4 will
be used in the proofs of the main theorems in the next subsection. Indeed, we can
deduce by classical techniques and an argument based in composition of operators
the differentiability of a Gibbs measure that we will relate with the stationary mea-
sure using the projection maps. Also, we relate the Hausdorff dimension with the
zero of t — P(—t®) by Bowen’s method for some appropriate function ®. This will
be use to deduce the differentiability of the Hausdorff dimension.
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Consider the family G of weights G(@) = {gi(e)}f:l and 0 € Z. := (—¢,e).
We can associate a Holder continuous function M) e co(x ,R) defined by

609 (@) = 10g (99 (x W (02)) ) .
Now we proceed to the definition of the Transfer operator in this setting.

Definition 4.3.18 (Transfer operator). We can define a transfer operator £ .0 :
C*(X,R) = CY(X,R) by

Lyenw(r) = Z ew(k’e)(y)w(y) where w € C*(X,R).

oy=x

We see from the definition of .Zx0) and the property that Zle gl@ =1
that .iﬂdju,e)l =1, ie., 31#“’9) preserves the constant functions.

We next recall the following classical result.

Theorem 4.3.19 (Ruelle Operator Theorem). There exists a maximal positive sim-

ple isolated eigenvalue 1. Moreover,
1. there is a positive eigenvector W (2,6) 5 1.€., fw(x,e)ww(x,e) = Wy(20) 5

2. the equilibrium state vyoe) s a fized point for the dual operator, i.e.,
XIZ(A,G) Vip(x.0) = Voy(2,0)

thus fde¢(A,0) = f(g¢(A,0)f)de(x,9) for every continuous f : X — R.

Proof. The spectral properties of the operator follow from the general results of
Ruelle for transfer operators with any Holder continuous function [16], [78]. In this
particular case the fact that the maximal eigenvalue is 1 and the corresponding eigen-
distribution is the equilibrium state follows from the property that Zwu,e) 1=1and
[88], [61]. O]

4.3.4 Proof of Theorem 4.2.3

We need to relate the Gibbs measure to the stationary measure p) g, recall its defi-
nition in (4.3). The strategy of the proof of Theorem 4.2.3 consists of the following
steps:

i. We construct a probability measure vy g on the Borel sets of X := {1,..., kN
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such that for w € C**°([0,1],R) we have

1

/wo7r)‘(x)dl/>\79(x):/ w(Z)dpyp(Z), (4.8)
X

0

where 7N € C*(X,[0,1]) for A € Z.. The probability measure vy g corresponds
to the Gibbs measure of an explicitly constructed Hoélder potential that depends
on both 7 and G,

ii. We prove that C*(X,R) > I — wo IT € C%(X,R) is C5~L. To achieve this, we
use an argument of composition of operators (following de la Llave and Obaya)
which requires w € C579([0, 1], R).

iii. A similar argument is used to show that Z, 3 A — 7N € C*(X,R) is ¢ L.
In order to apply the result in this case we need to use that 7 is a family of
C™*# functions. We use an argument based on the implicit function theorem

that requires the family 7™ to be contractions.

iv. We use a classical result about regularity of Gibbs measures to prove that Z.
A= vyg € CYX,R)* is C L

v. As a consequence of the previous parts, we have that the map Z. > A — (v g, wo
7)Y € (X, R)* x C*(X,R) is ¢™n(:ms)=1 On the other hand, the map
CHX,R)*xCY(X,R) 3 (vy 9, wor™) s vy g(wor V) = [ wor M (z)dvy g(z) €
R is C*. This, together with equation (4.8) concludes the proof.

Now we can show the following result.

Lemma 4.3.20. Consider the family G of weights g](e) forj=1,--- k and —e <
0 < e. Then the stationary measure for T and G is the image of the eigen-
distribution vy .e for N e, (W(A))*l/w(x,e) = [)6-

Proof. By the uniqueness of the stationary measure, it is enough for us to check
that

[ 1@a ()00 @) = > 9@ 1@ ()0 @)
i=1

holds for any continuous f : [0,1] - R and & € [0, 1]. A straightforward manipula-

112



tion yields

k
Z/gz(k)(i')f(Tzi“)d ((W(A))*Vqﬁ(&@)) (5) :/ ( Z €w(A’9)(y)f(7T()‘)y)) dl/w(x,e) (x)
=1

yeolx

= /.ﬁ/ﬂw(x,e)(fOW(A))($)dV¢(A79) (:U)
:/fowm(x)dl/wu,e)(v’ﬂ)
= /f(gz)d ((w(’\))*%(x,e)) (%)

for every continuous function f : [0, 1] — R, where we have used that .Z& \6) (l/w(x,e)) =

V¢(A,9). O
Lemma 4.3.21. For fized § € I, the map I, 3 X — M) € C*(X | R) 4s C™inm)—1,

Proof. Consider 0 € Z, fixed. By Corollary 4.3.8 we have that C*(X,R) > II —
g9 (M(0z)) € C*(X,R) is C'=! and by Proposition 4.3.16 the map Z, 3 A > 7N €
CYX,R) is C™"!, then the map Z. > \ gg(f)) (7 (ox)) € C¥(X,R) is cmin(mn)—1,
This proves that the map Z. 3 X — ¢ (z) = log (gé?(ﬂ’“(ax))) € C(X,R) is

cmin(mn) =1 “which concludes the proof. O
Lemma 4.3.22. For fized A € I, the map I, 3 6 — M) € C¥(X,R) is C.

Proof. From the hypothesis on the family G() and the definition of 1(*?)

6O (@) = log (49 (xV(00))
— 108 (g (7™ (02)) + 0201 (7D (00)) + -+ + 07 gy (7D (00)) + 0(07) )
=:t(0)

where t(6) = t(0) + dt(0)0 + 5:d?t(0)0 + - - - + o(6"), and where d't(0) € C*(X,R) is
given by
o bi [gﬂﬁo (77‘()‘) (0-'7"))7 gwo,l(ﬂ-()\) (Ux))v to 7g$0,i(7r()\) (Ux))]

() = 01 (T ) |

where p; (i € {0,...,r}) are polynomials. O

Using standard analytic perturbation theory (cf. [78]) and the previous corol-

lary we have the following.

Corollary 4.3.23.
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1. For fized 0 € T, the map (—¢€,€) 3 XA = vy € CH(X,R)" is crinttm)—1,
2. For fixred A € I, the map (—e€,€) > 60 — Vypr6) € CH*(X,R)* isC".
In particular, this implies the following.
Corollary 4.3.24. Given a Holder continuous function f € C*(X,R).
1. For any fized 0 € (—¢,¢€), the map (—€,€) D X — ffdl/wo\,e) € R 4s cmin(m)—1,
2. For any fized \ € (—¢,€), the map (—€,€) > 0 — fde¢(A,6) eR isC".
We now turn to the proof of Theorem 4.2.3.
Proof of Theorem 4.2.3. There are two parts.

1. From Corollary 4.3.7 we deduce that for f € C579([0,1],R), the map C*(X,R) >
I~ foll € C*X,R) is C*! and we know from Proposition 4.3.16 that
.5 A 7N € C*(X,R) is C™!, then the map Z, 3 A — forM € C*(X,R)
is ¢min(sm)—1 Uging Corollary 4.3.23 we have that (—€,€) 2\ — Vypno) €
C(X,R)* is ¢™in(bm)=1 therefore the map Iy : Z, — CY(X,R) x C*(X,R)*,
defined by [1(A) = (f o 7™, v 00) is CREmS) =1 We define the map Iy :
C*(X,R) x C*(X,R)* — R by lx(v,v) = [vdv for v € C*(X,R) and v €
C*(X,R)*. The map Iy is C*=°.

We consider the map F :=1ly0ly,s0 F(A\) = [ fo W(A)dl/d)(x,e) is crin(bm.s) =1,
Finally by Lemma 4.3.20, [ f o W(A)dyw(x,a) = [ fduy g, which concludes the
proof of part 1.

2. For f € CY([0,1],R), f o7 € C*(X,R) and the map I3 : Z, — C*(X,R)*
defined by l3(0) = v m.e is C" by Corollary 4.3.23. We consider the map
G : I. — R, defined by G(0) = ly(f o 7™, 15(6)), where I is defined in the
part 1 of this proof. By Lemma 4.3.20 we have G(0) = [ fduye and G is C"

since I3 is C" and [l is C*°. This finishes the proof.

4.4 Conclussions

4.4.1 Applications

A seminal paper [18], Bowen introduced a method relating the Hausdorff dimension

s of an invariant set for a certain family of transformations F with the solution of
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the equation P(s®) = 0, where P is the pressure function and & is an appropriate
function that depends on F. Some memorable references for applications of this
approach are [76],[77],[64], [63]. The next proposition is an application of Bowen’s

method to compute Hausdorff dimension.

Proposition 4.4.1. Independently of G, there exists a uniquet =ty = dimp (supp fixp)
such that

P <—tlog (dngg) (x™ (m)))) = 0.

We are interested in the differentiability of the map Z. > A — t) € R. Using

Corollary 4.3.12 we can prove the main proposition we need.
Proposition 4.4.2. The map Z > X — log (dT;,gg‘) (M (;U))) € CY(X,R) is ™2,
We can now prove our second theorem.

Proof of Theorem 4.2.9. Since P : C*(X,R) — R is real analytic it follows that
Z. > A+ ty € Ris C™ 2 and using Proposition 4.4.1 we conclude the proof of
Theorem 4.2.9. [

We can also prove the example in the introduction of the chapter.

Proof of Example 4.1.3. Suppose that I'y is generated by some M&bius transforma-
tions {y}}¥_, and for each i € {1,...,k} define U} := {z € C : |dy}(2)|< 1} C C.
For each 4,5 € {1,...,k} call by T the map %}“C\uii C\ U; — U; and define the
map TZ’\] : U; — U such that Tl)‘] = Tj/\|ui. We consider the shift space

Si={r=(x,) 0 xn € {1,... .k}, 2y # xpi1,mn € Noy C {1,..., k}

and define the projection map 7 : ¥ — Ay C C, by z +— limy,_s00 TXN T2 - -T:;\n (20)

roT T
where zg € C is fixed and Ay 1= {limp, o T T3 -+~ T (20) : @ € £} is the limit
set for I'y. We notice that 7 € C*(%,C) for some small a > 0. The conformal
probability measure p satisfies that py = 72 for Eiw\ = 1 where

Lyw(x)= Y |dTp . (7Y [Pw(Ty 40 (7 y),w: T - R,z € 3.

Y0,T0

yeaflx
yeD

We know from [76] that the Hausdorff dimensions of the limit set for I' is a real
analytic function on the deformation space of a Schottky group, then the map
T. > A A € Ris C™. On the other hand, the map Z. > A — 7 € C*(%,C) is C™

(we can use the same proof of Proposition 4.3.16, the main difference is that now
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when applying Corollary 4.3.8 we obtain C™ and not C"™~! as the maps TiA are C*°
and not just C™*°). Then the map Z, > A — e%”)\log|de;;)7xo (m y)m* € R is C™ and
by perturbation theory so is the map Z. > A — p* € C*(X,R)*. Finally, we have
that for w: C — R a compactly supported C* function [w o N dpt = [ wdpy and
therefore the map A\ — [wdpuy is C™ by an application of Corollary 4.3.7, which
concludes the proof. O

4.4.2 Generalisations

A careful look at Theorem 4.2.3 and to it proof allows to obtain similar results to
the ones showed in Section 4.2 under much weaker hypotheses. This is the propose

of this subsection. We start by modifying Definition 4.2.1 and replacing it by:

Definition 4.4.3. Assume that 6,e € (0,1) , k,l,m,n,p € N\ {1}, ¢ € N and let
A, © be open intervals A, © C R.

1. Let
T =T(Ak,I,m, ) = {{T}A) Eliae A}

be a family of contractions such that for A € A and i € {1,...,k}:
T:Z()\) _ jvl()\’ _)’

where

(i) Ti(A,-) € ¢*2([0,1], [0,1]),

(i) supepll T (A, )leo< 1,
(iii) Ti(-,-) € C™(A x [0,1],]0,1]), and
(iv) %i(o,x) = %T](O,x) for all i, j.

2. On a family T for every X € A, we define the limit set K(\) as the unique non
empty closed set IC C [0,1] such that

K =u, VK.
3. We define (T,G), where

g = g(@,k‘,n,p,e) = {{92(9)}521 10 ¢ @}

is a family of weight functions such that
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(a)

o

o Lip (T}A)) <1 forall e A,0c0;

k
>
i=1
and

(b) for every 8 € ©,i € {1,...,k}:

9" = 5i(0)
where for some 5 € (0,1/2) we have
(7’) gl(e) € Cn+€([0’ 1]7R+)a
(“) gZ() eCt (I) Cn—‘re([o’ 1]7 R+)) :
If we do not consider the normalisation condition on the weight functions,

we require a generalised definition of stationary measures. In order to deal with this

we introduce the next definition.

s/\,@
Definition 4.4.4. Given the families (T, G), define hl(/\’e) = (gi(e)> , where sM €
[0, 1] is unique solution of P (s)"a log (gg(ﬁ? (7N (o) ) = 0 and P is the Pressure.

A generalized stationary measure p = 1y g is the unique probability measure on [0, 1]
that satisfies

k
/ F@)du() = / B (@) £ (T (2))dpa(z),
=1

for any continuous function f:[0,1] — R.

Under the hypotheses of Definition 4.4.3, a step-by-step equal proof that the

one given for Theorem 4.2.3 gives us the following result:

Theorem 4.4.5. Let fix a € (N\ {1}) U {oo} and p € (0,1). On (T,G), for the
generalized stationary probability measure puyg with X € A, 0 € O, or in the case
A = O, for the generalized stationary probability measure py x = px for A € A, we

have:

1. For 0 € © and f € C*P(K,R), where K D UyeaK(N), the map F : A — R
defined by

FO) = | fdung
belongs to C"(A,R) with r = min{l —1,m —1,a — 1}.

2. For A€ A and f € Cl(/C,R), the map F : © — R defined by
F(O) = [ fduna
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belongs to C1(O,R).

8. For A =0 and f € C*tP(K,R), the map F : A — R defined by

—/fdMA

belongs to C"(A,R) with r = min{l —1,m — 1,a — 1,n — 1,q}.

An easy example of application of Theorem 4.4.5 that Theorem 4.2.3 fails is
the case that z¢ € [0,1] \ UxeaK(A) and f(z) = |z — x|

We end this subsection with two examples. In the first we can apply our
theorem and it is possible to experimentally see the regularity of the map F'()A). In
the second, the hypothesis on the smoothness of the contractions is not satisfied.
In this case, experimentally the map F()) looks C° but not C!, however we cannot
prove it, as our method of composition of operator does not work. The first example

is the following:

Example 4.4.6. Let us consider A =0 =[1/6,1/3], z € [0,1],n € N, X € A,

¢(x,

T

sin(1/z) € C*(R,R) \ C"T (R, R),
(x) = Az + ¢(A —0.25,3) + 0.01,

n) =

)
( 2
(x):)\x—l— + ¢(A —0.25,3),
(>\ ) =

) =

(z) = Ag,1/2)(®) + (1 = M) 2,1 (2),
99 (2) = (1= Mg/ (@) + Vo), and
—z ifze(0,1/2)
flz) =
22 ifxz e [1/2,1].
Then the map F : A — R, defined by F(\) = [ f(z)dux(z), belongs to C1(A,R).

Moreover, for any interval A’ C [1/6, 1/4) or A" C (1/4, 1/3], we have that F|p€
C>®(A,R).

The second example, where our results are not longer valid, is the following:
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0.22}

0.215}

0.205|

0.2

0.195f

Figure 4.2: Graph of F': A — R in Example 4.4.6

Example 4.4.7. Let us consider A =0 =[1/6,1/3], z € [0,1],n € N, € A,

)(z) = Az + ¢(\ — 0.25,1) + 0.01,
TN () = Az + ; + (A —0.25,1),
gV (@) = A1) () + (1= N Loy (),
95" (@) = (1= Njo,12) (@) + (Vg2 (2), and

Fa) = —x ifz €0, 1/2])

2 ifre1/2,1

Does the map F : A — R, defined by F(X\) = [ f(z)dux(x), belongs to CO(A,R)?

4.4.3 Comparison

Our results were compared to the one obtained in [86] once we finished to write

the previous part. We conclude that we can apply our methods to obtain similar

results that in [86], indeed we can do the following. Consider an iterated function

scheme 7 as in Definition 4.4.3 such that the sets Ti()‘) [0,1] are pairwise disjoint
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0.215}
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0.195}f

0.19+

Figure 4.3: Graph of F': A — R in Example 4.4.7

for i € {1,...,k} and such that m = [. Recall the definition of the projection
map 7™ : X — R and the definition of the pressure P (Definition 1.2.9). It is
well known that the Hausdorff dimension of the limit set K()), that we call by
dim (K())), corresponds to the unique s € [0,1] such that P(sM) = 0, where
YN X — R is defined by WM (z) = log|dTg§é‘) (7 (ox))]. We directly obtain from

our proofs the following theorem:

Theorem 4.4.8. 1. The dependence T > X\ +— dimg(K(N)) of the Hausdorff

dimension of the limit set is C™ 2.

2. For a € (0,1) small enough, the Gibbs measure pi, of ¢ = dimpg(K(\))pWM) €
C*(X,R) has a C™? dependence on \ € I, when we consider [y as an oper-
ator on C*(X,R)*.

From Theorem 1.1 and Theorem 1.2 in [86], under hypotheses similar to
ours, it is possible to conclude that the regularity is C™ ! instead of C™ 2 as we
could prove. In their analog to the part 2. of the previous theorem, however, in [86]
is necessary to consider y, as an operator on C (X, R)*, where o/ € (r%,1) and
r € (0,1) depends on the rate of contraction of T}, Whereas we need a € (0,1)
small enough so that 2%|dT[co< 1 and 7V : X — R is a-Holder.
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Glossary

p-a.e. Subsection 1.2.1.
Birkhoff ergodic theorem Theorem 1.2.7.

Conformal repeller Definition 1.2.18.

Convergence in law Definition 2.2.10.

Diffeomorphism Definition 1.2.1.

Dynamical system Subsection 1.2.1.

Entrance time Definition 2.2.2.
Ergodic probability measure Definition 1.2.6.
Escape rate Section 3.1.

Exponential random variable Definition 2.2.9.
Gibbs measure Definition 1.2.12.
Homeomorphism Definition 1.2.1.

Invariant probability measure Definition 1.2.4.

Iterated function scheme Definition 1.2.36.

Measure preserving dynamical system Definition 1.2.5.

Measure theoretic entropy Definition 1.2.8.

Pressure Definition 1.2.9.
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Real analytic Definition 4.2.5.

Smooth flow Definition 1.2.2.
Smooth semi-flow Definition 1.2.2.
Stationary measure Definition 1.2.37.

Subshift of finite type Subsection 1.2.2.

Topologically mixing Definition 1.2.3.
Topologically transitive Definition 1.2.3.

Transfer operator Definition 1.2.15, Remark 2.3.3, Definition 4.3.18.
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