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Abstract

In this thesis, we investigate three di↵erent phenomena in uniformly hyper-

bolic dynamics.

First, we study entry time statistics for  -mixing actions. More specifically,

given a  -mixing dynamical system (X , T,BX , µ) we find conditions on a family of

sets {Hn ⇢ X : n 2 N} so that µ(Hn)⌧n tends in law to an exponential random

variable, where ⌧n is the entry time to Hn. We apply this to hyperbolic toral au-

tomorphisms, and we obtain that µ(Hn)⌧n tends in law to an exponential random

variable when {Hn ⇢ X : n 2 N} are shrinking sets along the unstable direction.

Second, we prove escape rate results for special flows over subshifts of finite

type, over conformal repellers and over Axiom A di↵eomorphisms. Finally, we study

escape rates for Axiom A flows. Our results are based on a discretisation of the flow

and the application of the results in [39].

Third, we study the smoothness of the stationary measure with respect to

smooth perturbations of the iterated function scheme and the weight functions that

define it. Our main theorems relate the smoothness of the perturbation of: the

iterated function scheme and the weight functions; to the smoothness of the per-

turbation of the stationary measure. The results depend on the smoothness of: the

iterated function scheme and the weights functions; and the space on which the

stationary measure acts as a linear operator.

v



Notation

Symbol Meaning

N {1, 2, . . .}.

N0 N [ {0}.

Z {. . . ,�1, 0, 1, . . .}.

R Real numbers.

R>p {x 2 R : x > p}.

|x| Absolute value of x 2 R.

[x] or bxc Integer part of x 2 R.

dxe min{n 2 Z : n � x}, x 2 R.

(mod 1) x (mod 1) := x� [x], x 2 R.

{xn} {xn : n 2 N}.

� & 0 � > 0 decreases to zero.

⇠ Homologous functions.

X (·) X (x) :=

8

>

<

>

:

1 if x 2 X ,

0 if x /2 X .

�x Dirac measure supported on {x}.

|X | Cardinality of X .

X Closure of X .

int(X ) Interior of X .

BX Borel algebra on X .

X ⇤ Dual space of X .

E(f |BX ) Conditional expectation of f with respect to BX .

Continued on next page
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Symbol Meaning

L1(X , µ) {f : X ! R such that
R

|f(x)|dµ(x) < 1}.

µLeb Lebesgue measure.

ds Density of the Lebesgue measure on R.

fn f1 = f, fn+1 = f � fn for n 2 N.
Wn

i=1

Wn
i=1 ↵i := {\n

i=1Ai : Ai 2 ↵i}.

� x � y i↵ x is much greater than y.

µf
' (µ')f .

Sg
n Sg

nf :=
Pn�1

k=0 f � gk.

t Disjoint union.

f ⌘ 1 f(x) = 1 for every x.
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Chapter 1

Introduction

1.1 Motivation

This thesis on statistical and probabilistic properties of uniformly hyperbolic smooth

dynamical systems is inspired by three di↵erent questions:

(a) Can we prove entry time results for di↵erent shrinking sets?

(b) Can we prove escape rate results for smooth flows?

(c) How smoothly does the stationary measure change under smooth perturbations

of the parameters that define it?

The first two questions are about probabilistic properties and the third is

a statistical property. In this thesis we restrict the three questions to a particular

family of chaotic dynamical systems, called uniformly hyperbolic smooth dynamical

systems, that were introduced by D.V. Anosov and S. Smale in the 1960’s. In general

terms, a dynamical system is said to be uniformly hyperbolic if the tangent space

over the asymptotic part of the phase space splits into two complementary direc-

tions, one which is contracted and the other which is expanded under the action of

the system, both at uniform rates. With absolute continuity, the study of hyperbolic

dynamics started with H. Poincaré who studied homoclinic tangles, followed by the

proof of ergodicity of geodesic flows on manifolds of constant negative curvature by

G.A. Hedlund [47] and E. Hopf [50]. Beyond this assumption, Y.G. Sinai and A.N.

Kolmogorov introduced the notion of metric entropy for Anosov di↵eomorphims

[58, 80]. In this case, it was necessary to work with a symbolic representation of the

systems called a Markov partition [81, 82], generalising the work of R. L. Adler and

B. Weiss [4]. After the results of Kolmogorov-Sinai, a crucial step was achieved by
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R. Bowen, who used the machinery of thermodynamic formalism, that had been de-

veloped much earlier in physics by L. Carnot, S. Carnot, R. Clausius, L. Boltzmann

and J. W. Gibbs, for a class of uniformly hyperbolic smooth dynamical systems,

called Axiom A di↵eomorphisms and Axiom A flows, that had been studied by S.

Smale. He constucted Markov paritions for Axiom A flows in [11, 17] and studied

thermodynamic properties in [12, 14, 15, 19] and [16]. At the same time, the work

of D. Ruelle [78] built the basis of thermodynamic formalism. In mathematics, it

has been successfully applied since then to systematically study uniformly hyper-

bolic smooth dynamical systems. This is indeed the main tool used in this thesis,

and the reason why we have chosen to restrict our work to this particular family of

dynamical systems. In order to explain how we addressed these questions, we state

a precise problem for each one.

Can we prove entry time results for di↵erent shrinking sets? Let

(X ,BX , µ, T ) be a measure preserving dynamical system, where (X , T ) is a uniformly

hyperbolic smooth dynamical systems and µ is an ergodic probability measure. Let

H ⇢ X be a Borel set and ⌧H be the first entry time function to the set H, i.e.

⌧H(x) := inf{n 2 N : Tnx 2 H}. For sets

{Hn},Hn ⇢ X with the property that \n2NHn =

{x}, x 2 X , and under suitable hypotheses on

the transformation T and the measure µ, one can

prove that the sequence of random variables Xn :=

µ(Hn)⌧H
n

converges to an exponential random vari-

able.

Problem 1.1.1. For which sets {Hn},Hn ⇢ X , does

the sequence of random variables Xn converge to an

exponential random variable ?

We consider a subshift of finite type (X , T ) and a family of sets {Hn},Hn ⇢ X
shrinking to H ⇢ X . We find conditions for the sets {Hn} that depends on X , µ and

H. This can be applied to study many di↵erent shrinking sets, for example, in the

case of toral automorphims of the two torus and the measure of maximum entropy,

we solve Problem 1.1.1 for families of sets shrinking to a segment along the unstable

direction. In the same setting, our method leaves open some interesting cases, like

horizontal shrinking strips.

Can we prove escape rate results for smooth flows? Escape rate

results for smooth flows are a natural generalisation of known escape rates for dis-
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crete dynamical systems. Let us explain the discrete case first. Let T : X ! X
be a continuous map, where X is a compact metric space, µ be an ergodic prob-

ability measure and H ⇢ X be a hole (a Borel set). Typical points fall into the

hole after a finite number of iterates. Uniformly hyperbolic smooth dynamical

systems have nice invariant probability measures µ (Gibbs), and we know that

µ{x 2 X : ⌧H(x) � n}  Ce�Rn, for R = R(µ,H,X ) > 0. We consider shrinking

holes. For example, the ball of radius ✏ centred at x0 2 X , that we denote by

B(x0, ✏). We are interested in studying the convergence of

R(µ,B(x0, ✏),X )

µ (B(x0, ✏))

as ✏ tends to 0.

Example 1.1.2 (Theorem 4.0.9 in [22]). For the map Tx = 2x (mod 1) on the unit

interval [0, 1], we have that

lim
✏!0

R (µLeb, B(x0, ✏), [0, 1])

2✏
=

(

1 if x0 2 Y is non periodic,

1� 1
2m if x0 is periodic of period m,

where µLeb is the Lebesgue measure on [0, 1] and Y is a set of Lebesgue measure 1.

Figure 1.1

G. Keller and C. Liverani [54] proved a

perturbation result that implies a similar for-

mula for any expanding interval map. A. Fergu-

son and M. Pollicott obtained analogous results

for Gibbs measures supported on conformal re-

pellers [39]. A natural further step is to study

the case of continuous dynamical systems.

Problem 1.1.3. Given a uniformly hyperbolic

smooth flow or smooth semi-flow �t : ⇤ ! ⇤

with an ergodic probability measure µ on ⇤. For

the escape rate through a hole H ⇢ ⇤ defined by

R(µ,H,⇤) := � lim sup
t!1

1

t
logµ{x 2 ⇤ : �sx /2 H, s 2 [0, t]},

can we describe the asymptotic behaviour of R(µ,H,⇤) as µ(H) converges to 0?

In this thesis we are able to successfully answer this question on some partic-

ular cases. For example, let us assume that X is a smooth semi-flow or a conformal
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repeller and consider the special semi-flow (⇤f ,�t) with roof function f : X ! R>1

and phase space ⇤f ⇢ X ⇥ R (see Figure 1.1, in which we have drawn a special

smooth semi-flow (⇤f ,�t) with roof function f : [0, 1] ! R>1 over the unit interval

[0, 1] and a hole H✏ = I✏ ⇥ [0, 1]). We can prove in this case that

lim
�&0

lim
✏!0

R (⌫, B(x0, ✏)⇥ [0, �],⇤)

⌫ (B(x0, ✏)⇥ [0, 1])

=

(

1 if (x0, 0) does not belong to any closed orbit,

1� e
R
⌧

'(x0,t)dt if (x0, 0) 2 ⌧ and ⌧ is a closed orbit,

for every x0 2 X .

For special smooth flows over Axiom A di↵eomorphisms, and more generally,

for Axiom A flows, our results allow only to describe the asymptotic behaviour of

the escape rate of a Gibbs measure through small sets that come from the projec-

tions of cylinder sets.

How smoothly does the stationary measure change under smooth

perturbations of the parameter that define it? Assume that we have an

iterated function scheme T = {Ti}ni=1 with weight functions G = {gi}ni=1. Under

suitable conditions on G there is a unique stationary measure µT ,G .We are interested

in studying how smooth are the changes µT ,G under smooth perturbations of T or

G (or both). It is natural to consider the following perturbations

⇤ 3 � 7! T (�) =
n

T
(�)
i

on

i=1
and

⇥ 3 ✓ 7! G(✓) =
n

g
(✓)
i

on

i=1
.

The problem that we consider is the following:

Problem 1.1.4. Study the dependence of the stationary measure µT (�),G(✓) on � 2 ⇤,
✓ 2 ⇥.

We solve this problem in the particular case that T : [0, 1] ! [0, 1] are

contractions on the unit interval for the C1 norm. For fixed ✓0 2 ⇥, we relate the

smoothness of ⇤ 3 � 7! µ = µT (�),G(✓0) to the smoothness of T (�) and G(✓0); the

regularity of ⇤ 3 � 7! T (�) and the space on which µ acts as a linear operator. We

similarly study the case when � = �0 is fixed and ✓ is not, and finally the case when

neither � nor ✓ are fixed. We work on the spaces Ck+↵ of Ck functions with k-th

derivative ↵-Hölder.
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1.2 Basic definitions

This thesis is based on five main ingredients: subshifts of finite type (Chapters 2,

3 and 4), conformal repellers (Chapter 3), Axiom A di↵eomorphisms (Chapters 2

and 3), Axiom A flows (Chapter 3) and stationary measures (Chapter 4). In order

to separate well known results from new ones of the thesis, we state these basic

definitions and important related results now and we only reference them from the

main body.

1.2.1 Dynamical Systems and Ergodic Theory

A dynamical system is a smooth action of the reals or the integers on another object

(usually a manifold). When the reals are acting, the system is called a continuous

dynamical system, and when the integers are acting, the system is called a discrete

dynamical system. A particular kind of continuous dynamical systems that we use

are the smooth flows and semi-flows. These concepts require the definition of a

homeomorphisms and a di↵eomorphisms.

Definition 1.2.1 (Homeomorphisms and Di↵eomorphisms). 1. A homeomorphism

is a continuous map f : X ! Y which is one-to-one and onto, and whose in-

verse f�1 : Y ! X is also continuous.

2. A di↵eomorphism is a smooth homeomorphism with smooth inverse.

We can now define a smooth flow and semi-flow.

Definition 1.2.2 (Smooth flow and semi-flow). 1. A smooth flow f t : X ! Y
is a family of di↵eomorphisms depending smoothly on t 2 R and satisfying

f s+t = f s � f t for all s, t 2 R. In particular, f0 is the identity map.

2. A smooth semi-flow f t : X ! Y is a family of smooth maps depending smoothly

on t 2 R�0 and satisfying f s+t = f s � f t for all s, t 2 R�0.

We will require to consider dynamical systems satisfying certain topological

conditions.

Definition 1.2.3 (Transitivity and Mixing). A continuous map f : X ! X is said

to be:

1. Topologically transitive if, for every pair of non-empty open sets Y,W ⇢ X
there exists n 2 N such that fn(Y) \W 6= ;.

5



2. Topologically mixing if, for every pair of non-empty open sets Y,W ⇢ X , there

exists n 2 N, such that, for all k > n, one has fk(Y) \W 6= ;.

For flows it is similar.

From the measure theoretic point of view we work in this thesis with measure

preserving dynamical systems. For this we need the concept of invariant probability

measures.

Definition 1.2.4 (Invariant probability measure). A probability measure µ on a

topological space X is invariant under a transformation f : X ! Y if µ(A) =

µ(f�1A) for all measurable subsets A, where f�1A is the pre-image of A by f. We

say µ is invariant under a flow f t : X ! Y if it is invariant under f t for all t.

Definition 1.2.5 (Measure preserving dynamical system). A measure preserving

dynamical system is a system (X ,BX , µ, T ) where X is a topological space, BX the

sigma-algebra over X , T : X ! X a measurable transformation and µ an invariant

probability measure. It also refers to a system (X ,BX , µ, f t) where X is a topological

space, BX the sigma-algebra over X , f t : X ! X a smooth flow and µ an invariant

probability measure.

A particularly useful family of measure preserving dynamical systems is when

the measure is an ergodic probability measure.

Definition 1.2.6 (Ergodic probability measure). An invariant probability measure

µ is ergodic if every invariant set A has either zero or full measure, i.e., for every

set A such that A = f�1A, µ(A) is equal to either 0 or 1.

The most important theorem in Ergodic Theory is the Birkho↵ ergodic the-

orem that we state in what follows.

Theorem 1.2.7 (Birkho↵ ergodic theorem). Let (X ,BX , µ, T ) be a measure pre-

serving dynamical system. If f 2 L1(X , µ), then

lim
n!1

ST
n f(x)

n
= E(f |BX ) for µ-a.e. x 2 X ,

where by µ-a.e. we mean that there is a measurable set with full measure for which

the property holds.

If the measure µ in Theorem 1.2.7 is also ergodic, then

lim
n!1

ST
n f(x)

n
=

Z

fdµ for µ-a.e. x 2 X .

Finally, we define the measure theoretic entropy.

6



Definition 1.2.8 (Measure theoretic entropy). Let (X ,BX , µ, T ) be a measure pre-

serving dynamical system. Given a finite partition ⇠ = {Wn} of X , where Wn 2 BX .
We define Hµ(⇠) = �

P

W2⇠ µ(W) logµ(W) and hµ(T, ⇠) = limn!1 1
nHµ(

Wn�1
j=0 T

�j⇠),

where
n�1
_

j=0

T�j⇠ := {\n�1
j=0T

�jWj : Wj 2 ⇠}.

The measure theoretic entropy (or Sinai entropy) of T is denoted by hµ(T ) and

defined by hµ(T ) = suphµ(T, ⇠), where the supremum is taken over all finite or

countable partitions ⇠ with Hµ(⇠) < 1.

Sinai theorem asserts that if we have a partition ⇠ such that forµ-a.e. x, y 2 X
with x 6= y, there exists n 2 N such that x and y belong to di↵erent elements of the

partition
Wn

j=�n T
�j⇠, then hµ(T ) = hµ(T, ⇠).

1.2.2 Subshifts of finite type

We will formally introduce the definition of subshift of finite type. Let A denote

an irreducible and aperiodic a ⇥ a matrix of zeros and ones with a > 2, i.e. there

exists d 2 N for which Ad > 0 (all coordinates of Ad are strictly positive). We call

the matrix A transition matrix. We define the non-invertibe subshift of finite type

X+ = X+
A ⇢ {1, . . . , a}N0 such that

X+ := {(xn)1n=0 : A(xn, xn+1) = 1 for all n 2 N0}

and the invertible subshift of finite type X = XA ⇢ {1, . . . , a}Z such that

X := {(xn)1n=�1 : A(xn, xn+1) = 1 for all n 2 Z}.

On X+, the shift � : X+ ! X+ is defined by �(x)n = xn+1 for all n 2 N0. On

X , the shift � : X ! X is defined by �(x)n = xn+1 for all n 2 Z. Notice that

with our definition (X ,�) and (X+,�) are topologically mixing (i.e. when U ,V are

non-empty subsets of X or X+, there is an n 2 N so that �mU \ V 6= ; for all

m 2 Z,m > n). For x 2 X+ and n 2 N, we define the cylinder

[x]n := {y 2 X+ : yi = xi for i 2 {0, . . . , n� 1}},

we denote by ⇠n the set of all the cylinders [x]n with x 2 X+ and we call by BX+

the sigma-algebra generated by the closed sets of X+ (Borel algebra on X+). For

7



x 2 X and n,m 2 Z,m > n we define the cylinder

[x]mn := {y 2 X : yi = xi, for i 2 {n, . . . ,m� 1}}

and also denote x[n,m) := xnxn+1 . . . xm�1 = (xk)
m�1
k=n , which corresponds to the

concatenation of m � n elements in {1, . . . , a}. We denote by ⇠mn the set of all the

cylinders [x]mn with x 2 X . In the particular, when n = 0 we denote [x]mn = [x]m and

⇠mn = ⇠m. There is natural projection ⇡ from X to X+ defined by ⇡
�

(xn)1n=�1
�

=

(xn)1n=0. In this way, a non-invertible space X+ can be always seen as the projection

of an invertible shift space X by ⇡. Denote by M�,+ the space of � invariant proba-

bility measure on X+ and by M� the corresponding space on X . Given µX+ 2 M�,+

we can define µX 2 M� by

µX ([x]mn ) = µX+([��nx]m�n)

where n,m 2 Z,m > n. This induced measure will be called the natural extension

of an invariant probability measure from X+ to X .

In the invertible case, for ✓ 2 (0, 1), we consider the metric d✓(x, y) = ✓m

where m = inf{n 2 N0 : xn 6= yn or x�n 6= y�n} and d(x, x) = 0 for every x 2 X , we

have in particular that (X , d✓) is a complete metric space. We say that f : X ! R is

continuous if it is continuous with respect to d✓. We denote the space of continuous

functions f : X ! R by C0(X ,R). Given f : X ! R continuous and m 2 N define

Vm(f) := sup{|f(x)� f(y)|: x, y 2 X and xi = yi 8i 2 {�m, . . . ,m}},

and the Lipschitz semi-norm

|f |✓:= sup

⇢

Vm(f)

✓m
: m 2 N

�

.

Since constant functions all have Lipschitz semi-norm equal to zero, one needs to

define the norm on the space of Lipschitz functions by

kfk✓ := |f |✓+kfk1,

where kfk1:= supx2X {|f(x)|}. The space of continuous functions with finite Lip-

schitz norm is called the space of Lipschitz functions (or ✓-Lipschitz functions).

Recall that a continuous function is ↵-Hölder for d✓ if and only if it is Lipschitz for

d✓↵ . We denote the space of ↵-Hölder maps by C↵(X ,R).
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In the non-invertible case, for ✓ 2 (0, 1), we consider the metric on X+ given

by d✓(x, y) = ✓m, where m = inf{n 2 N : xn 6= yn} and d(x, x) = 0 for every

x 2 X+. Here (X+, d✓) is a complete metric space. We say that f : X+ ! R is

continuous if it is continuous with respect to d✓. We denote the space of continuous

functions f : X+ ! R by C0(X+,R). Given f : X+ ! R continuous and m 2 N
define

Vm(f) := sup
z2X+

{|f(x)� f(y)|: x, y 2 [z]m},

the Lipschitz semi-norm

|f |✓:= sup

⇢

Vm(f)

✓m
: m 2 N

�

and the Lipschitz norm

kfk✓ := |f |✓+kfk1,

where kfk1:= supx2X+{|f(x)|}. The space of continuous functions with finite Lip-

schitz norm is called the space of Lipschitz functions (or ✓-Lipschitz functions).

Again, a continuous function is ↵-Hölder for d✓ if and only if it is Lipschitz for d✓↵ .

Hölder functions on X+ can be seen as a subclass of Hölder functions on X [16].

We denote the space of ↵-Hölder maps on X+ by C↵(X+,R).

1.2.3 Thermodynamic Formalism and Gibbs measures

We introduce some results and definitions on thermodynamic formalism, in partic-

ular we define Gibbs measures, the pressure function P and the transfer operator.

Along this section, let X be a topologically mixing subshift of finite type.

Definition 1.2.9. Let P : C0(X ,R) ! R denote the pressure defined by

P (') := lim
n!+1

1

n
log

 

X

�nx=x

exp

 

n�1
X

k=0

'(�kx)

!!

where ' 2 C0(X ,R).

Remark 1.2.10. The pressure function is well defined. Indeed, it is not hard to

prove that if a sequence {un} of non-negative reals satisfies that

un+p  un + up for all n, p � 1, (1.1)

then the sequence
�

u
n

n

 

is convergent (see for example Proposition 3.2 in [91]). The

sequence un = log
⇣

P

�nx=x exp
⇣

Pn�1
k=0 '(�

kx)
⌘⌘

satisfies (1.1), then the pressure

9



P (') = limn!1 u
n

n exists.

The following result gives an alternative definition of the pressure.

Lemma 1.2.11 (Variational principle). We can write

P (') = sup

⇢

h(⌫) +

Z

'd⌫ : ⌫ is �-invariant probability measure

�

,

where h(⌫) is the measure theoretic entropy with respect to ⌫. Moreover, there is a

unique �-invariant probability measure µ' on X which satisfies

P (') = h(µ') +

Z

'dµ'.

Definition 1.2.12 (Gibbs measure). We say that a probability measure µ on X is

a Gibbs measure (or an equilibrium state) of Hölder potential � : X ! R if there is

c1, c2 > 0 and P � 0 such that

c1 
µ([x]m)

exp (�Pm+ S�m�(x))
 c2

for every x 2 X and m � 0, where S�m�(x) :=
Pm�1

k=0 �(�
kx).

Gibbs measures are related to the pressure function by the following propo-

sition.

Proposition 1.2.13. The probability measure µ on X is a Gibbs measure of Hölder

potential � : X ! R if and only if µ = µ�.

These basic properties can be found in [16], [69], [78] for example. Another

property of the pressure function that we will use in Chapter 4 is the following.

Lemma 1.2.14. The function P : C↵(X ,R) ! R is analytic. Moreover, the first

and second derivatives are given by:

1. dP ('+t )
dt |t=0=

R

 dµ'; and

2. @2P ('+t1 +t2⇠)
@t1@t2

|(0,0)= �2µ
'

( , ⇠) where �2µ
'

( , ⇠) is the variance of µ'

and  , ⇠ 2 C↵(X ,R).

This result can be found in [78] or [69]. For a proof including the details see

[91], Propositions 6.12 and 6.13 in Section 6.6.
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The key ingredient in the proof of Lemma 1.2.11, Proposition 1.2.13 and

Lemma 1.2.14 is the transfer operator or Ruelle operator (also known as Perron-

Frobenius-Ruelle operator) defined on the space C0(X+,R) and Theorem 1.2.16.

Definition 1.2.15 (Transfer operator). Let � : X+ ! R. The transfer operator is

defined by

L f(x) :=
X

y2��1(x)

e�(y)f(y)

where f 2 C0(X+,R).

Theorem 1.2.16 (Perron-Frobenius-Ruelle). If � 2 C↵(X+,R) for some ↵ > 0,

then

(PFR 1) there is a simple eigenvalue � > 0 of L and an associated eigenvector

h > 0 in C0(X+,R),

(PFR 2) there is a unique probability measure µ in X+ such that
R

L fdµ = �
R

fdµ

for every f 2 C0(X+,R) and for every function v 2 C0(X+,R), the se-

quence ��nL nv converges uniformly on X+ to h
R
vdµR
hdµ

, and

(PFR 3) the topological pressure of � is � = P (�).

1.2.4 Conformal repellers

In order to state our second theorem in Chapter 3 we need to define conformal

repellers. We start with the definition of conformal linear maps.

Definition 1.2.17 (Conformal linear map). A non-constant linear map A : Rn !
Rn is conformal (or conformal linear map) if and only if for every x, y, z 2 Rn

kAz �Axk
kAy �Axk =

kz � xk
ky � xk . (1.2)

In the case n � 2, Equation (1.2) is equivalent to A = �U where � 6= 0 is a scalar

and U is an orthogonal map.

We can now define conformal repellerss.

Definition 1.2.18 (Conformal repellers). Let M be a Riemmanian manifold, f :

M ! M a C1 map and J ⇢ M a compact set such that fJ = J . We say that

(J , f) is a conformal repeller if:

(a) f |J is a conformal map, i.e. the di↵erential of f at every point p 2 J is a

conformal linear map between the Euclidean spaces TpM and Tf(p)M;

11



(b) 9c > 0,� 2 R>1 : kdfn
x vk � c�n kvk , 8x 2 J , 8v 2 TxM, 8n 2 N;

(c) f is topologically mixing;

(d) 9V � J such that J = {x 2 V : fnx 2 V, 8n 2 N} .

An example of a conformal repeller is the Julia set of a hyperbolic rational

map, i.e. the closure of the set of repelling periodic points of a rational map R :

Ĉ ! Ĉ of degree greater or equal than two, where Ĉ is the Riemann sphere.

1.2.5 Axiom A di↵eomorphims

Suppose that M is a compact C1 Riemannian manifold, the tangent bundle of M
is given by TM = [x2MTxM, where TxM is the tangent space of M at x. Suppose

also that f : M ! M is a di↵eomorphism. First we need to define a hyperbolic set.

Definition 1.2.19. A closed subset ⇤ ⇢ M is hyperbolic if f(⇤) = ⇤ and each

tangent space TxM with x 2 ⇤ can be written as a direct sum

TxM = Eu
x � Es

x

of subspaces such that

(a) Df(Es
x) = Es

f(x), Df(Eu
x ) = Eu

f(x);

(b) there exist constants c > 0 and � 2 (0, 1) so that

kDfn(v)k c�nkvk when v 2 Es
x, n 2 N0 (1.3)

and

kDf�n(v)k c�nkvk when v 2 Eu
x , n 2 N0; (1.4)

(c) Es
x, Eu

x vary continuously with x.

We can now define Axiom A di↵eomorphisms.

Definition 1.2.20. (a) We define ⌦ = ⌦(f) to be the set of all non wandering

points, i.e., the set of points x 2 M such that

U \
[

n2N
fnU 6= ;,

for every neighbourhood U of x.

12



(b) f satisfies Axiom A if ⌦(f) is hyperbolic and ⌦(f) = {x : x is periodic }.

Examples of Axiom A di↵eomorphisms are the Anosov di↵eomorphisms and

Smale horseshoe maps.

Anosov di↵eomorphisms

Let M be a compact C1 Riemannian manifold. An Anosov di↵eomorphism is a

di↵eomorphism f : M ! M such that M is hyperbolic. The simplest examples of

compact C1 Riemannian manifold admiting Anosov di↵eomorphisms are the tori

Tn := Rn/Zn, moreover, any Anosov di↵eomorphism on the tori is topologically con-

jugate to one given by an isomorphisms of the tori with no eigenvalue of modulus

1 ([40]). In this thesis our basic tool, as we mentioned in Section 1.1, is thermody-

namic formalism, on the other hand, as we will see later in this section, a crucial

necessary condition is the existence of the so called Markov partitions. It happens

that Markov partitions are hard to find for Anosov di↵eomorphisms on tori Tn

with n > 2, so in this thesis we will deal indeed only with Anosov di↵eomorphisms

on the two dimensional torus. An example is the Arnold’s cat map, given by the

di↵eomorphism T : T2 ! T2 such that

T

 

x

y

!

=

 

x+ y (mod 1)

x+ 2y (mod 1)

!

.

An illustrative way to explain how this transformations acts on the two-torus is to

represent the phase space by a square picture of a cat and see the stretching and

folding process performed by the map T after we apply it to the original picture. In

practical terms, we are representing T2 by an array of size N ⇥N (for example N =

1300) choosing a colour for each coordinate and move the colour of the coordinate

(i, j) to the coordinate (i+j (mod N), i+2j (mod N)). To give a concrete example

of this, in Figure 1.2 we have chosen a picture of a cat to represent the phase space

T2, and in Figure 1.3 we see how the map T stretched and folded the original picture.

Smale horseshoe map

The Smale horseshoe map is defined by the di↵eomorphism f : R2 ! R2 in Figure

1.4 that acts on the unit square [0, 1]2 ⇢ R2 (the unit square [0, 1]2 is represented

by the square abcd). It contracts in the horizontal direction, then expands in the

vertical direction, folds the space and places it back over the unit square. In Figure

1.4 we show the action of f and the action of its inverse f�1.
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Figure 1.2: Representation of the phase
space T2.

Figure 1.3: Representation of the phase
space T2 stretched and folded by T.

a

a a

a bb

b
b

c

c

c

c

d

d

d

d

Figure 1.4: Horseshoe map.
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Markov partitions, equilibrium states and semi-conjugacies

We start with some topological issues.

Lemma 1.2.21 (Lemma 3.1 in [16]). Every Axiom A di↵eomorphism has an adapted

metric d, that is, ⌦(f) is hyperbolic with respect to d with c = 1 in (1.3) and (1.4).

A basic property is the following:

Proposition 1.2.22 (Spectral decomposition, Chapter 3, section B in [16]). Sup-

pose that f is an Axiom A di↵eomorphisms, then one can write ⌦(f) = ⌦1 [ ⌦2 [
· · · [ ⌦s, where ⌦i are pairwise disjoint closed sets with

(a) f(⌦i) = ⌦i and f |⌦
i

is topologically transitive;

(b) ⌦i = X1,i [ · · · [ Xn,i for n = n(i), with the Xj,i’s pairwise disjoint closed sets,

f(Xj,i) = Xj+1,i (Xn+1,i = X1,i) and fn|X
j,i

topologically mixing.

Definition 1.2.23. The sets ⌦i in the spectral decomposition of ⌦(f) are called the

basic sets of f.

Let ⌦s be a basic set, given a Hölder function ' : ⌦s ! R, define P = P (')

by

P := sup

⇢

hµ(f) +

Z

'dµ : µ 2 Mf (⌦s)

�

,

where hµ(f) is the measure theoretic entropy (see Glossary or [16]) and Mf (⌦s) is

the set of f invariant probability measures with support in ⌦s.

The next theorem gives an essential property of the basic sets, this is the

existence of equilibrium states, i.e. of invariant probability measures µ on ⌦s such

that

P = hµ(f) +

Z

'dµ,

where hµ
'

(f) is the measure theoretic entropy.

Theorem 1.2.24 (Theorem 4.1 in [16]). Let ⌦s be a basic set for an Axiom A

di↵eomorphism f and ' : ⌦s ! R a Hölder continuous function. Then ' has

a unique equilibrium state µ = µ' (w.r.t. f |⌦
s

). Furthermore, µ is an ergodic

probability measure; µ is Bernoulli if f |⌦
s

is topologically mixing.

In Chapter 3 we require some well known results that we include for com-

pleteness. These are the definition of Markov partitions, their existence for basic

sets and the semi-conjugation of the basic sets with a subshift of finite type.
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In order to define Markov partitions in a standard way we require some

extra definitions and propositions. Indeed, Markov partitions are a particular set of

rectangles, whose construction follows from the existence of the so called canonical

coordinates. To define the canonical coordinates we need the following:

Definition 1.2.25. For x 2 M define

Ws(x) := {y 2 M : d(fnx, fny) ! 0 as n ! 1},
Ws
✏ (x) := {y 2 M : d(fnx, fny)  ✏ for all n 2 N},

Wu(x) := {y 2 M : d(f�nx, f�ny) ! 0 as n ! 1} and

Wu
✏ (x) := {y 2 M : d(f�nx, f�ny)  ✏ for all n 2 N}.

Proposition 1.2.26 (Canonical coordinates, Proposition 2.3.33 in [16]). Suppose

that f satisfies Axiom A. For any small ✏ > 0 there is a � > 0 so that Ws
✏ (x)\Wu

✏ (y)

consists of a single point [x, y] whenever x, y 2 ⌦(f) and d(x, y)  �. Furthermore

[x, y] 2 ⌦(f) and the canonical coordinates function

[·, ·] : {(x, y) 2 ⌦(f)⇥ ⌦(f) : d(x, y)  �} ! ⌦(f)

is continuous.

We can define rectangles once having canonical coordinates.

Definition 1.2.27 (Chapter 3, section C in [16]). A subset R ⇢ ⌦s is called a

rectangle if it has small diameter and

[x, y] 2 R whenever x, y 2 R.

A rectangle R is called a proper rectangle if R is closed and R = int(R). For x 2 R,

we define

Ws(x,R) := Ws
✏ (x) \R and Wu(x,R) := Wu

✏ (x) \R.

The particular set of rectangles that define a Markov partition are specified

in the next definition.

Definition 1.2.28 (Chapter 3, section C in [16]). A Markov partition of ⌦s is a

finite covering R = {R1, . . . ,Rm} of ⌦s by proper rectangles with

(a) int(Ri)\int(Rj) = ; for i 6= j,

(b) fWu(x,Ri) � Wu(fx,Rj) and

fWs(x,Ri) ⇢ Ws(fx,Rj) when x 2 int(Ri), fx 2 int(Rj).
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We have included the next lemma only because we require the definition of

@sR and @uR in Chapter 3.

Lemma 1.2.29 (Lemma 3.11 in [16]). Let R be a closed rectangle. As a subset of

⌦s, R has boundary

@R = @sR [ @uR,

where

@sR = {x 2 R : x /2 int(Wu(x,R))}

@uR = {x 2 R : x /2 int(Ws(x,R))}.

Thermodynamic formalism is useful to study Axiom A di↵eomorphisms es-

sentially because of two theorems. The first is the existence of Markov partitions

for the basic sets, and the second is that each basic sets ⌦s is semi-conjugate with a

subshift of finite type, i.e. there exists a subshift of finite type (X ,�) and continuous

surjection ⇡ : X ! ⌦s with ⇡ � � = f � ⇡.

Theorem 1.2.30 (Theorem 3.12 in [16]). Let ⌦s be a basic set for an Axiom A

di↵eomorphism f. Then ⌦s has Markov partition R of arbitrarily small diameter.

Finally, we can find a semi-conjugation of the basic sets with a subshift of

finite type. Let ⌦s be a basic set for an Axiom A di↵eomorphism f and R =

{R1, . . . ,Rm} denote a Markov partition of ⌦s. We define the transition matrix

A = A(R) by

Ai,j =

8

<

:

1 if int(Ri) \ f�1int(Rj) 6= ;
0 otherwise.

One can prove that (XA,�) is semi-conjugate with (⌦s, f |⌦
s

), indeed we have

the following theorem.

Theorem 1.2.31 (Theorem 3.18 in [16]). For each a 2 XA the set
T

j2Z f
�jRa

j

consists of a single point, denoted ⇡(a). The map ⇡ : XA ! ⌦s is a semi-conjugation.

Moreover, ⇡ is one-to-one on the residual set Y = ⌦s \
S

j2Z f
j(@sR [ @uR).

Let us give two concrete examples of applications of Theorem 1.2.30 and

Theorem 1.2.31.
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Figure 1.5: Markov partition.

Markov partition and semi-conjugacy for an Anosov di↵eomorphisms on

the two dimensional torus.

Let us consider the Anosov di↵eomorphisms T on the two dimensional torus T2

given by

M =

 

1 1

1 0

!

.

We can construct the Markov partition in Figure 1.5 with rectangles R1,R2,R3,R4

and R5. Define the matrix

A =

0

B

B

B

B

B

B

@

0 0 0 1 1

1 0 0 0 0

0 0 0 1 1

0 1 1 0 0

1 0 0 0 0

1

C

C

C

C

C

C

A

and the subshift of finite type XA ⇢ {1, . . . , 5}Z with transition matrix A. The map

⇡ : XA ! {0, 1}Z, defined by ⇡(a) = \i2ZT�iRa
i

2 T2 is a semi-conjugacy.

Markov partition and semi-conjugacy for the horseshoe map

Let us consider the Smale horseshoe map defined by the di↵eomorphism f : R2 ! R2

in Figure 1.6, where we have marked each side of the horseshoe with a number 0

or 1. Call the unit square U = [0, 1]2 ⇢ R2 and define the set R0 ⇢ R2 as the

intersection of U with the side of the horseshoe marked with 0, and the set R1 ⇢ R2
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a
a b

b

c

c

d

d

1

0

Figure 1.6: Horseshoe map.

as the intersection of U with the side of the horseshoe marked with 1. The invariant

set for f and f�1 is the Cantor set

⌦ := {x 2 U : fk(x) 2 U , 8k 2 Z}.

This set ⌦ is conjugated to the subshift of finite type {0, 1}Z, i.e. there is a contin-

uous one-to-one map with continuous inverse ⇡ : ⌦ ! {0, 1}Z. In our case we can

define ⇡(x) = . . . w�1w0w1 . . . , where

wk =

8

<

:

0 if fk(x) 2 R0

1 if fk(x) 2 R1

for k 2 Z, f0(x) = x.

In Figure 1.7 we represent U by a black square. In figure 1.8 we represent

the set f�1(U) \ U \ f(U) by four black squares and so on. An interesting feature

of the pictures is that they allow to visualise the pre-images of the projections of

cylinders sets. Indeed, In Figure 1.8 each of the four squares contain exactly one of

the sets ⇡�1([0.0]1�1), ⇡
�1([0.1]1�1), ⇡

�1([1.0]1�1), ⇡
�1([1.1]1�1), and so on.
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Figure 1.7: U . Figure 1.8: f�1(U) \ U \ f(U).

Figure 1.9:
f�2(U) \ f�1(U) \ U \ f(U) \ f2(U).

Figure 1.10: f�3(U) \ f�2(U) \ f�1(U) \
U \ f(U) \ f2(U) \ f3(U).

Figure 1.11:
f�4(U) \ f�3(U) \ f�2(U) \ f�1(U)
\ U \ f(U) \ f2(U) \ f3(U) \ f4(U).

Figure 1.12: f�5(U) \ f�4(U) \ f�3(U) \
f�2(U) \ f�1(U) \ U \ f(U) \ f2(U) \
f3(U) \ f4(U) \ f5(U).
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1.2.6 Axiom A flows

Let M be a compact C1 Riemannian manifold and �t : M ! M be a di↵erentiable

flow. Denote � = {�t}. A closed � invariant set ⇤ ⇢ M containing no fixed points

is hyperbolic if the tangent bundle restricted to ⇤ can be written as

T⇤ = E + Es + Eu,

where E is the one-dimensional bundle tangent to the flow, and there are constants

c,� > 0 so that

(A) kD�t(v)k ce��tkvk for v 2 Es, t > 0 and

(B) kD��t(v)k ce��tkvk for v 2 Eu, t > 0.

A closed invariant set ⇤ is a basic hyperbolic set if

(a) ⇤ contains no fixed points and is hyperbolic;

(b) the periodic orbits of �t|⇤ are dense in ⇤;

(c) �t|⇤ is a topologically transitive flow; and

(d) there is an open set U � ⇤ with ⇤ =
T

t2R�
tU .

We always consider basic hyperbolic sets that are neither a point, nor a single

closed orbit.

We can now define Axiom A flows.

Definition 1.2.32. (i) The non wandering set ⌦ is defined by

⌦ :={z 2 M : for every neighbourhood V of z and every t0 > 0, there is a

t 2 R>t0 with �t(V) \ V 6= ;}.

(ii) � is said to be Axiom A flow if ⌦ = ⌦0 t {x1, . . . , xn} is the disjoint union of

a set ⌦0 satisfying (a) and (b) and the set {x1, . . . , xn} is a finite set (n 2 N),
where xi are hyperbolic fixed points.

Let ⇤ be a basic hyperbolic set for an Axiom A flows � and let ' : ⇤ ! R
be a Hölder function. We define P = P (�|⇤,') by

P := sup

⇢

hµ(�
1) +

Z

'dµ : µ is invariant for �|⇤
�

,
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where hµ(�1) is the measure theoretic entropy. An equilibrium state of ' is a

probability measure µ on ⇤ such that attains the supremum, i.e.

P = hµ(�
1) +

Z

'dµ.

For z 2 ⇤, t > 0 and ✏ > 0 small, let

Bz,�|⇤(✏, t) := {y 2 ⇤ : d(�sy,�sz)  ✏ for all s 2 [0, t]}.

We have the following theorem:

Theorem 1.2.33 (Theorem 3.3 in [20]). Assume that ⇤ is a basic hyperbolic set

for � and that ' : ⇤ ! R is a Hölder continuous function. Then ' has a unique

equilibrium state µ'. Furthermore, µ' is an ergodic probability measure and positive

on non-empty open sets of ⇤, and for any ✏ > 0 there is C✏ > 0 so that

µ'(Bz,�|⇤(✏, t)) � C✏ exp

✓

�P (�|⇤,')t+
Z t

0
'(�sz)ds

◆

for all z 2 ⇤, t > 0.

Assume for the rest of the subsection that ⇤ is a basic hyperbolic set for an

Axiom A flow �, ' : ⇤ ! R is a Hölder function and µ is the unique equilibrium

state of ' with support in ⇤. In order to state our result we require an important

result by R. Bowen.

Theorem 1.2.34 (Main theorem in [13]). There is a special flow (⇤̃f , �̃f ) with

Lipschitz roof function f and a finite to one continuous surjection ⇢ : ⇤̃f ! ⇤ so

that

⇢�̃t
f = �t⇢

and for z 2 ⇤̃f , the �t-orbit of ⇢(z) is periodic, transitive, strongly recurrent, or

almost periodic if and only if the �̃t
f -orbit of z is.

Using the map ⇢ in Theorem 1.2.34 there is a natural way to identify the

probability measure µ' in Theorem 1.2.33 with an equilibrium state for a special

flow. For this, recall that in ergodic theory two measure preserving transformations

(Xi,BX
i

,mi,�i) are said to be isomorphic if there exist measure preserving maps

 1 : X1 ! X2,  2 : X2 ! X1 such that  1 2 (respectively  2 1) is the identity on

X2 (respectively X1) and �2 1(x) =  1�1(x) for m1-a.e. x 2 X1, �1 2(x) =  2�2(x)

for m2-a.e. x 2 X2.
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Proposition 1.2.35 ([20]). The map ⇢ in Theorem 1.2.34 is a measure theoretic

isomorphism between (�,⇤, µ) and (�̃f , ⇤̃f , µ̃), where µ̃ is the equilibrium state of

' � ⇢.

We finish by showing a concrete example of an Axiom A flow.

Example of an Axiom A flow

We consider the Smale horseshoe map defined by the di↵eomorphism f : R2 ! R2

in Figure 1.6 that acts on the unit square U = [0, 1]⇥ [0, 1] ⇢ R2. Recall the subsets

R0,R1, the Cantor set ⌦, and the conjugacy ⇡ : ⌦! {0, 1}Z defined in Subsection

1.2.5, “Markov partition and semi-conjugacy for the horseshoe map”. For every

m 2 N0 and x 2 ⌦ denote the composition of m times f by fm(x) := f � · · · f(x)
(where f0 is the identity map) and define

Sf
m+1g(x) :=

m
X

i=0

g � f i(x).

Let us consider the continuous function g : ⌦! {1, 2} defined by

g(x) =

8

<

:

2 if x 2 R1,

1 if x 2 R0.

We define the continuous action �t
g on ⇤g := {(x, t) : x 2 ⌦, 0  t < g(x)} onto

itself defined by

�t
g(x, s) :=

⇣

fm(x), s+ t� Sf
mg(x)

⌘

for Sf
mg(x)  s+ t < Sf

m+1g(x),

where m 2 N0. We have that (⇤g,�t
g) is an Axiom A flow. In Figure 1.13 we “draw”

the flow: the Cantor set ⌦ has been represented by the set

⌦̃ = f�4(U) \ f�3(U) \ f�2(U) \ f�1(U) \ U \ f(U) \ f2(U) \ f3(U) \ f4(U)

that we drew in Figure 1.11. The set ⇤ is represented by the green and red paral-

lelepipeds on ⌦̃ ⇢ U . The direction of the flow is upward in the picture. A point

in ⇤ flows along the vertical direction up to reaching the top of the parallelepiped

to which belongs to, then it goes down to the set ⌦ ⇥ {0}, according to the Smale

horseshoe map.

23



(0,0)

(1,0)

(1,1)

(1,0)
2

1
flow
direction

Figure 1.13: Example of Axiom A flow.

1.2.7 Stationary measures

In this thesis we are only concerned with the study of stationary measures for

iterated function schemes. To make this precise, consider two complete metric spaces

(M, d) and (N , d̃). Define the Lipschitz semi norm Lip of A : M ! N by

Lip(A) = sup
x 6=y

d̃(A(x), A(y))

d(x, y)
.

Definition 1.2.36 (Iterated function scheme). An iterated function scheme is a

finite family of contractions with respect to Lip, i.e. a family of maps T = {Ti}ni=1

where n 2 N, Ti : M ! M and

max
i=1,...,n

Lip(Ti) < 1.

Given an iterated function scheme T , it follows that there exists a unique

closed bounded set K ⇢ M such that

K = [n
i=1TiK.

We call K the limit set of T . A basic example to keep in mind is the case of (M, d) =

([0, 1], | |), for the unit interval [0, 1] and the absolute value | | on R, and T1(x) =
x
3 ,

T2(x) =
x
3 +

2
3 . The limit set in this example is the famous middle third Cantor set.

Associated to the iterated function scheme T , we can consider a family of
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weight functions G = {gi}ni=1, gi : M ! (0, 1) such that

n
X

i=1

gi ⌘ 1 and (1.5)

n
X

i=1

kgikLip(Ti) < 1, (1.6)

where kgk= sup{g(x) : x 2 M}.

Definition 1.2.37 (Stationary measure). Given an iterated function scheme T with

weight functions G, let P(M) be the set of Borel regular probability measures having

bounded support. A stationary measure µ 2 P(M) is a fixed point for the operator

S = ST ,G : P(M) ! P(M) defined by

S (⌫)(f) :=
n
X

i=1

Z

gi(x)f(Ti(x))d⌫(x),

where ⌫ 2 P(M) and f : M ! R is a continuous compactly supported function.

Remark 1.2.38. Two direct but important facts from the definition of stationary

measure are the following:

(i) A stationary measure for (T ,G) is supported on the limit set of T (a proof is

given in [51], Section 4.4).

(ii) A probability measure µ 2 P(M) is a fixed point of S if and only if

S (µ)(f) =

Z

f(x)dµ(x)

for every continuous compactly supported function f : M ! R.

We have the following well known theorem:

Theorem 1.2.39. Suppose that M is a compact metric space. An iterated function

scheme T with weight functions G satisfying (1.5) and (1.6) has a unique stationary

measure.

A proof of this theorem can be found in [51] for constant weight functions,

using the contractive mapping principle. A small modification of the same argument

can be applied here. Recall also that the existence of a stationary measure is a classic

result [42] (Lemma 1.2).
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Proof. The space P(M) can be equipped with the Kantorovich-Rubinshtein norm

[8]

|||µ||| = sup

⇢

Z

fdµ : f : M ! R,Lip(f)  1

�

.

The operator S is a contraction on the space (P(M), ||| |||). Indeed, for µ, ⌫ 2 P(M)

and a function f : M ! R, we have that

S (µ)(f)� S (⌫)(f) =

Z n
X

i=1

gi(x)f(Ti(x))(dµ� d⌫)(x). (1.7)

If g : M ! (0, 1) and T : M ! M with Lip(T ) < 1, then

sup

⇢

Z

f(T (x))g(x)dµ(x) : f : M ! R,Lip(f)  1

�

 Lip(T )kgksup
⇢

Z

fdµ(x) : f : M ! R,Lip(f)  1

�

.

(1.8)

From equations (1.7) and (1.8) we conclude that

|||S (µ)� S (⌫)||| 
 

n
X

i=1

Lip(Ti)kgik
!

|||µ� ⌫||| = L|||µ� ⌫|||,

where L =
Pn

i=1 Lip(Ti)kgik< 1 by hypothesis, and thus S is a contraction. On the

other hand, P(M) with the metric |||||| is a complete metric space. It follows that

S has a unique fixed point on P(M) by the contraction mapping principle.

Remark 1.2.40. A proof that P(M) with the metric |||||| is a complete metric space

can be found in [53], Chapter 8, §4, where it is proved that (P(M), ||||||) is a compact

metric space. A more general result can be found in [59], Theorem 4.2. On the other

hand, it is also possible to prove the completeness of P(M) with the metric |||||| by
using similar arguments to those in [66].

First example of stationary measures

Our first example appears in [71] (Theorem 2.1), it is quite simple and allows to get

an useful insight of how a stationary measure looks like.

Theorem 1.2.41 (Pincus). Let Ti : [0, 1] ! [0, 1] be 1-1 Lipschitz transformations,

i = 1, 2 with weight functions {g1 ⌘ p, g2 ⌘ 1� p =: q} for some p 2 (0, 1). Suppose

additionally that:

1. T1(0) = 0 and T2(1) = 1;
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2. Lip(T1) = ↵ and Lip(T2) = �, where ↵,� 2 (0, 1);

3. T1[0, 1] \ T2[0, 1] 6= ;; and

4. q > �
↵+� and

⇣

�
q

⌘q ⇣
↵
p

⌘p
< 1.

Then there is a unique stationary measure µ on [0, 1], moreover:

1. µ is nonatomic (has no atoms);

2. µ is singular with respect to the Lebesgue measure on [0, 1]; and

3. the support of µ is the unit interval [0, 1].

Second example of stationary measures

We present in what follows an interesting example that relates iterated function

schemes and stationary measures with the product of random matrices and Lya-

punov exponents. More general examples built on similar ideas can be found in

[73]. Let us consider A0, A1 2 SL(2,R>0) and denote by k k a norm on the space

R2⇥2. For i = 0, 1 we define the map Âi : [0, 1] ! [0, 1] such that for x 2 [0, 1]

Ai(x,
p
1� x2)

kAi(x,
p
1� x2)k

= (x0, y0) = (Âi(x), y
0) 2 R2.

The iterated function scheme {Â0, Â1} with weight functions {g0 ⌘ p, g1 ⌘ 1�p} for

some p 2 (0, 1), has a unique stationary measure ⌫ on [0, 1]. Moreover, ⌫ = µ(⇡�1)

where ⇡ : X := {0, 1}N0 ! [0, 1] is the projection map

⇡(i0, i1, . . .) =
1
X

k=0

ik
2k+1

and µ is the Bernoulli measure of parameters (p, 1�p) on X . The Lyapunov exponent

is defined for µ-a.e. i = (i0, i1, . . .) 2 X by

� = lim
n!1

1

n

Z

logkAi0 · · ·Ai
n�1kdµ(i).

Using thermodynamic formalism in [73] (Lemma 3.2) or using the Furstenberg mea-

sure in [42], it is possible to prove that

� = g0

Z

log

�

�

�

�

�

dÂ0

dx
(x)

�

�

�

�

�

d⌫(x) + g1

Z

log

�

�

�

�

�

dÂ1

dx
(x)

�

�

�

�

�

d⌫(x) (1.9)
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The relationship that we mentioned in the first paragraph comes from equa-

tion (1.9) and the application of the following theorem.

Theorem 1.2.42 (Pointwise version of Furstenberg and Kesten Theorem). Let

{A1, . . . , Ak} be a finite set of non-singular d ⇥ d real matrices with d � 2. Let

(p1, . . . , pk) be a probability vector, and µ = (p1, . . . , pk)N0 be the associated Bernoulli

measure on the space of sequences X := {1, . . . , k}N0 . Then, for µ-a.e. i = (i0, i1, . . .) 2
X one has

lim
n!1

1

n

Z

logkAi0 · · ·Ai
n�1kdµ(i) = lim

n!1
1

n
kAi0 · · ·Ai

n�1k.

Remark 1.2.43. Theorem 1.2.42 is a direct consequence of Theorem 2 in [43]

and the application of the pointwise Birkho↵ ergodic theorem for ergodic probabil-

ity measures. A short and complete proof of Theorem 1.2.42 can be given using

only Kingman’s subadditive ergodic theorem. For this, see [87], Chapter 3, § 3.1 ,

Theorem 3.3, § 3.1.4 , Corollary 3.1 and § 3.2 , Theorem 3.12. Finally use that

µ = (p1, . . . , pk)N0 is ergodic.

Iterated function schemes with stationary measures and Lyapunov exponents

for the product of random matrices are two di↵erent subjects that have been inde-

pendently studied. One may expect to use iterated function schemes with stationary

measures to study the Hausdor↵ dimension of measures, because the Lyapunov ex-

ponent has been used to study it [10, 30].

1.3 Organisation

The main body of this thesis is divided into three main chapters. Chapter 2 contains

our work related with the question: can we prove entry time results for di↵erent

shrinking sets? Chapter 3 contains our work related with the question: can we

prove escape rate results for smooth flows? Finally, Chapter 4 contains our answer

of the question: how smoothly does the stationary measure change under smooth

perturbations of the parameters that define it?
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Chapter 2

Entry time statistics

2.1 Introduction

We develop further results about higher order entry times. That is the rate at which

points enter to small sets.

Consider a measure preserving dynamical system (X ,BX , µ, T ) where µ is a

finite, invariant and ergodic measure together with a sequence of Borel sets {Un} =

{Un}n2N with Un ⇢ X , µ(Un) > 0 and for which the sequence {Un} shrinks to a

point. Under an appropriate mixing assumption, one can generally show that for

⌧n(x) = ⌧U
n

(x) := inf{k � 1 : T k(x) 2 Un},

the sequence of random variables Xn := µ(Un)⌧n, called (rescaled) entry time or

first hitting time, converges in law to an exponential random variable. The first

paper related to this result is [36] for continued fractions. More recently such con-

vergence results have been obtained for examples in which Un are balls or cylinders

shrinking to a point: for continuous time Markov chains see [5, 6], for expanding

maps of the interval see [32, 33, 31], for general �-mixing processes (consequently

also for  -mixing processes) see [44], for ↵-mixing processes see [1, 3], for Axiom

A di↵eomorphisms see [48, 49], for Gibbs measures on shift spaces see [72], for uni-

modal maps see [21], for partially hyperbolic systems see [37, 24]. Some extensions

of the classic Poisson limit theorem can be found in [56] and further related reviews

in [2, 28, 45]. It is not clear however that the limit distribution of the sequence of

random variables Xn is still valid if we remove the condition that {Un} are shrinking

to a single point.

In this chapter we consider the problem of finding conditions on the pair

29



({Un}, µ) so that Xn converges in law to an exponential random variable when

µ(Un) ! 0 as n ! 1, but the sequence {Un} does not necessarily shrink to a single

point (or finitely many points). The conditions we impose on Un and µ are also

used in [26, 46]. In Section 2.4 we discuss the relationship between the results in

this chapter and those of [26, 46].

In our main theorem we obtain the convergence of Xn to an exponential

random variable for general families of sets {Un} under some conditions that depend

on the return time to Un defined by

⌘n := inf{⌧n(x) : x 2 Un}.

Indeed, let (X ,�) be a topologically mixing subshift of finite type with

X ⇢
1
Y

�1
{1, . . . , a} = {1, . . . , a}Z.

We consider the pair ({Un}, µ), where Un ⇢ X is in the sigma-algebra generated by
Qn�1

�n {1, . . . , a} and µ = µParry is the probability measure of maximum entropy or

Parry measure.

Theorem 2.1.1 (Main Theorem). The sequence of random variables Xn converges

in law to an exponential random variable if

I. ��(n+1)Un+1 ⇢ ��nUn for every n > 0 and nµ
�

Ub⌘
n

/2c
�

! 0 as n ! 1,

II. the return times are given by ⌘n = n + k(n) + 1, where k : N ! N is a non

decreasing function and nµ
�

Uk(n)

�

! 0 as n ! 1, or

III. there exists a sequence {Vn} with {nµ(Vn)} ! 0 as n ! 1, where Vn � Un is a

set in the sigma-algebra generated by
Q�n+b⌘

n

/2c
�n {1, . . . , a} or

Qn�1
n�b⌘

n

/2c{1, . . . , a}
for every n � 1.

An application of our method is to the study of Gibbs measures and sets

which do not necessarily shrink to single points. Indeed, suppose that we have two

subshifts of finite type X and Y ⇢ X , and the family of sets {Un},Un ⇢ X satisfies

\1
n=1Un = {xy : y 2 Y}, where x is a forbidden sequence in Y. We prove that for

µ a Gibbs measure of Hölder potential, and under suitable conditions, that depend

on µ and the topological entropy of (X ,�) and (Y,�), the sequence Xn converges

in law to an exponential random variable.
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We can also apply our theorem to toral automorphisms. In particular we

obtain that if {Un} is a sequence of strips converging to a segment along the unstable

direction, then Xn converges in law to an exponential random variable.

2.2 Motivation and basic definitions

The motivation to the study of the sequence of random variables Xn goes back to

the Poincaré recurrence theorem.

Theorem 2.2.1 (Poincaré recurrence theorem). Let (X ,BX , µ, T ) be a measure

preserving dynamical system with finite measure. Then for any measurable set A

µ(A) = µ{x 2 A : Tn(x) 2 A for infinitely many n}.

Definition 2.2.2 (Entrance time). Let (X ,BX , µ, T ) be a measure preserving dy-

namical system. We define the entrance time (or hitting time) into a measurable

set A ⇢ X by

⌧A(x) := inf{k � 1 : T k(x) 2 A},

where x 2 X . If x 2 A, the map ⌧A(x) is called return time (to A).

In terms of the return time map, the Poincaré recurrence theorem says that

if µ(A) > 0, then

µ{x 2 A : ⌧A(x) < 1} = 1,

i.e. µ almost every point of A returns to A. If the measure µ is also ergodic, then

µ{x 2 X : ⌧A(x) < 1} = 1.

This in particular implies that the sequence Xn := µ(Un)⌧U
n

is well defined when-

ever the measure µ is ergodic and µ(Un) > 0.

Entry and return times are related by the following observation.

Remark 2.2.3. Let (X ,BX , µ, T ) be a measure preserving dynamical system. Then,

for any measurable set A ⇢ X , we have that

µ({x 2 X : ⌧A(x) = k}) = µ({x 2 A : ⌧A(x) � k}).
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Proof. By definition we have for every k � 1

{x 2 X : ⌧A(x) > k} = {x 2 X : T (x) /2 A, ⌧A(x) > k � 1}
= T�1(A \ {x 2 X : ⌧A(x) > k � 1}).

By the invariance of the measure µ we have

µ({x 2 X : ⌧A(x) > k}) = µ({x 2 X : ⌧A(x) > k�1})�µ(A\{x 2 X : ⌧A(x) > k�1}),

and this concludes the proof.

An important theorem known as the Kac’s lemma gives more information

about the return times than the Poincaré recurrence theorem, but only in the case

that the measure is ergodic. Let us start with a definition.

Definition 2.2.4. Let (⌦,F ,P) be a probability space, i.e. ⌦ is a set, F a sigma-

algebra on ⌦ and P is a probability measure on (⌦,F). The expectation with respect

to P of a measurable function f : ⌦! R is defined by

E(f) = EP(f) :=

Z

⌦
fdP.

Theorem 2.2.5 (Kac’s lemma [52]). If (X ,BX , µ, T ) is a measure preserving dy-

namical system with finite and ergodic measure. Then for any measurable set A ⇢ X
with strictly positive measure

EµA(µ(A)⌧A) = 1,

where µA(·) := µ(·\A)
µ(A) .

This theorem motivates the following problem:

Problem 2.2.6. Let (X ,BX , µ, T ) be a measure preserving dynamical system with

finite and ergodic measure. If we consider a sequence of measurable sets Un ⇢ X
with strictly positive measure. What can we say about the limit of the sequence of

random variables Xn := µ(Un)⌧U
n

?

Remark 2.2.7. The Kac’s lemma motivates also other problems that we do not

study in this thesis, for example: what are the statistics properties of µ(A)⌧A? The

study of this problem requires additionally mixing conditions on the measure. See

for example [23].
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To study Problem 2.2.6 it is necessary an additional mixing condition on

the measure µ. In particular, we will require  -mixing. See other kind of mixing

conditions in [45].

Definition 2.2.8. Let (X ,�) be a subshift of finite type with X ⇢ {1, . . . , a}Z for

some integer a > 1. The measure preserving dynamical system (X ,BX , µ,�) is  -

mixing if for every k 2 N, U in the �-algebra generated by
Qk�1

0 {1, . . . , a} and V in

the �-algebra generated by {1, . . . , a}⇤ := [n2N0

Qn
0{1, . . . , a} as the ‘gap’ 4 ! 1 :

sup
n

sup
U ,V

�

�

�

�

µ(U \ ��4�kV)
µ(U)µ(V) � 1

�

�

�

�

=  4 ! 0.

Along this chapter we investigate Problem 2.2.6 from the view point of prob-

ability theory. Let us recall some basic definitions that we will use. First, the

exponential random variables.

Definition 2.2.9 (Exponential random variable). A random variable X : ⌦ ! R
on a probability space (⌦,F ,P) is said to be an exponential random variable with

parameter � if it has cumulative distribution

FX(t) := P{w 2 ⌦ : X(w)  t} =

8

<

:

1� e��t if t � 0,

0 if t < 0.

Second, the convergence in law.

Definition 2.2.10 (Convergence in law). A sequence of random variables {Xn} on

a probability space (⌦,F ,P) is said to converge in law to an exponential random

variable of parameter 1 if for every t 2 R, its cumulative distribution converges to

the cumulative distribution FX(t), of an exponential random variable X of parameter

� = 1. In other words,

lim
n!1|P{w 2 ⌦ : Xn(x) � t}� e�t|= 0 for every t > 0. (2.1)

Our specific setting to study Problem 2.2.6 is the following.

Definition 2.2.11 (M -systems). We define a M -system as any system

(X ,BX , µ, T, {Un}, {Xn})

where

(i) the system (X ,BX , µ, T ) is a measure preserving dynamical system and µ is

an ergodic probability measure;

33



(ii) the sequence {Un} is a sequence of Borel sets Un ⇢ X such that µ(Un) > 0 and

µ(Un) ! 0; and

(iii) the sequence {Xn} is a sequence of random variables Xn : X ! R defined by

Xn(x) := µ(Un)⌧n(x).

Definition 2.2.12 (Ma-systems). We define a Ma-system as any M -system

(X ,BX , µ,�, {Un}, {Xn})

where (X ,�) is a topologically mixing subshift of finite type with X ⇢ {1, . . . , a}Z for

some integer a > 1 and the system (X ,BX , µ,�) is a  -mixing measure preserving

dynamical system where the sequence { 4}42N is bounded.

We investigate the convergence in law of Xn in a Ma-system. A useful trick

that we learned from [31] is to consider

lim
n!1

�

�

�

µ {x 2 X : ⌧n(x) > bt/µ(Un)c}� (1� µ(Un))
bt/µ(U

n

)c
�

�

�

= 0 for every t > 0,

(2.2)

that is equivalent to (2.1) in the case that µ(Un) ! 0.

2.3 Auxiliary results

The purpose of this section is understanding Theorem 2.1.1 with the help of a propo-

sition (Main proposition) and its corollary (First corollary), that are interesting by

themselves. The proofs of these auxiliary results will be used to prove Theorem

2.1.1.

Main proposition

We present an important proposition, indeed a few improvements of it will prove

Theorem 2.1.1.

Proposition 2.3.1 (Main proposition). Suppose that (X ,BX , µ,�, {Un}, {Xn}) is a
Ma-system where Un is in the sigma algebra generated by

Qn�1
0 {1, . . . , a} for every

n � 1. If

⌘n = n (2.3)

and

nµ(Un) ! 0 as n ! 1 (2.4)
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then the sequence of random variables Xn converges in law to an exponential random

variable of parameter 1.

Notice that the condition ⌘n = n is equivalent to ⌘n � n, because of the

definition of the sequence of sets {Un}. As an application of the proposition we can

give the following example.

Example 2.3.2. Suppose that X = {0, 1, 2}Z and

Un = tx1,...,xx

n�12{1,2}[0, x1, x2, . . . , xn�1]n.

Let µ be a Bernoulli probability measure on X defined by a probability vector (p0, p1, p2) 2
(0, 1)3. Then (X ,BX , µ,�, {Un}, {Xn}) is a Ma-system and (2.3), (2.4) are satisfied,

therefore Proposition 2.3.1 applies.

Another application is to Gibbs measures, because they are automatically

 -mixing. We have the following remark.

Remark 2.3.3 (Gibbs measures are  -mixing). The explicit formula for  is written

in [16]: Theorem 1.7, Lemma 1.8, Lemma 1.9, Lemma 1.10, Lemma 1.12, Lemma

1.3 and Proposition 1.14. Suppose that we have a measure preserving dynamical

system (XA,BX
A

, µ,�), where (XA,�) is a subshift of finite type and µ is the Gibbs

measure of Holder potential � : XA ! R. We require here some extra definitions

in order to define the Perron Frobenius-Ruelle operator (or transfer operator) that

will be used to obtain the formula of  . We define the one-sided shift of finite type

X+ = X+
A by X+ := {(xn)1n=0 : A(xn, xn+1) = 1 for all n 2 N0}. We can define the

shift action � on X+ by �(x)n = xn+1 for all n 2 N0. Two functions �,' 2 C are

said to be homologous if there is u 2 C so that �(x) = '(x) � u(x) + u(�x) for all

x 2 X . Given a function � 2 F , there exists an homologous function ' 2 F such

that '(x) = '(y) if and only if xi = yi for every i 2 N0 ([16]). We can define from

' a function �̂ : X+ ! R by taking �̂({xi}1i=0) = '({yi}1i=�1) for {yi}1i=0 = {xi}1i=0

and some election of {yi}�1
i=1 so that {yi}1i=�1 2 X . The Perron Frobenius operator

L f(x) =
X

y2��1(x)

e�̂(y)f(y)

acts on the space of continuous functions f : X+
A ! R. Theorem 1.7 in [16] proves

that there exist � > 0, a continuous function h : X+
A ! R>0 and ⌫ 2 M� such that

L h = �h, L ⇤⌫ = �⌫, and
R

h(x)d⌫(x) = 1. We fix this h.

· Let M > 0 such that AM > 0.
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· Let ↵, b 2 (0, 1) such that sup{|�(x) � �(y)|: xi = yi for |i|< k}  b↵k for all

k 2 N0.

· Define Bm := exp(
P1

k=m+1 2b↵
k) for m 2 N0.

· Define K := �MeMk�kB0.

· Take L > 0 such that Bm, B�1
m , Bm+1e

b↵m 2 [�L,L] for all m 2 N0.

· Find a pair of constants 0 < u1, u2 such that u1(x� y)  ex � ey  u2(x� y)

for all x, y 2 [�L,L], x > y.

· Define ⌘ := u2(1� ↵)(4↵u1 khkK)�1.

· Define � := M

p
1� ⌘.

· Define  := (1� ⌘)�1(khk+K) sup0r<M k��rL rk .

Then  4 = K�4.

Before giving an example in the case of Gibbs measures let us mention that

Proposition 2.3.1 gives a condition that depends on the pressure.

Remark 2.3.4. Let (X ,�) be a subshift of finite type and Un = [x1]n t · · ·t [xmn ]n,

where x1, . . . , xmn 2 X , for every n � 1. If µ is a Gibbs measure on X of Hölder

potential � : X ! R, then

0  µ(Un)  mn exp (�Pn+ kS�n�k) , (2.5)

for some constants c > 0. In particular, we deduce that the hypothesis

nmn exp (�Pn+ kS�n�k) ! 0 as n ! 1

is enough in order to satisfy the hypothesis (2.4).

Example 2.3.5. Let A be an irreducible and aperiodic matrix with entries 0 and 1 of

size a⇥a with a > 2 and let B be a submatrix of A of size b⇥b with b 2 {2, . . . , a�1}.
Denote by �A and �B the Perron eigenvalues of A and B, respectively. Consider

the subshift of finite type XA ⇢ {1, . . . , a}Z and XB ⇢ XA. Suppose without lost of

generality that XB ⇢ {1, . . . , b}Z. Define for n 2 N,

Un = tx1,...,xn�12{1,2,...b}[ax1 · · ·xn�1]n,
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then the sequence of random variables Xn := µ(Un)⌧n converges in law to an expo-

nential random variable of parameter 1 for any equilibrium state with Hölder poten-

tial � such that 3 k�k < �A��B. As (2.4) is clearly satisfied, then Proposition 2.3.1

applies.

We extend Proposition 2.3.1 in order to allow short return times. In this case

we do need to care about considering shrinking sets, unlike in previous construction.

First corollary

Let us start with a definition.

Definition 2.3.6. We say that a sequence of sets {Un} is a sequence of shrinking

sets if Un � Un+1 for every n 2 N.

We can now state our first corollary.

Corollary 2.3.7 (First corollary). Suppose that (X ,BX , µ,�, {Un}, {Xn}) is a Ma-

system where Un is a Borel set in the sigma algebra generated by
Qn�1

0 {1, . . . , a} for

every n � 1. If the sequence of sets {Un} is shrinking and it satisfies

nµ
�

Ub⌘
n

/2c
�

! 0 as n ! 1, (2.6)

then the sequence of random variables Xn converges in law to an exponential random

variable of parameter 1.

Example 2.3.8. Let us choose x 2 X and consider {Un} = {[x]n : n 2 N}. If
nµ

�

[x]b⌘
n

/2c
�

! 0, then the sequence of random variables Xn := µ([x]n)⌧n converges

in law to an exponential random variable of parameter 1.

Example 2.3.9. In particular, for the measure of maximum entropy µParry. If {Un}
is a shrinking sequence and nµParry(Ub⌘

n

/2c) ! 0, then Xn := µParry(Un)⌧n con-

verges in law to an exponential random variable of parameter 1. This result is not

sharp, but to have certain control on ⌘n is necessary.

Example 2.3.10. Suppose that (X ,�) is the full shift in two symbols, i.e its tran-

sition matrix A is a two by two matrix with 1 in each coordinate, and suppose that

µ is the uniform probability measure, i.e. µ([x]n) = 2�n for every x 2 X and n 2 N.
Then X: = µ(Un)⌧n converges in law to an exponential random variable of parameter

1 for any sequence of sets {Un} such that ⌘n = log2(n) + kn, where {kn} ⇢ N is a

divergent sequence.
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2.4 Related results

In this section we compare the results in [46] and [26] with the original results of

this chapter. We define in what follows the first hitting time distribution and the

first return time distribution, both will be related by Theorem 2.4.3.

Definition 2.4.1 (From [46]). Let (X ,BX , µ,�, {Un}, {Xn}) be a M -system.

(i) The first hitting time distribution is defined by

FX
n

(t) := µ(Xn < t)

for t > 0.

(ii) The first return time distribution is defined by

F̃X
n

(t) :=
1

µ(Un)
µ(Un \ {Xn < t})

for t > 0.

Remark 2.4.2. Notice that the first hitting time distribution coincides with the

cumulative distribution we defined in Subsection 2.3.

The main theorem in [46] is the following.

Theorem 2.4.3 (Main theorem in [46]). There exists a distribution function F such

that FX
n

converges weakly to F if and only if there exists a distribution function F̃

such that F̃X
n

converges weakly to F̃ , moreover, F (t) =
R t
0 (1� F̃ (s))ds.

In our results we consider a Ma-system, therefore Theorem 2.4.3 will be

always available, because a Ma-system is a  -mixing M -system. In particular, this

theorem shows that the exponential distribution is the only distribution which can

be asymptotic to both FX
n

and F̃X
n

. However, if the measure µ is  -mixing, we can

provide a direct proof of the fact that the exponential distribution is asymptotic to

both FX
n

and F̃X
n

. This is the content of the next corollary.

Corollary 2.4.4 (Second corollary). Let (X ,BX , µ,�, {Un}, {Xn}) be a Ma-system

where Un is in the sigma-algebra generated by
Qn�1

0 {1, . . . , a} for every n � 1. If

⌘n = n (2.7)

and

nµ(Un) ! 0 as n ! 1 (2.8)
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then

lim
n!1

�

�

�

�

µ{x 2 Un : ⌧n > bt/µ(Un)c}
µ(Un)

� (1� µ(Un))
bt/µ(U

n

)c
�

�

�

�

= 0, (2.9)

for every t > 0.

The proof of Corollary 2.4.4 is a direct consequence of Proposition 2.3.1 and

Theorem 2.4.3. We include in Subsection 2.5.4 a direct proof that only uses Propo-

sition 2.3.1.

We now move to study the relationship of our results with [26]. For this, let

us introduce two definitions.

Definition 2.4.5. Let ⌦ be a non empty set and U ⇢ ⌦ a subset. We define the

map U : ⌦! {0, 1} by

U (x) :=

8

<

:

1 if x 2 U ,
0 if x /2 U .

Definition 2.4.6 (From [26]). Let (X ,BX , µ, T, {Un}, {Xn}) be a M -system. We

define the sequence of hitting times as the sequence of random variables Yn : X ! M
with

Yn(x) :=
X

k>0

U
n

(T kx)�kc
n

,

where M is the set of Borel sigma-finite measures on [0,1), �t is the Dirac measure

at t > 0 and {cn} is a chosen sequence such that cn ! 0 as n ! 1.

The main di↵erence between the results in this chapter and the ones in [26] is

that, whereas we study the statistics of first hitting times, [26] studies the statistics

of hitting times. On the other hand, in [26] it is necessary to impose two conditions

on the measure µ and the sequence of sets {Un}, the first in particular implies that

the limit limn!1 c�1
n µ(Un) exists and the second is a kind of  -mixing condition.

In our results we require similar conditions (Ma-systems).

Regarding the demonstrations, in [26], the proof relies on the application of

the Laplace Transforms Technique in a similar way than in [29] and the study of

the Pianigiani-Yorke measure in [34]. Our proofs instead follows an idea in [31],

Theorem 8.11, which refers the idea back to [9].
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2.5 Proofs

We have separated the proofs of our results into four subsections. In §2.5.1 we

introduce the notation that will be used along the section and we prove Proposition

2.3.1. In §2.5.2 we prove Corollary 2.3.7. In §2.5.3 we combine what we did in §2.5.1
and §2.5.2 in order to prove Theorem 2.1.1. Finally, in §2.5.4 we prove Corollary

2.4.4 using only ideas from the first subsection.

2.5.1 Main proposition

The goal of this subsection is to prove Proposition 2.3.1. In what follows we suppose

that (X ,�, µ) is a subshift of finite type where µ is a probability measure on BX and

that we have a sequence {Un} of Borel sets Un ⇢ X such that µ(Un) ! 0. Instead

of (2.1) we consider the equivalent condition (2.2). We prove the assertion (2.2) in

several steps. The first is to replace (2.2) by a limit involving the sum of N terms.

Lemma 2.5.1. For n 2 N, ✏n = µ(Un) and N = [t/✏n] with t > 0 we have that

µ{⌧n > N}� (1� ✏n)
N =

N�1
X

q=0

(1� ✏n)
N�q�1(µ{⌧n > q + 1}� (1� ✏n)µ{⌧n > q}).

(2.10)

The proof of Lemma 2.5.1 consists in noticing that most of the term in the

sum of the right hand side of the equation (2.10) cancel when summed with other

term, the unique terms that do not cancel are indeed the ones on the left hand side

of the equation.

For what follows we require additionally that µ is an invariant probabil-

ity measure on BX . For p, q 2 N0 we use the notation µ{⌧p > q} instead of

µ{x 2 X : ⌧p(x) > q} and for every n 2 N we define ✏n := µ(Un) and N := [t/✏n],

where t > 0.

For q 2 {0, . . . , N � 1} define

pq(n) := (1� ✏n)
N�q�1(µ{⌧n > q + 1}� (1� ✏n)µ{⌧n > q}),

S1(N) :=
Pn�1

q=0 pq(n) and S2(N) :=
PN�1

q=n pq(n). To obtain (2.2) we will show with

the help of a few lemmas that

µ{⌧n > N}� (1� ✏n)
N = S1(N) + S2(N) ! 0 as n tends to infinity.
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The second step of our proof is to bound the term S1(N). It will be useful to denote

by E the expectation with respect to µ.

We have the following lemma.

Lemma 2.5.2. For all n 2 N, we have that S1(N)  n✏n.

The proof is a direct consequence of a useful identity in the next lemma that

requires the measure µ to be invariant.

Lemma 2.5.3. For all n 2 N, we have that for all q 2 {0, . . . , N � 1}

µ{⌧n > q + 1}� (1� ✏n)µ{⌧n > q} = ✏nµ{⌧n > q}� µ{x 2 Un : ⌧n(x) > q}.

Proof. The result is direct from the definitions of the sets {⌧n > q+1} and {⌧n > q}.
Indeed, we can write the following identities:

µ{⌧n > q + 1}� (1� ✏n)µ{⌧n > q}

= E
 

q+1
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

q
Y

i=1

Uc

n

� �i
!

= E
 

q+1
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

( Uc

n

+ U
n

)
q
Y

i=1

Uc

n

� �i
!

= E
 

q+1
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

Uc

n

q
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

U
n

q
Y

i=1

Uc

n

� �i
!

= E
 

q+1
Y

i=1

Uc

n

� �i
!

� E
 

Uc

n

q
Y

i=1

Uc

n

� �i
!

+ ✏nE
 

Uc

n

q
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

U
n

q
Y

i=1

Uc

n

� �i
!

= ✏nE
 

(1� U
n

)
q
Y

i=1

Uc

n

� �i
!

� (1� ✏n)E
 

U
n

q
Y

i=1

Uc

n

� �i
!

= ✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!

.

Therefore we have

µ{⌧n > q + 1}� (1� ✏n)µ{⌧n > q}

= ✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!

,
(2.11)
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and this is enough to conclude the proof, because

✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!

= ✏nµ{⌧n > q}� µ{x 2 Un : ⌧n(x) > q}.

In the third step, and most di�cult one we bound S2(N). This step requires

additionally that µ is  -mixing. Or equivalently, that (X ,BX , µ,�, {Un}, {Xn}) is

a Ma-system. In order to obtain an upper bound for S2(N) we will state a lemma

with some intermediate bounds.

Lemma 2.5.4. For all n, k 2 N, we have

E( U
n

U
n

� �n+k)  ✏2n(1 +  k), (2.12)

and for q 2 {2n+ 1, . . . , N � 1} we have

�

�

�

�

�

E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

 ✏2n(n+
n�1
X

i=0

 i), (2.13)

�

�

�

�

�

E
 

q
Y

i=2n

Uc

n

� �i
!

� E
 

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

 n✏n (2.14)

and

�

�

�

�

�

✏nE
 

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

�

�

�

�

�

 ✏n n. (2.15)

Proof. Inequality (2.12) requires the  -mixing condition and inequality (2.13) is a

consequence of (2.12).

Proof of (2.12) We can use the  -mixing condition to conclude that

�

�

�

E( U
n

U
n

� �n+k)� ✏2n

�

�

�

=
�

�

�

E( U
n

U
n

� �n+k)� µ(Un)
2
�

�

�

 ✏2n k.

Then trivially

E( U
n

U
n

� �n+k)  ✏2n k + ✏2n,

as required.
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Proof of (2.13) Let n, k 2 N and q 2 {2n+ 1, . . . , N � 1}. We have

�

�

�

�

�

E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

= E
 

U
n

·
q
Y

i=2n

Uc

n

� �i ·
 

1�
2n�1
Y

i=n

Uc

n

� �i
!!

 E
 

U
n

·
 

1�
2n�1
Y

i=n

Uc

n

� �i
!!


2n�1
X

i=n

E
�

U
n

U
n

� �i
�

 ✏2n

n�1
X

i=0

 i + n✏2n,

where we have used (2.12) in the last inequality.

Proof of (2.14) Let n, k 2 N and q 2 {2n+ 1, . . . , N � 1}. We have

�

�

�

�

�

E
 

q
Y

i=2n

Uc

n

� �i
!

� E
 

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

= E
 

q
Y

i=2n

Uc

n

� �i ·
 

1�
2n�1
Y

i=n

Uc

n

� �i
!!

 E
 

1�
2n�1
Y

i=n

Uc

n

� �i
!


2n�1
X

i=n

E
�

U
n

� �i
�

= n✏n.

Proof of (2.15) Let n, k 2 N and q 2 {2n+ 1, . . . , N � 1}. We have

�

�

�

�

�

✏nE
 

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

�

�

�

�

�

  n✏nE
 

q
Y

i=2n

Uc

n

� �i
!

  n✏n,

because of the condition of  -mixing.

We can now bound S2(N).

Lemma 2.5.5. For all n 2 N, we have that

S2(N)  4(n+ 1)(t+ 1)✏n + (t+ 1) n +N✏2n

n�1
X

i=0

 i.
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Proof. Recall that S2(N) =
PN�1

q=n pq(n). From (2.11) we have that

pq(n) = (1� ✏n)
N�q�1

 

✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!!

 ✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!

for every q 2 {n, . . . , N � 1}.

For a fixed q we bound pq(n) by the sum of two terms:

✏nE
 

q
Y

i=1

Uc

n

� �i
!

� E
 

U
n

q
Y

i=1

Uc

n

� �i
!


�

�

�

�

�

✏nE
 

q
Y

i=1

Uc

n

� �i
!

� ✏nE
 

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

+

�

�

�

�

�

✏nE
 

q
Y

i=n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

=: S21(N, q) + S22(N, q).

Notice that we have used (2.3) to obtain that

E
 

U
n

q
Y

i=1

Uc

n

� �i
!

= E
 

U
n

q
Y

i=n

Uc

n

� �i
!

.

Our goal now is to bound S21(N, q) and S22(N, q). For the first term we have

the simple inequality S21(N, q)  n✏2n, because

S21(N, q)  ✏nE
 

�

�

�

�

�

n�1
Y

i=1

Uc

n

� �i � 1

�

�

�

�

�

·
q
Y

i=n

Uc

n

� �i
!

 ✏nE
 

1�
n�1
Y

i=1

Uc

n

� �i
!

 ✏nE
 

n�1
X

i=1

U
n

� �i
!

= n✏2n.
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To bound S22(N, q) we use Lemma 2.5.4. Suppose that q > 2n, then

S22(N, q) =

�

�

�

�

�

✏nE
 

q
Y

i=n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�


�

�

�

�

�

✏nE
 

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

�

�

�

�

�

+ ✏n

�

�

�

�

�

E
 

q
Y

i=n

Uc

n

� �i
!

� E
 

q
Y

i=2n

Uc

n

� �i
!

�

�

�

�

�

+

�

�

�

�

�

E
 

U
n

q
Y

i=2n

Uc

n

� �i
!

� E
 

U
n

q
Y

i=n

Uc

n

� �i
!

�

�

�

�

�

=: I1(N, q) + I2(N, q) + I3(N, q).

We have that I1(N, q)  ✏n n by (2.15), I2(N, q)  n✏2n by (2.14) and

I3(N, q)  ✏2n
Pn�1

i=0  i + n✏2n by (2.13). In the case n  q  2n we can use that

S22(N, q)  ✏n. Finally,

S2(N) 
N
X

q=n

(S21(N, q) + S22(N, q))

=
N
X

q=n

S21(N, q) +
2n
X

q=n

S22(N, q) +
N
X

q=2n+1

S22(N, q)

 Nn✏2n + (n+ 1)✏n +N(I1(N, q) + I2(N, q) + I3(N, q))

 ✏n(n(t+ 1) + (n+ 1)) + (t+ 1) n + 2(t+ 1)n✏n +N✏2n

n�1
X

i=0

 i,

which concludes the proof.

2.5.2 First corollary

The proof of the corollary is very similar to the one of Proposition 2.3.1, but we

need to modify some details. To complete the proof we require the following lemma,

where n 2 N and q > n.

Lemma 2.5.6. If ⌘n = n then
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= 0
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[i/2]

�iU[i/2]

Figure 2.1: Proof of the inequality (2.16).

and if ⌘n < n then
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�

 n✏n✏b⌘
n

/2c(1 +  b⌘
n

/2c).

Proof. The case ⌘n = n is trivial, so suppose that ⌘n < n. It is clear that

�

�

�

�

�

�

E
 

U
n

q
Y

i=n

Uc

n

� �i
!
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0

@ U
n

q
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i=⌘
n
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n

� �i
1

A

�

�

�

�

�

�


n�1
X

i=⌘
n

E
�

U
n

· U
n

� �i
�

.

In Figure 2.1 we have chosen i 2 {⌘n, . . . , n � 1} and we represent the set

Un = [x1]n t · · · t [xmn ]n for some x1, . . . , xmn 2 X , mn 2 N and the set �iUn. We

have also draw a representation of the set U[i/2]. We can see that the action of the

shift moved the rectangle at the bottom to the left, the result is the rectangle that

we draw at the top. It is clear that

E
�

U
n

· U
n

� �i
�

 E
⇣

U
n

· U[i/2]
� �i

⌘

= µ
�

Un \ ��iU[i/2]

�

.

From the  -mixing condition of the measure µ we obtain that

|µ(Un \ ��iU[i/2])� ✏n✏[i/2]|  [i/2]✏[i/2]✏n,
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and therefore

n�1
X

i=⌘
n

E
�

U
n

· U
n

� �i
�


n�1
X

i=⌘
n

�

 [i/2]✏[i/2]✏n + ✏n✏[i/2]
�

 n✏n✏b⌘
n

/2c(1 +  b⌘
n

/2c).

(2.16)

The proof of Corollary 2.3.7 comes from the observation that for q 2 {n, . . . , N�
1} we have
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:= S21(N, q) + S22(N, q) + Sextra(N, q).

We can use Lemma 2.5.6 to bound Sextra(N, q) and the proof of Corollary 2.3.7

follows directly from the proof of Proposition 2.3.1.

2.5.3 Theorem 2.1.1

We can use the same notation and definitions used in the previous proofs and write

µ(⌧n > N)� (1� ✏n)
N = S1(N) + S2(N),

where

S2(N) 
N�1
X

q=n

S21(N, q) + S22(N, q) + Sextra(N, q) and

Sextra(N, q) :=

�

�

�

�

�

�

E
 

U
n

q
Y

i=n

Uc

n

� �i
!

� E

0

@ U
n

q
Y

i=⌘
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
2n�1
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n

E
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U
n

· U
n

� �i
�

.

Notice that the case I. is exactly the condition required in Corollary 2.3.7. Therefore,
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we only need to prove the theorem in the cases II. and III. The unique di↵erence in

these cases and the one of First corollary is that we need to find a new bound for

E
�

U
n

· U
n

� �i
�

when i 2 {⌘n, . . . , 2n� 1}.

Lemma 2.5.7. If (X ,BX , µ,�, {Un}, {Xn}) is a Ma-system where Un is in the sigma

algebra generated by
Qn�1

�n {1, . . . , a} for every n � 1. Then, for every n � 1

E
�

U
n

· U
n

� �i
�



8

<

:

µ(Un)µ (Uk) +  4✏k✏n if ⌘n = n+ k +4 with k +4 � 1,

µ(Vn)µ(Un) +  b⌘
n

/2cµ(Vn)✏n if ⌘n < n+ 1,

for all i � ⌘n.

Proof. Let us fix n 2 N. We have two cases: ⌘n = n + k + 4 with k + 4 � 1

or ⌘n < n + 1. Suppose first that ⌘n = n + k + 4 with k + 4 � 1 and that

i 2 {⌘n, . . . , 2n� 1}, then

E
�

U
n

· U
n

� �i
�

 E
�

U
k

· U
n

� �i
�

= µ
�

Uk \ ��iUn

�

and

|µ
�

Uk \ ��iUn

�

� µ(Uk)µ(Un)|  4✏k✏n. (2.17)

Therefore

E
�

U
n

· U
n

� �i
�

 µ(Uk)µ(Un) +  4✏k✏n.

In Figure 2.2 we represented the sets Un \ ��iUn and Uk \ ��iUn. The light

grey rectangle at the top represents the set Un and the one at the bottom the set

��iUn. The darker grey rectangle represents the set Uk � Un. The “gap” 4 between

the coordinates fixed by the sets Uk and ��iUn allows to use the  -mixing condition

of the measure µ to conclude inequality (2.17).

Suppose now that ⌘n < n + 1 and that Vn has coordinates fixed only

in {�n, . . . ,�n + b⌘n/2c} (the case that Vn has coordinates fixed only in {n �
b⌘n/2c , . . . , n� 1} is similar), then

E
�

U
n

· U
n

� �i
�

 E
�

V
n

· U
n

� �i
�

= µ
�

Vn \ ��iUn

�

and

|µ
�

Vn \ ��iUn

�

� µ(Vn)µ(Un)|  b⌘
n

/2cµ(Vn)✏n. (2.18)
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Figure 2.2: Proof of the inequality (2.17).

Therefore

E
�

U
n

· U
n

� �i
�

 µ(Vn)µ(Un) +  b⌘
n

/2cµ(Vn)✏n.

In Figure 2.3 we represented the sets Un \ ��iUn and Vn \ ��iUn. The light

grey rectangle at the top represents the set Un and the one at the bottom the set

��iUn. The darker grey rectangle represents a set Uk � Un, for some k < n. The

“gap” b⌘n/2c between the coordinates fixed by the sets Vn and ��iUn allows to use

the  -mixing condition of the measure µ to conclude inequality (2.18).
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Figure 2.3: Proof of the inequality (2.18).
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2.5.4 Second corollary

Proof. Recall that for every n 2 N, ✏n = µ(Un) and N = [t/✏n]. The result reduces

to the following inequalities

|µ{x 2 Un : ⌧n > N}� µ{⌧n > N}✏n|
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X
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 i + n✏2n + ✏n n + 2n✏2n,

where the last one follows from Lemma 2.5.4. Dividing by ✏n we conclude the

proof.

2.6 Other results

2.6.1 An application

A continuous ergodic automorphism of the two dimensional torus or also called

hyperbolic toral automorphism of T2 = R2/Z2, is a transformation T : T2 !

T2 such that T

 

x

y

!

=

 

ax+ by (mod 1)

cx+ dy (mod 1)

!

, where a, b, c, d 2 R and the matrix

M =

 

a b

c d

!

does not have eigenvalues of modulus 1. In 1967, Adler and Weiss in

[4] proved that for any hyperbolic matrix (real matrix whose eigenvalues all have

nonzero real parts) with integer coe�cients and determinant ±1 there exists a sym-

bolic coding with a subshift of finite type. We suppose that the matrix M has two
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real and strictly positive eigenvalues, one strictly bigger than 1 and the other strictly

smaller than 1. We call the eigenvalues by � = �u > 1 > �s > 0. In [4] is consid-

ered the partition of T2 into two parallelograms R1 and R2 whose sides consist in

two connected segments through the origin in each of the characteristic directions

of M. One can take the partition into r parallelograms P1, . . . ,Pr determined by

Ri \ TRj for i, j = 1, 2 and consider the associated transition matrix A. The sym-

bolic coding is then given by (XA,�). In [4] is proved that the matrix A is irreducible

and aperiodic, then by the theorem of Perron-Frobenius there is a unique measure of

maximum entropy or Parry measure µParry on BX
A

. It is also proved that the Perron-

eigenvalue of A is �, so in particular htop(�) = log(�) (this is a well known result

that can be found in [62]). One can consider the map ⇡ : T2 ! XA, when x 2 T2,

⇡(x)n corresponds to the element i 2 {1, . . . , r} such that Tn(x) 2 Pi. By definition

� � ⇡ = ⇡ � T and h⇡⇤µHaar(T ) = hµHaar(�) = log(�), where ⇡⇤µHaar = µ(⇡�1) is

a probability measure on BX
A

. This implies that ⇡⇤µHaar = µParry, and so ⇡ is a

conjugacy between (T2,BT2 , µHaar, T ) and (XA,BX
A

, µParry,�). Because of the vari-

ational principle we know that for � 2 F (recall that we defined F to be the space

of Hölder functions on XA) the pressure P = P (�) = sup{hµ(�)+
R

�dµ : µ 2 M�}.
So in particular, the probability measure µParry satisfies the inequality

c1 
µParry([x]m)

exp(�mhtop(�))
=

µParry([x]m)

��m
 c2 (2.19)

for every x 2 XA, m 2 N and some fixed constants c1, c2 > 0.

Shrinking strip along the unstable direction

In this subsection we find strips Sn converging to a segment on T2 as n tends to

infinity, for which

lim
n!1µLeb

�

z 2 T2 : µLeb(Sn)⌧S
n

(z) > t
 

= e�t

for the Lebesgue measure µLeb on T2.

To make the exposition simpler, we restrict us to the hyperbolic toral auto-

morphism T given by M =

 

1 1

1 0

!

.

The Lebesgue measure µLeb on T2 is preserved by T, because M has de-

terminant �1. We construct the Markov partition in Figure 1.5 with rectangles

R1,R2,R3,R4 and R5.
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Figure 2.4: Strip along the unstable direction.

Definition 2.6.1 (Shrinking strips and cylinders). For each k 2 N, we define for

n = 2(k+1) the strip Sn := \1
i=�2kT

�iRx
i

and the cylinder An = [1515 . . . 1514]2�n+2,

where x�2k = 1, x�2k+1 = 5, x�2k+2 = 1, x�2k+3 = 5, . . . , x�2 = 1, x�1 = 5, x0 =

1, x1 = 4.

Definition 2.6.2 (Entry time to the strip). For each n 2 N, define the entry time

to the strip Sn by ⌧S
n

: T2 ! N, T2 3 z 7! inf{k 2 N : T k(z) 2 Sn} 2 N.

We consider

A =

0

B

B

B

B

B

B

@

0 0 0 1 1

1 0 0 0 0

0 0 0 1 1

0 1 1 0 0

1 0 0 0 0

1

C

C

C

C

C

C

A

and the continuous surjection1 ⇡ : XA ! T2, XA 3 x 7! \i2ZT�iRx
i

2 T2.

The Lebesgue measure µLeb on T2 corresponds to the equilibrium state for the

function 0 on T2. Calling µParry the Parry measure on XA, we have that (T2, T, µLeb)

and (XA,�, µParry) are conjugate2.

This implies that for any number t > 0 and any k 2 N

µLeb

�

z 2 T2 : µLeb(Sn)⌧S
n

(z) > t
 

= µParry {x 2 XA : µParry(An)⌧n(x) > t} ,
1
Theorem 3.18 in [16].

2
Proof of 4.1 in [16].
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where n = 2(k + 1) and ⌧n is the entry time to An. We also have:

Proposition 2.6.3. For any number t > 0 and n = 2(k + 1) with k 2 N, we have

that

lim
k!1

µLeb

�

z 2 T2 : µLeb(Sn)⌧S
n

(z) > t
 

= e�t.

Let �s < 0 < 1 < �u be the eigenvalues of M. Call by vs, vu their respective

normalised eigenvectors. Define l = 1p
1+(1��

s

)2
.

Definition 2.6.4 (Shrinking strips with arbitrary width and its entry time func-

tion). For each ✏ > 0. We define the strip S̃✏ to be the rectangle with vertices

l(�s � 2)M�1vs, lvu, lvu � ✏lvs and l(�s � 2)M�1vs � ✏lvs. Define the entry time to

S̃✏, ⌧S̃
✏

(z) := inf{k 2 N : T k(z) 2 S̃✏} for z 2 T2.

Corollary 2.6.5. For any number t > 0, for every � > 0, there exists ✏ > 0 such

that for any 0 < ✏0 < ✏

e�t/�2
s � �  µLeb

n

z 2 T2 : µLeb(S̃✏0)⌧S̃
✏

0
(z) > t

o

 e�t�2
s + �.

Proof. Fix t > 0 and � > 0. For each n = 2(k + 1), let {An} be as in Definition

2.6.1. For any ✏ > 0, there exists k✏ 2 N such that l�2k✏s > ✏ > l�2k✏+2
s . Define

n✏ = 2(k✏ + 1). We have

µLeb

n

z 2 T2 : µLeb(S̃✏)⌧S̃
✏

(z) > t
o

 µLeb

⇢

z 2 T2 : ⌧n
✏

+2(z)µLeb(Sn
✏

+2) > t
µLeb(Sn

✏+2)

µLeb(Sn
✏

)

�

= µLeb

�

z 2 T2 : ⌧n
✏

+2(z)µLeb(Sn
✏

+2) > t�2s
 

.

We know that for n = 2(k + 1)

lim
k!1

µLeb

�

z 2 T2 : ⌧n+2(z)µLeb(Sn+2) > t�2s
 

= e�t�2
s ,

then for ✏ su�ciently small choose k✏ such that n✏ is big enough to satisfy

µLeb

�

z 2 T2 : ⌧n
✏

+2(z)µLeb(Sn
✏

+2) > t�2s
 

 e�t�2
s + �.

We have that for any 0 < ✏0 < ✏

µLeb

n

z 2 T2 : µLeb(S̃✏0)⌧S̃
✏

0
(z) > t

o

 e�t�2
s + �.

The lower bound is similar.
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Example of shrinking to infinitely many parallel strips

Definition 2.6.6 (Cylinders and shrinking strips). For each n 2 N, we define the

set of cylinders

An =
�

[11 . . . 12]1�n+1, [211 . . . 12]
1
�n+1, [2211 . . . 12]

1
�n+1, . . . [22 . . . 212]

1
�n+1

 

and the set of strips

Sn := {\0
i=�n+1T

�iRx
i

: [x�n+1, x�n+2, . . . , x�1, x0]
1
�n+1 2 An},

Ŝn := [R2S
n

R ⇢ T2.

We can consider the entry time time to the set of strips Ŝn. It corresponds

to the function defined by ⌧n : T2 ! N, T2 3 z 7! inf{k 2 N : T k(z) 2 Ŝn} 2 N. A
direct consequence of Proposition 2.6.3 is the following:

Proposition 2.6.7. For any number t > 0,

lim
n!1µLeb

n

z 2 T2 : µLeb(Ŝn)⌧n(z) > t
o

= e�t.

2.6.2 A related result

On the setting of hyperbolic toral automorphisms and Gibbs measures, we show a

stronger result than the Borel-Cantelli Lemma. Consider a hyperbolic toral auto-

morphisms T given by a matrix M with eigenvalues � = �u > 1 > �s > 0. For

n 2 N let R be a finite Markov partition with Rn :=
Wn

i=�n T
iR. Let ln ⇢ Rn and

l̂n := [W2l
n

W ⇢ T2. Define

Vn := T�n l̂n,

Fn(z) :=
n
X

k=1

V
k

(z) for z 2 T2 and

En :=
n
X

k=1

µ(l̂k).

Our result is the following:

Proposition 2.6.8. For n 2 N,

Fn(z) = En +O(E1/2
n log3/2+✏En), ✏ > 0
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µ-a.e. for any Gibbs measure µ with a Hölder potential � that is  -mixing with

 (n) :=  (n)�n exp
n

�

�

�

S�n�[
p
n]�

�

�

�

o

summable.

Proof. Suppose that µ is a Gibbs measure and  -mixing with

 (n) :=  (n)�n exp
n

�

�

�

S�n�[
p
n]�

�

�

�

o

summable. Remember that for n 2 N, for every W 2 Rn we have

c1 exp

⇢

�2n log �+ inf
x2X

|S�2n�(x)|
�

 µ(W)  c2 exp {�2n log �+ kS�2n�k}.

Suppose now that m,n 2 N, n > m are fixed, then

µ(T�n l̂n \ T�m l̂m)� µ(T�n l̂n)µ(T
�m l̂m)

=
X

Q2T�nl
n

W2T�ml
m

µ(Q \W)� µ(Q)µ(W)


X

Q2T�nl
n

,W2T�ml
m

Q\W 6=;

µ(Q \W)� µ(Q)µ(W)

 �2n�2mµ(ln)|lm|
· sup

�

µ(Q \W)� µ(Q)µ(W) : Q 2 T�nln,W 2 T�mlm,Q \W 6= ;
 

 �2n�2mµ(ln)|lm|

· sup inf
k2{0,...,2n�2m�1}

n

 (k)µ(W)µ(Q0) : W 2 T�mlm,Q0 2 R2n�2m�k
o

 �2n�2mµ(ln)|lm|
· inf
k2{0,...,2n�2m�1}

c2 (k) exp
�

(�2n+ 2m+ k) log �+
�

�S�2n�2m�k�
�

�

 

· sup
�

µ(W) : W 2 T�mlm
 

 c22
c1
µ(ln)µ(lm) inf

k2{0,...,2n�2m�1}
 (k)�k exp

�

�

�S�2n�2m�k�
�

�

 

 c22
c1
µ(ln)µ(lm) ([

p
2n� 2m])�[

p
2n�2m] exp

n

�

�

�

S�
2n�2m�[

p
2n�2m]

�
�

�

�

o

=
c22
c1
µ(ln)µ(lm) ([

p
2n� 2m]).

The inequality above proves the condition (2) of Theorem 3 in [70], from which our

theorem follows.
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Chapter 3

Escape rates for smooth flows

3.1 Introduction

Suppose that we have an ergodic and finite measure preserving dynamical system.

If we consider a subset of the phase space, we know that the orbit of almost ev-

ery point enters it. A natural object to study in this case is the measure of the

points that have not entered this subset up to a time n 2 N. It is natural to think

in some classical examples of uniformly hyperbolic smooth dynamical systems that

this measure will decrease exponentially as n increases. The escape rate through

a subset of the phase space corresponds to the asymptotic rate between n and the

logarithm of the measure of the points that have not entered our subset up to time

n. Once one has understood the escape rate of a set, one may wonder how the escape

rates of sets whose measure converge to zero and the measure of the sets itself are

asymptotically related? The answer is that for some uniformly hyperbolic smooth

dynamical systems and some particular probability measures (Gibbs measures for

example) one can explicitly describe this asymptotic behaviour ([39]). The question

that motivates this chapter is: Can we say something similar for smooth flows? A

general answer is out of the scope of this thesis, however, we will present a set-

ting in which it is possible to obtain results for smooth semi-flows analogous to that

for Gibbs measures in discrete dynamical systems. This is the content of the chapter.

Suppose ⇤ is a set of possible states (a compact metric space) that evolves

in time according to the transformations �t : ⇤ ! ⇤, t � 0. If we know the state

of the system at time zero, say x 2 ⇤, then at time t it is �t(x). To be consistent

we need that �t+s(x) = �s(�t(x)) for any s, t � 0. This defines a flow {�t}. We

assume that we have an invariant ergodic probability measure µ on ⇤, so that in
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particular (⇤,B⇤, µ,�t) is a measure preserving dynamical system. For an open set

H ⇢ ⇤ and t � 0, we define

K(µ, t,H,⇤) := logµ{x 2 ⇤ : �sx /2 H, s 2 [0, t]}

and the escape rate through H by

R(µ,H,⇤) := � lim sup
t!1

1

t
K(µ, t,H,⇤).

We are interested in the asymptotic behaviour of the escape rate R(µ,H,⇤) as the

measure of H decreases to zero. For discrete dynamical systems, this has been

studied in [39] and in the references therein. In the discrete case we have a measure

preserving dynamical system (X ,BX , µ, T ) and define for an open set H ⇢ X and a

positive integer k 2 N

K(µ, k,H,X ) := log µ{x 2 X : T ix /2 H, i 2 {0, . . . , k � 1}}.

The escape rate through H is defined by

R(µ,H,X ) := � lim sup
k!1

1

k
K(µ, k,H,X ).

In [39] is considered a discrete dynamical system (X , T ), where the space of invari-

ant probability measures is denoted by MT , and fix an appropriate Banach space

EX ⇢ X ⇤. For the pressure function P : EX ! R, that corresponds to P (·) =

supµ2M
T

Q(·, µ) for the function Q : EX ⇥ MT ! R, Q(', µ) = hµ(T ) +
R

X 'dµ,
where hµ(T ) is the measure theoretic entropy, in [39] there is a well defined func-

tional M : EX ! MT such that for ' 2 EX , M (') = µ' corresponds to the

unique solution of P (') = Q(', µ'). The measure µ' is called the equilibrium state

(or Gibbs measure). Their result is that for (X , T ) a non-invertible subshift of fi-

nite type or a conformal repeller, for some shrinking sequences {In}, In ⇢ X with

\n2NIn = {z},
lim
n!1

R(µ', In,X )

µ'(In)
= �'(z) on ' 2 EX , (3.1)

where �' : X ! [0, 1] is defined for ' 2 EX , x 2 X by

�'(x) :=

8

<

:

1 if x is not periodic,

1� eS
T

p

'(x)�pP (') if x has prime period p.
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A special semi-flow (⇤,�t) over a discrete dynamical system (X , T ), corre-

sponds to a semi-flow in which every point in ⇤ moves with unit speed along along

the non-contracting and non-expanding direction until it reaches the boundary of

⇤ and it jumps according T. That is, for a continuous function f : X ! R>0, we

consider the continuous action �t = �t
f on

⇤ = ⇤f := {(x, t) : x 2 X , 0  t < f(x)}

onto itself defined by

�t
f (x, s) :=

�

Tmx, s+ t� ST
mf(x)

�

for ST
mf(x)  s+ t < ST

m+1f(x),

where m � 0. The main result of this chapter establishes an analog of (3.1) for

a special semi-flow (⇤,�t) over a discrete dynamical system (X , T ), where (X , T )

is a subshift of finite type or a conformal repeller. We call by M�t the space of

invariant probability measures on B⇤ and fix an appropriate Banach space E⇤ ⇢ ⇤⇤.
Again we consider the pressure function P : E⇤ ! R that corresponds to P (·) =

supµ2M�t

Q(·, µ) for the function Q : E⇤ ⇥M�t ! R, Q(', µ) = hµ(�1) +
R

⇤ 'dµ,

where hµ(�1) is the measure theoretic entropy (see [16]). We consider the well

defined functional M : E⇤ ! M�t such that for ' 2 E⇤, M (') = µ' corresponds to

the unique solution of P (') = Q(', µ'). The measure µ' is again called equilibrium

state, and one can prove that µ' = ⌫f with

d⌫f :=
d⌫ ⇥ dµLeb
R

X fd⌫
,

where ⌫ = ⌫� is an equilibrium state associated to � 2 EX and µLeb is the Lebesgue

measure on BR. We prove that under certain smoothness condition for the roof func-

tion and the assumption that f : X ! R>1, for any shrinking sequence {In}, In ⇢ X
such that (3.1) is satisfied with \n2NIn = {z}, we have that

lim
�&0

lim
n!1

R(µ', T r
nIn ⇥ [0, �],X )

µ'(In ⇥ [0, 1])
= �̃'(z) on E⇤, (3.2)

where {rn} ⇢ Z is a monotonic decreasing sequence and �̃' : X ! [0, 1] is defined

for ' 2 E⇤, x 2 X by

�̃(x) :=

8

<

:

1 if (x, 0) does not belong to any periodic orbit,

1� e
R
⌧

'(x,t)dt if (x, 0) 2 ⌧ and ⌧ is a periodic orbit.
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We prove (3.2) in several steps. We start by considering the case that (X , T )

is a non-invertible subshift of finite type and after the case that (X , T ) is an invertible

subshift of finite type. The non-invertible case follows from a discretisation of the

flow and an application of (3.1). From these results combined with [39], we obtain

(3.2) in the case that (X , T ) is a conformal repeller. A natural question at this point

is what can we say about escape rates for Axiom A flows? In the case that ⇤ is a

basic set for an Axiom A flows � we are only able to prove that on an appropriate

Banach space E⇤ ⇢ ⇤⇤, for � 2 E⇤ we have that as � > 0 decreases to zero

R(µ�,H0
�,n,⇤)

µ�(Hn)
accumulates on S�, (3.3)

where H0
�,n,Hn are some specific shrinking sets, H0

�,n converges to some z 2 ⇤ as

n ! 1, � ! 0 and S� ⇢ [0, 1] is a discrete set, i.e. every every point in x 2 S�
has a neighbourhood U ⇢ [0, 1] such that U \ S� = {x}. The set S� depends on z

and on �. By “specific shrinking sets” we mean that our result only works for some

projection of cylinders sets that lack of geometric interpretation. We formalise this

in Corollary 3.4.14.

3.2 Results

We introduce a necessary condition from [39].

Definition 3.2.1. We say that a family of open sets {Un},Un ⇢ X+ satisfies the

nested condition if it satisfies that:

1. each Un consists of a finite union of cylinder sets, with each cylinder having

length n;

2. Un+1 ⇢ Un for every n 2 N and \n2NUn = {z};

3. there exist constants c > 0 and 0 < ⇢ < 1 such that µ(Un)  c⇢n for all n 2 N;

4. there is a sequence {ln} ⇢ N and a constant  > 0 such that  < ln/n  1 and

Un ⇢ [z]l
n

for all n 2 N; and

5. if �p(z) = z has prime period p, then ��p(Un) \ [z]p ⇢ Un for large enough n,

where z 2 X+ is a global variable.

Our first theorem is the following:
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Theorem 3.2.2. Let (⇤f ,�t
f ) be a special flow over (X ,�). Suppose that f : X !

R>1 is ✓2-Lipschitz and that {In}, In ⇢ X+ satisfies the nested condition with

\n2NIn = {z} for z 2 X+. Then

lim
n!1

R(µf
',�[n/2]In ⇥ [0, 1],⇤f )

µf
'(In ⇥ [0, 1])

= �̃'(z) for all Hölder functions ' : X ! R.

In our proof an important role will be played by a similar behaviour of the

escape rates for a non-invertible subshift of finite type.

Theorem 3.2.3 (Theorem 5.1 in [39]). Suppose that {In}, In ⇢ X+ satisfies the

nested condition with \n2NIn = {z} for z 2 X+, then

lim
n!1

R(µ', In,X+)

µ'(In)
= �'(z) for all Hölder functions ' : X+ ! R.

Let J be a conformal repeller. Given z 2 J , we definte B(z, ✏) to be the ball

centred at z of radius ✏ > 0. Our second theorem is the following:

Theorem 3.2.4. Let (⇤F ,�t
F ) be a special flow over (J , f). Suppose that F : J !

R>1 is Hölder and z 2 J , then

lim
n!1

R(µF
' , B(z, ✏)⇥ [0, 1],⇤f )

µF
' (B(z, ✏)⇥ [0, 1])

= �̃'(z) for all Hölder functions ' : J ! R.

3.3 Proofs

We have separated the proofs of our results into three subsections. In §3.3.1 we state

and prove Proposition 3.3.2, this a one-sided version of Theorem 3.2.2. In §3.3.2 we

prove Theorem 3.2.2 by using the constructions of the previous subsection. Finally,

in §3.3.3 we prove Theorem 3.2.4 by using the work of the first and second subsection.

3.3.1 Auxiliary constructions

We require certain smoothness for the roof function, indeed, we will make clear that

it is enough to consider any ✓-Lipschitz function. Let start with an easy observation.

Remark 3.3.1. Given a ✓-Lipschitz function f : X+ ! R>0, there exists ⌘ : N !
R>0 converging to 0 such that

max

(

sup
x2[y]

m

f(x)� inf
x2[y]

m

f(x) : y 2 X+

)

< ⌘(m) (3.4)
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for all m 2 N. Moreover, ⌘(m) = |f |✓✓m for m 2 N.

Recall that given a special flow (⇤,�t) over a measure preserving dynamical

system (X ,BX , µ,�), where (X ,�) is a (invertible or non-invertible) subshift of finite

type, we defined a probability measure µf on B⇤ by

dµf :=
dµ⇥ d⌫Leb
R

X fdµ
.

Our proof relies on the next proposition:

Proposition 3.3.2. Let (⇤f ,�t
f ) be a special flow over (X+,BX+ , µ',�), where

(X+,�) is a non-invertible topologically mixing subshift of finite type and µ' is

the equilibrium state associated to Hölder potential ' : X+ ! R. Suppose that

f : X+ ! R>0 is ✓-Lipschitz and that {Un},Un ⇢ X+ satisfies the nested condition

with \n2NUn = {z} for z 2 X+. Then

lim
�&0

lim
n!1

R(µf
',Un ⇥ [0, �],⇤f )

µ'(Un)
=

�'(z)
R

fdµ'
.

Proof of Proposition 3.3.2. We can find ✏ > 0 such that f > ✏. Once fixed ✏, we can

choose � 2 (0, ✏/3) and m 2 N such that 2�+ ⌘(m) < 0.5
R

fdµ. We require this last

condition in inequality (3.8). We define an approximation of f from above by

fm,�(x) :=

 "

sup
y2[x]

m

f(y)/�

#

+ 2

!

�,

and an approximation of f from below by

f
m,�

(x) :=

✓

inf
y2[x]

m

f(y)/�

�

� 2

◆

�.

To make the notation shorter we denote f = fm,� and f = f
m,�

. We consider the

special flows (⇤f ,�
t
f
) and (⇤f ,�t

f ). We can discretise them by considering (⇤f ,�
k�
f
)

and (⇤f ,�k�
f ), where k � 0.We can associate a subshift of finite type to each discrete

flow by doing the following. Define

Xf := {(yi)1i=0 : yi = �
k�
f
([x]m), x 2 X+, k 2 N, Af (yi, yi+1) = 1},

where

Af

⇣

�k�
f
([x]m),�(k0+1)�

f
([x0]m)

⌘

=

8

<

:

1 if C1 or C2,

0 if not,
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and
C1 , k = k0 & x 2 [x0]m,

C2 ,

8

>

>

>

<

>

>

>

:

(k + 1)� = f(x) &

(k0 + 1)� = f(x0) &

xi+1 = x0i for all i 2 {0, . . . ,m� 2},

with the shift �f : Xf ! Xf , �f := ��
f
.We denote �k�

f
([x]m) by ([x]m, k mod f([x]m)/�).

Given a set N ⇢ N0 and W 2 ⇠m define

dN|[0,f(W)/�)(N ) = |{n 2 N : n < f(W)/�}|,

the measure

µ̃f :=
1

R

fdµ

X

W2⇠
m

µ|W⇥�dN|[0,f(W)/�) (3.5)

is an invariant probability measure for the subshift of finite type (Xf ,�f ) and cor-

responds to the equilibrium state of a Hölder potential � = �f : Xf ! R (Lemma

3.3.3). Again, we can do the same by replacing f with f. Notice that for a given

roof function g, the measure with tilde µ̃g is a discrete version of the measure µg.

We define for f⇤ = f or f

^Un ⇥ {0} = ^Un ⇥ {0}
f⇤

:= {[y0, . . . yr�1]r : [x0, . . . , xn�1]n 2 Un}

where

r = r(x0, . . . , xn�2) :=
n�2
X

i=0

f⇤(xi) + 1,

yr�1 = yr�1(xn�1) := (xn�1, 0), and for i = 0, . . . , r � 2

yi = yi(xi) := (xi, 0)(xi, 1) · · · (xi, f⇤(xi)� 1).

When we are on the space Xf⇤ we will assume that ^Un ⇥ {0} = ^Un ⇥ {0}
f⇤

.

Applying Theorem 3.2.3 to the subshift of finite type that we have con-

structed we obtain

lim
n!1

R(µ̃f , ^Un ⇥ {0},Xf )

µ̃f ( ^Un ⇥ {0})
= ��(z),

and the same can be done for f.
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([0,1],0)

([0,1],1)

([0,1],2)

([0,1],3)

([0,1],4)

([0,1],5)

([0,0],0) ([1,0],0) ([1,1],0)

2

5

([0,0],1)

([0,0],2)

([0,0],3)

([0,0],4)

([1,0],1)

([1,0],2)

([1,0],3)

([1,0],4)

([1,0],5) ([1,1],5)

([1,1],4)

([1,1],3)

([1,1],2)

([1,1],1)

Figure 3.1: Example of our discretisation of the flow for X+ = {0, 1}N0 , where [i, j]
for i, j 2 {0, 1} are the cylinders of length 2.
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Suppose that n, k 2 N. By definition we have for f = f
m,�

that

K(µ̃f , k, ^Un ⇥ {0},Xf ) = K(µf , �k,Un ⇥ [0, �],⇤f ),

for f = fm,� that

K(µ̃f , k, ^Un ⇥ {0},Xf ) = K(µf , �k,Un ⇥ [0, �],⇤f ),

and finally, that the map t 7! K(µf , t,Un ⇥ [0, �],⇤f ) is decreasing in t > 0. From

this we have that independently of n 2 N and for any t > �

K(µ̃f , dt/�e , ^Un ⇥ {0},Xf )  K(µf , t,Un ⇥ [0, �],⇤f ) (3.6)

and

K(µf , t,Un ⇥ [0, �],⇤f )  K(µ̃f , bt/�c , ^Un ⇥ {0},Xf ). (3.7)

We will need the following inequality

K(µf , t,Un ⇥ [0, �],⇤f ) + log
1

2
 K(µf , t,Un ⇥ [0, �],⇤f )

 K(µf , t,Un ⇥ [0, �],⇤f ) + log 2.
(3.8)

In order to prove it, let consider the inclusions

A :=
n

(x, s0) 2 ⇤f : �s
f (x, s

0) /2 Un ⇥ [0, �], 0  s  t
o

✓
�

(x, s0) 2 ⇤f : s0 < f(x),�s
f (x, s

0) /2 Un ⇥ [0, �], 0  s  t
 

✓
�

(x, s0) 2 ⇤f : �s
f (x, s

0) /2 Un ⇥ [0, �], 0  s  t
 

=: V.

Then µf (A)
R

fdµ  µf (V)
R

fdµ and log(µf (A)) + log(
R

fdµ)  log(µf (V)) +
log(

R

fdµ). Thus by definition K(µf , t,Un ⇥ [0, �],⇤f ) + log(
R

fdµ)  K(µf , t,Un ⇥
[0, �],⇤f ) + log(

R

fdµ). We chose m and � so that 2� + ⌘(m) < 0.5
R

fdµ, then

f = f
m,�

satisfies
Z

fdµ �
Z

fdµ� ⌘(m)� 2� �
R

fdµ

2

and f = fm,� satisfies

Z

fdµ 
Z

fdµ+ ⌘(m) + 2�  2

Z

fdµ.
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From this is clear that

K(µf , t,Un ⇥ [0, �],⇤f ) + log
1

2
 K(µf , t,Un ⇥ [0, �],⇤f ) + log

R

fdµ
R

fdµ

 K(µf , t,Un ⇥ [0, �],⇤f ).

The second inequality in (3.8) is completely analogous, in this case we obtain

K(µf , t,Un ⇥ [0, �],⇤f )  K(µf , t,Un ⇥ [0, �],⇤f ) + log

R

fdµ
R

fdµ

 K(µf , t,Un ⇥ [0, �],⇤f ) + log 2.

In the next inequality we will use this identity:

µ̃f ( ^Un ⇥ {0}) = �
R

fdµ
µ(Un).

For all t 2 R>�,

1

µ(Un)

1

t
K(µf , t,Un ⇥ [0, �],⇤f )

 1

µ(Un)

1

t
K(µ̃f , bt/�c , ^Un ⇥ {0},Xf ) +

log 2

µ(Un)t

 bt/�c
[t/�]

1

µ̃f ( ^Un ⇥ {0})
R

fdµ

1

bt/�cK(µ̃f , bt/�c , ^Un ⇥ {0},Xf ) +
log 2

µ(Un)t
.

In the last inequality, taking lim supt!1 on both sides, then letting n tend to infinity,

and finally multiplying by �1, allows us to write

lim
n!1

R(µf ,Un ⇥ [0, �],⇤f )

µ(Un)
� �'(z)

1
R

fdµ
. (3.9)

Similarly we obtain

lim
n!1

R(µf ,Un ⇥ [0, �],⇤f )

µ(Un)
 �'(z)

1
R

fdµ
. (3.10)

Taking f⇤ = f or f, by definition we have

Z

|f � f⇤|dµ  2� + ⌘(m). (3.11)

This combined with inequalities (3.9),(3.10) and the fact that m can be taken arbi-
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trarily large concludes that

lim
�&0

lim
n!1

R(µf
',Un ⇥ [0, �],⇤f )

µ'(Un)
=

�'(z)
R

fdµ'
, (3.12)

and this finishes the proof.

The following claim used in the proof of Proposition 3.3.2 is well known,

however we include a demonstration for completeness.

Claim 3.3.3. The probability measure

µ̃f :=
1

R

fdµ

X

W2⇠
m

µ|W⇥�dN|[0,f(W)/�)

is an invariant probability measure for the subshift of finite type (Xf ,�f ) and corre-

sponds to the equilibrium state of a Hölder potential � = �f : Xf ! R.

Proof. We introduce some notation. For n 2 N we define the set of allowed words

of length n, Xn := {x[0,n) := x0 . . . xn�1 : x 2 X}. In what follows we take m and �

fixed in the definition of f⇤ = f or f. We define the function ⇡̃ = ⇡̃m,� : Xf⇤ ! � so

that the image of

x = (x0, l0), (x1, l1), . . . , (xn, ln), . . .

is given by ⇡̃(x) = xi0xi1xi2 . . . where i0 = 0 and for n 2 N, in = min{k > in�1 :

lk = 0}. We extend the definition of ⇡̃ to the case of finite sequences and given

w = x[0,k) = (x0, l0), . . . , (xk�1, lk�1)

for some k 2 N where x 2 Xf⇤ , we define #w := |{n 2 {1, . . . , k � 1} : ln = 0}|+1.

By definition, given x 2 Xf⇤ , i, j, k � 0 with i < j and w = x[i,j) we have

that

µ̃f⇤
([w]k+j�i

k ) =
�

R

f⇤dµ
µ([⇡̃(w)]#w+1).

This can be seen as an alternative way to write the same measure defined in (3.5).

For f⇤ = f or f we need to prove that the measure

µ̃f⇤
=

1
R

f⇤dµ

X

w2⇠
m

µ|w⇥�dN|[0,f⇤(w)/�)

is an invariant probability measure for the subshift of finite type (Xf⇤ ,�f⇤) and cor-

responds to the equilibrium state of a Hölder potential.
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From a corollary of the Kolmogorov consistency theorem on a subshift of

finite type X ⇢ {1, . . . , a}N0 , where a � 2, the set of �-invariant probability measures

is identified one-to-one with the set of maps µ : BX ! R>0 [ {0,1} such that

a
X

s=1

µ([s]1) = 1 (3.13)

and for all x 2 X , for all integers i, j, k � 0 with i < j we have for w = x[i,j)

µ([w]k+j�i
k ) =

a
X

s=1

µ([w, s]k+j�i+1
k ) (3.14)

and

µ([w]k+j�i+1
k+1 ) =

a
X

s=1

µ([s, w]k+j�i+1
k ). (3.15)

In what follows let consider m and � fixed in the definition of f⇤ = f or f.

Then, for the first part of the proof we need to check that µ̃f⇤
satisfies (3.13),

(3.14) and (3.15). We start by proving that µ̃f⇤
satisfies (3.13), indeed

X

[y]1:y2X
f

⇤

µ̃f⇤
([y]1) =

X

C2⇠
m

f⇤(C)/��1
X

i=0

�µ(C)
R

f⇤dµ
=

1
R

f⇤dµ

X

C2⇠
m

µ(C)f⇤(C) = 1.

In order to prove (3.14) and (3.15), let us suppose that x 2 Xf⇤ and i, j, k � 0

with i < j. Denote w = x[i,j) where x[i,j) = (x0, l0), . . . , (xj�1, lj�1), and for shorter

notation define also v(x) = f(x)
� for x 2 Xm. We have that:

X

(x,l):
x2X

m

,l2[0,v(x))

µ̃f⇤
⇣

[w, (x, l)]j�i+k+1
k

⌘

= {1+l
j�1}(↵(xj�1)) ·

X

C2⇠
m

�
R

f⇤dµ
µ([⇡̃(w), C]k+#w+2

k )

+
⇣

1� {1+l
j�1}(↵(xj�1))

⌘

· �
R

f⇤dµ
µ([⇡̃(w)]#w+1)

=
�

R

f⇤dµ
µ([⇡̃(w)]#w+1)

= µ̃f⇤
([w]k+j�i

k )
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from which (3.14) follows; and

X

(x,l):
x2X

m

,l2[0,v(x))

µ̃f⇤
⇣

[(x, l), w]j�i+k+1
k

⌘

=
X

x2X
m

�
R

f⇤dµ
µ([x, ⇡̃(w)]k+#w+2

k )

=
�

R

f⇤dµ
µ([⇡̃(w)]k+#w+1

k )

= µ̃f⇤
([w]j�i+k

k )

hence (3.15).

To prove that µ̃f⇤
is the equilibrium state of a Hölder potential we will find

explicitly a Hölder potential '̃ = '̃m,� associated to it. Suppose that µ is the equi-

librium state of an ↵-Hölder potential ', then the candidate is '̃(x) = '̃(⇡̃(x)).

We observe that d(x, y)  ✓kkfk/� implies d(⇡̃(x), ⇡̃(y))  ✓mk and

d(⇡̃(x), ⇡̃(y))kfk/�  d(x, y)m.

Therefore

sup
x 6=y

d ('̃(x), '̃(y))

d(x, y)↵�m/kfk  sup
x 6=y

d ('(⇡̃(x)),'(⇡̃(y)))

d(⇡̃(x), ⇡̃(y))↵
< 1

because we assumed that ' is ↵-Hölder. This proves that '̃ is ↵�m
kfk -Hölder.

To prove that µ̃f⇤
is an equilibrium state (or Gibbs measure) we need to

check that it satisfies Definition 1.2.12. Suppose m�/kfk = 1, and for notational

convenience call s = bm�k/kfkc . We have the following bounds:

sup
x2X

f

⇤

µ̃f⇤ �
[x[0,k)]k

�

exp{�Pk + S�k '̃(x)}

 �
R

f⇤dµ
sup
x2X

µ([x[0,s+1)]s+1)

exp{�Ps/[m�/kfk] + S�s '(x)/[m�/kfk]}

=
�

R

f⇤dµ
sup
x2X

µ([x[0,s+1)]s+1)

exp{�Ps+ S�s '(x)}

 �c2
R

f⇤dµ
,
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and

sup
x2X

f

⇤

µ̃f⇤ �
[x[0,k)]k

�

exp{�Pk + S�k �̃(x)}
� �
R

f⇤dµ
sup
x2X

µ
�

[x[0,k)]k
�

exp{�Pk + S�k'(x)}

� �c1
R

f⇤dµ
.

This concludes the demonstration.

3.3.2 Proof of Theorem 3.2.2

In the hypothesis of Theorem 3.2.2 we have a special flow with roof function f :

X ! R>1, as we will use Proposition 3.3.2 to prove it, we will require to induce a

roof function f+ : X+ ! R>0. An useful lemma for this is the following:

Lemma 3.3.4 (Proposition 1.2 in [69]). For a continuous  there exists � such that

 ⇠ � and �(x) = �(y) if and only if xi = yi for all i � 0.

Given a ✓2-Lipschitz function f : X ! R>1, let f̃ : X ! R>0 such that

f ⇠ f̃ and f̃(x) = f̃(y) if and only if xi = yi for all i � 0. We define the function

f+ : X+ ! R>0 by f+ ((xn)1n=0) = f̃ ((xn)1n=0) for some election of (xn)
�1
n=�1 such

that (xn)1n=�1 2 X . The function f+ : X+ ! R>0 is ✓-Lipschitz.

Lemma 3.3.5. Let (⇤f ,�t
f ) be a special flow over (X ,BX , µ,�), where (X ,�) is an

invertible subshift of finite type and µ is the equilibrium state associated for a Hölder

potential on X . Suppose that f : X ! R>1 is ✓2-Lipschitz and that {In}, In ⇢ X+

satisfies the nested condition with \n2NIn = {z} for z 2 X+. Then

lim
�&0

lim
n!1

R(µf , In ⇥ [0, �],⇤f )

µ(In)
=

�(z)
R

f̃dµ
.

Proof. For sake of brevity denote x+ = ⇡+x 2 X+ for x 2 X . For s, s0 > 0, if

s + s0 /2 {S�mf̃(x) : m 2 N}, then �s
f̃
(x, s0) /2 In ⇥ {0} and �s

f+(x+, s0) /2 In ⇥ {0}.
On the other hand, if s, s0 > 0 such that s+ s0 2 {S�mf̃(x) : m 2 N}, i.e. there exists
m0 2 N such that s+ s0 = S�m0

f̃(x), then

�s
f̃
(x, s0) /2 In ⇥ {0} , �m0x /2 In

, �m0x+ /2 In.

This implies that for � > 0 small enough, for all t > 0

µ⇥ µLeb

n

(x, s0) 2 ⇤f̃ : �s
f̃
(x, s0) /2 In ⇥ [0, �], 0 < s  t

o

= µ⇥ µLeb

n

(x, s0) 2 ⇤f̃ : �s
f+(x+, s

0) /2 In ⇥ [0, �], 0 < s  t
o

.
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It is a consequence of the proof of the existence of µ in [16] that there exists an

equilibrium state µ+ on BX+ associated for a Hölder potential on X+ such that

µ⇥ µLeb

n

(x, s0) 2 ⇤f̃ : �s
f+(x+, s

0) /2 In ⇥ [0, �], 0 < s  t
o

= µ+ ⇥ µLeb

n

(x, s0) 2 ⇤f+ : �s
f+(x+, s

0) /2 In ⇥ [0, �], 0 < s  t
o

.

Using Proposition 3.3.2 we have that

lim
�&0

lim
n!1

R(µf+

+ , In ⇥ [0, �],⇤f+)

µ+(In)
=

�(z)
R

f+dµ+
,

which combined with the previous identity and the fact that

Z

f̃dµ =

Z

f+dµ+

concludes the proof.

The previous lemma will be used to prove the following:

Lemma 3.3.6. Let (⇤f ,�t
f ) be a special flow over (X ,BX , µ,�), where (X ,�) is an

invertible subshift of finite type and µ is the equilibrium state associated for a Hölder

potential on X . Suppose that f : X ! R>1 is ✓2-Lipschitz and that {In}, In ⇢ X+

satisfies the nested condition with \n2NIn = {z} for z 2 X+. Then

lim
�&0

lim
n!1

R(µf̃ ,�[n/2]In ⇥ [0, �],⇤f̃ )

µ(In)
=

�(z)
R

f̃dµ
.

Proof. For any x 2 X , denote Sf̃ (x) = {S�mf̃(x) : m 2 N} and Sf+(x+) =

{S�mf+(x) : m 2 N}, where x+ = ⇡+x 2 X+. By definition we have for n 2 N
the equivalences:

�s
f̃
(x, s0) /2 �[n/2]In ⇥ {0} , s+ s0 /2 Sf̃ (x) or �

mx /2 �[n/2]In ⇥ {0}

, s+ s0 /2 Sf̃ (x) or �
m�[n/2]x /2 In ⇥ {0},

for every x 2 X . If n,m 2 N and m > n we replace S�mf̃(x) by

S�m�[n/2]f̃(x) +
m�1
X

k=m�[n/2]

f̃(�kx).
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Choose ✏ > 0 such that f̃ > ✏ on X . We have the inequalities:

[n/2]✏ 
m�1
X

k=m�[n/2]

f̃(�kx)  [n/2]kf̃k,

for every x 2 X . Using the inequality above and the monotonicity of log, we conclude

that for � > 0 small enough and for all t > 0

K(µf̃ , t+ [n/2]✏, In ⇥ [0, �],⇤f̃ )  K(µf̃ , t,�[n/2]In ⇥ [0, �],⇤f̃ )

 K(µf̃ , t� [n/2]kf̃k, In ⇥ [0, �],⇤f̃ ),

and therefore,

� t+ [n/2]✏

t

1

t+ [n/2]✏
K(µf̃ , t+ [n/2]✏, In ⇥ [0, �],⇤f̃ )

� �1

t
K(µf̃ , t,�[n/2]In ⇥ [0, �],⇤f̃ )

� � t� [n/2]kf̃k
t

1

t� [n/2]kf̃k
K(µf̃ , t� [n/2]kf̃k, In ⇥ [0, �],⇤f̃ ).

Using Lemma 3.3.5 we conclude the result.

As we have replaced the original roof function f by f̃ , we require to prove

that the escape rates for the special flows with f and f̃ are close. This is the content

of the next lemma.

Lemma 3.3.7. Suppose f : X ! R>0 is continuous. Let µ be an equilibrium state

for a Hölder potential on X . Suppose U ⇢ X and call

It
f̃
(U) :=

n

(x, s0) 2 ⇤f̃ : �s
f̃
(x, s0) /2 U ⇥ {0}, s 2 [0, t]

o

and

J t
f̃
(U) := It

f̃
(U) \ {(x, s0) 2 X ⇥ R : f̃(x) > s0 > f(x)}.

Then for all t > 0 and for every ✏ 2 (0, infx2X {|f(x)|}), we have that

µ⇥ µLeb(It
f̃
(U))� µ⇥ µLeb(J t

f̃
(U)) � ✏

kf̃k
· µ⇥ µLeb(It

f̃
(U)).

Proof. Fix t > 0. Then there exists �t 2 L1(X , µ) such that

µ⇥ µLeb(It
f̃
(U)) =

Z

X
�t(x)dµ(x).
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In particular �t(x) < f̃(x) for all x 2 X and

µ⇥ µLeb(J t
f̃
(U)) =

Z

{x:�
t

(x)>f(x)}
(�t(x)� f(x)) dµ(x).

Too see this, we “think” of �t(x) as the fibre {x} ⇥ [0,�t(x)). By definition of the

space ⇤f̃ we have that �t(x) < g(x). Then

µ⇥ µLeb(It
f̃
(U))� µ⇥ µLeb(J t

f̃
(U))

=

Z

{x:�
t

(x)<f(x)}
�t(x)dµ(x) +

Z

{x:�
t

(x)>f(x)}
f(x)dµ(x)

�
Z

{x:�
t

(x)<f(x)}
�t(x)dµ(x) +

Z

{x:�
t

(x)>f(x)}
f(x)

�t(x)

f̃(x)
dµ(x)

�
Z

{x:�
t

(x)<f(x)}
�t(x)dµ(x) +

✏

kf̃k

Z

{x:�
t

(x)>f(x)}
�t(x)dµ(x)

� ✏

kf̃k
· µ⇥ µLeb(It

f̃
(U)).

In the proof of the main result we require to consider a small modification

of the previous lemma, this is the content of the next remark.

Remark 3.3.8. Suppose f : X ! R>0 is continuous. Let µ be an equilibrium state

for a Hölder potential on X . Suppose U ⇢ X and call

It
f (U) :=

�

(x, s0) 2 ⇤f : �s
f (x, s

0) /2 U ⇥ {0}, s 2 [0, t]
 

and

J t
f (U) := It

f (U) \ {(x, s0) 2 X ⇥ R : f(x) > s0 > g(x)}.

Then for all t > 0 and for every ✏ 2 (0, infx2X {|f(x)|}), we have that

µ⇥ µLeb(It
f (U))� µ⇥ µLeb(J t

f (U)) �
✏

kfk · µ⇥ µLeb(It
f (U))

for all t > 0. To prove this we can use the same proof that Lemma 3.3.7 but replacing

f by f̃ and f̃ by f .

Lemma 3.3.9. Let (⇤f ,�t
f ) be a special flow over (X ,�). Suppose that f : X ! R>1

is ✓2-Lipschitz and that {In}, In ⇢ X+ satisfies the nested condition with \n2NIn =
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{z} for z 2 X+. Then

lim
�&0

lim
n!1

R(µf
',�[n/2]In ⇥ [0, �],⇤f )

µ'(In)
=

�̃'(z)
R

fdµ'
for all Hölder functions ' : X ! R.

Proof. Under the assumptions of the theorem we can find a constant C = Cf such

that |S�mf(x) � S�mf(x)| C for all m 2 N. Then, omitting (in particular all that

follows up to the inequality (3.19) is independent of n 2 N) the dependence of If
and If̃ on I = �[n/2]In,

It+C
f ⇢ It

f̃
[ J t+C

f (3.16)

and

It
f̃
⇢ It�C

f [ J t
f̃
, (3.17)

where t 2 R>C .

Use Lemma 3.3.7 and Remark 3.3.8 in (3.16) and (3.17) to obtain:

✏

kfk · µ⇥ µLeb(It+C
f )  µ⇥ µLeb(It

f̃
) (3.18)

and
✏

kf̃k
· µ⇥ µLeb(It

f̃
)  µ⇥ µLeb(It�C

f ). (3.19)

Using Lemma 3.3.6 we conclude the result for f̃ . This together with the

inequalities (3.18) and (3.19) conclude the proof.

We prove inclusions (3.16) and (3.17), the inequalities (3.18) and (3.19) and

the last step in the proof of Theorem 3.2.2.

Proof of Inclusions. To prove the inclusion (3.16) take

(x, s0) 2 It+C
f

with s0  g(x). By definition

�s
f (x, s

0) /2 U ⇥ {0} if 0 < s  t+ C,

that can be read as

�m(x) /2 U if S�mf(x) = s+ s0 and 0 < s  t+ C,

then, because S�k f(x) � C  S�k g(x)  S�k f(x) + C is valid for all x 2 X and all
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k � 0 we deduce that

�m(x) /2 U if S�mg(x) = s+ s0 and 0 < s  t,

which meaning is

�s
g(x, s

0) /2 U ⇥ {0} if 0 < s  t.

This concludes the proof of the first inclusion. The second inclusion can be obtained

in a similar way by replacing the roles of f and g.

Proof of Inequalities. We will prove inequality (3.18).

From the inclusion (3.16) we deduce that

µ⇥ µLeb(It+C
f )  µ⇥ µLeb(It

g) + µ⇥ µLeb(J t+C
f )

so we can apply Lemma 3.3.7 to the left hand side of

µ⇥ µLeb(It+C
f )� µ⇥ µLeb(J t+C

f )  µ⇥ µLeb(It
g)

to get
✏

kfk · µ⇥ µLeb(It+C
f )  µ⇥ µLeb(It

g).

The inequality (3.19) comes from replacing the roles of f and g, using inclusion

(3.17) instead of (3.16) and Corollary 3.3.8 instead of Lemma 3.3.7.

Proof of Conclusion. We use inequality (3.18) and replace the measure µ⇥ µLeb by
R

fdµ · µf in the left hand side and by
R

gdµ · µg in the right hand side. We obtain

✏

kfk ·
Z

fdµ · µf (It+C
f ) 

Z

gdµ · µg(It
g).

This allows to conclude that

lim sup
t!1

t+ C

t

1

t+ C
logµf (It+C

f )  lim sup
t!1

1

t
logµg(It

g).

Multiplying both sides by �1, dividing by µ(Ûn), taking limit when n tends to

infinity and applying Corollary 3.3.6 to g we obtain that

lim
n!1

1

µ(Ûn)
·
✓

� lim sup
t!1

1

t+ C
logµf (It+C

f (Ûn))

◆

� �(z)
R

gdµ
.
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Doing analogous calculations with inequality (3.19) we conclude that

lim
n!1

1

µ(Ûn)
·
✓

� lim sup
t!1

1

t� C
logµf (It�C

f (Ûn))

◆

 �(z)
R

gdµ
.

This two inequalities and a change of variable when taking the lim sup we find

lim
n!1

1

µ(Ûn)
·
✓

� lim sup
t!1

1

t
logµf (It

f (Ûn))

◆

=
�(z)
R

gdµ
.

Finally, because of the � invariance of µ and the definition of g we have that

�(z)
R

gdµ
=

�(z)
R

fdµ

hence the result.

We conclude this subsection with the proof of our theorem.

Proof. The invariant probability measure ⌫ is an equilibrium state of ' : ⇤f ! R>0,

then if we define �(x) :=
R f(x)
0 '(x, t)dt and µ is its equilibrium state, we have that

⌫ = µf and we can use Proposition 3.3.2 to conclude that

lim
�&0

lim
n!1

R(⌫,Un ⇥ [0, �],⇤f )

µ(Un)
=

�(z)
R

fdµ
.

However, ⌫(Un ⇥ [0, 1]) = µ(U
n

)R
fdµ

, so

lim
�&0

lim
n!1

R(⌫,Un ⇥ [0, �],⇤f )

⌫(Un ⇥ [0, 1])
= �(z).

To prove that we can write �̃ instead of � it is enough to notice that P (�) = 0 if

and only if P (') = 0, and that, if z is periodic, then there exists a periodic orbit ⌧

such that z 2 ⌧ and S�p �(z) =
R

⌧ 'dt, if z is not periodic, then there does not exist

any periodic orbit ⌧ such that z 2 ⌧. This allows to conclude that �(z) = �̃(z).

3.3.3 Proof of Theorem 3.2.4

Consider a conformal repeller (J , f), F : J ! R>1 a Hölder function and let µ'

be the equilibrium measure associated for a Hölder potential ' : J ! R. The main

result of this subsection is the following lemma, that continues the work done in

[39], Section 6.
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Lemma 3.3.10. Given z 2 J , we have for B(z, ✏), the ball centred at z of radius

✏ > 0 that

lim
�&0

lim
✏!0

R(µF
' , B(z, ✏)⇥ [0, �],⇤F )

µ'(B(z, ✏))
=

�'(z)
R

Fdµ'
.

Under the extra hypothesis F > 1 we conclude the proof of Theorem 3.2.4.

Before going through the proof of this lemma, we state without proof a useful

result.

Proposition 3.3.11 (Stated in [39], proof of Theorem 1.1). Let {Vn} be a family of

sets satisfying the nested condition (Definition 3.2.1) with \n2NVn = {z} and z 2 J
periodic or satisfying:

1. for every n 2 N, Vn+1 ⇢ Vn and Vn is a finite union of cylinders;

2. \n2NVn consists of finitely many non periodic points {z1, z2, . . . , zl};

3. 9c > 0, 0 < ⇢ < 1 such that µ(Vn) < c⇢kn for all n 2 N, where kn is the

maximum of the length of the cylinders in Vn; and

4. 9{ln} ⇢ N and  > 0 constant such that  < ln/kn and Vn ⇢ [l
i=1

⇥

zi
⇤

l
n

for

all n 2 N.

Then

lim
n!1

R(µ',Vn,J )

µ'(Vn)
= �'(z).

The following remark will be essential to prove Lemma 3.3.10.

Remark 3.3.12. We can allow the family of sets {Un} in Proposition 3.3.2 to

satisfy 1-4 (in Proposition 3.3.11) instead of the nested condition (Definition 3.2.1).

Indeed, Proposition 3.3.2 is indi↵erent of the nested condition or 1-4 in Proposition

3.3.11, because it only requires the conclusion of Theorem 3.2.3.

To prove Lemma 3.3.10 we recall that there exists a semi-conjugacy ⇡ : X+ !
J , where X+ is a non-invertible subshift of finite type of s symbols for some s 2 N,
that is, ⇡ is a continuous surjection and f � ⇡ = ⇡ � � for � the shift action on

X+. Choosing ��↵ < ✓ < 1, and considering the metric space (X+, d✓) we have

that '̃ := ' � ⇡ : X+ ! R is d✓-Lipschitz. Define F̃ := F � ⇡ : X+ ! R>0,

'̃ := ' � ⇡ : X+ ! R>0 and call by µ̃ the equilibrium measure associated to '̃.

Clearly,
R

F̃ dµ̃ =
R

Fdµ and for � > 0 small enough

R(µF , B(z, ✏)⇥ [0, �],⇤F )

µ(B(z, ✏))
=

R(µF̃ ,⇡�1B(z, ✏)⇥ [0, �],⇤F̃ )

µ̃(⇡�1B(z, ✏))
.
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Suppose that {✏n} ⇢ R>0 tends to zero as n tends to infinity. Then we would

like to find families of sets {Vn}, {Vn} with Vn,Vn ⇢ X+ satisfying 1-4 in Proposition

3.3.11 when limn!1B(z, ✏n) ! {z} and z 2 J non periodic, or satisfying the nested

condition when limn!1B(z, ✏n) ! {z} and z 2 J periodic, such that

(1� ⌘)
R(µF̃ ,Vn ⇥ [0, �],⇤F̃ )

µ̃(Vn)
 R(µF̃ ,⇡�1B(z, ✏n)⇥ [0, �],⇤F̃ )

µ̃(⇡�1B(z, ✏n))
(3.20)

and

R(µF̃ ,⇡�1B(z, ✏n)⇥ [0, �],⇤F̃ )

µ̃(⇡�1B(z, ✏n))
 (1� ⌘)�1R(µF̃ ,Vn ⇥ [0, �],⇤F̃ )

µ̃(Vn)
(3.21)

where 1/2 > ⌘ > 0 can be taken arbitrarily small.

We can find explicitly the families of sets {Vn},Vn ⇢ X+ and {Vn},Vn ⇢ X+.

For this we will need the next lemma (that we prove in what follows) and Lemma

3.3.16 (that we state at the end without proof).

Lemma 3.3.13. Suppose that {✏n} ⇢ R>0 tends to zero as n tends to infinity. If

B(z, ✏n) ! {z} as n tends to infinity with z 2 J non periodic; then we can find a

family of sets {Vn},Vn ⇢ X+ satisfying 1-4 in Proposition 3.3.11 and the inequality

(3.20) for 1/2 > ⌘ > 0 fixed but arbitrarily small.

We use the following propositions from [39].

Proposition 3.3.14 (Lemma 6.4). For all z 2 J , there exist constants c1, s > 0

such that µ(B(z, ✏))  c1✏
s for every ✏ > 0.

Proposition 3.3.15 (Proposition 6.5). There exist constants D, c2 > 0 such that

for all z 2 J , ✏ > 0 and 0 < � < 1 we have that µ satisfies

µ (B(z, ✏) \B(z, (1� �)✏))  c2�
Dµ(B(z, ✏)).

Proof of Lemma 3.3.13. Given {✏n} ⇢ R>0 and k > 0, define

Uk,n :=

(

U 2
k�1
_

i=0

f�iR : U \B(z, ✏n) 6= ;
)

.

Because f is uniformly expansive, there exist c3 > 0 and 0 < ⇢ < 1 such that
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diam(U)  c3⇢
k for all U 2 Uk,n. This implies that

Uk,n ⇢ B(z, ✏+ c3⇢
k) := B(z, (1� ↵k)

�1✏)

for ↵k = c3⇢k

✏+c3⇢k
. Choose k0 � 1, then using Proposition 3.3.15, for 1/2 > ⌘ > c2↵

D
k0

we have that for all k � k0

(1� ⌘)µ(Uk,n)  µ(B(z, ✏)).

For each n 2 Z, n > n0 with n0 fixed, we find k(n) 2 Z, k(n) > k0 such that

⇢k(n)  ✏n

c3((c2⌘�1)1/D � 1)
 ⇢k(n)�1.

The candidate for Vn is ⇡�1Uk(n),n, that clearly satisfies 1 and 2. The way in which

we chose k(n) and Proposition 3.3.14 implies

µ̃(⇡�1Uk(n),n) = µ(Uk(n),n)  (1� ⌘)�1µ(B(z, ✏n))

 c1✏
s
n  c1(c3((c2⌘

�1)1/D � 1)s)⇢s(k(n)�1).

So our candidate satisfies 3. Suppose that ⇡�1z = {z1, z2, . . . , zd}. To prove 4, we

notice that Vn ⇢ [d
i=1[z

i]l
n

where ln is the minimum such that c�1
4 %ln � 2✏n and

c4 > 0, 0 < % < 1 are such that for any k 2 N, i 2 {1, . . . , d}, c�1
4 %k  diam(⇡[zi]k).

To prove the inequality (3.20), we notice that for every � > 0 small enough the

escape rate R(µF ,U ⇥ [0, �],⇤F ) is increasing in U , then

lim sup
n!1

R(µF , B(z, ✏)⇥ [0, �],⇤F )

µ(B(z, ✏))
 (1� ⌘)�1 lim sup

n!1
R(µF̃ ,Vn ⇥ [0, �],⇤F̃ )

µ̃(Vn)
.

Finally, we can choose k0 2 N arbitrarily large and then ⌘ > 0 can be chosen

arbitrarily close to 0.

Similarly, we can prove the following lemma.

Lemma 3.3.16. Suppose that {✏n} ⇢ R>0 tends to zero as n tends to infinity.

(a) If B(z, ✏n) ! {z} as n tends to infinity with z 2 J periodic; then we can find a

family of sets {Vn},Vn ⇢ X+ satisfying the nested condition and the inequality

(3.20) for 1/2 > ⌘ > 0 fixed but arbitrarily small.

(b) If B(z, ✏n) ! {z} as n tends to infinity with z 2 J non periodic; then we can

find a family of sets {Vn},Vn ⇢ X+ satisfying 1-4 and the inequality (3.21) for

1/2 > ⌘ > 0 fixed but arbitrarily small.
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(c) If B(z, ✏n) ! {z} as n tends to infinity with z 2 J periodic; then we can find a

family of sets {Vn},Vn ⇢ X+ satisfying the nested condition and the inequality

(3.21) for 1/2 > ⌘ > 0 fixed but arbitrarily small.

This finishes the proof of Lemma 3.3.10.

3.4 Consequences

3.4.1 More general roof functions

If we think in the full-shift on two symbols represented by the unit interval, and

a suspension over it with a roof function with discontinuities. It seems that there

should not be any di↵erence if we repair in some way the discontinuities of f and

apply Proposition 3.3.2 for the repaired map. We should try to repair f with func-

tions close in L1 and then repeat the argument in the proof of Proposition 3.3.2.

This is what we do in this subsection.

Suppose µ is a probability measure on X+.

Definition 3.4.1. We say that a function g : X+ ! R is adapted to µ, if there

exists a pair of constants C, ✏ > 0 with C > g > ✏ and there exists a family of set of

points {Yn} where Yn = {y1, y2, . . . , yrn} ⇢ X+, for rn > 0 such that for all n 2 N,

max

(

sup
y2[x]

n

g(x)� sup
y2[x]

n

g(x) : x 2 ⌃+ \ Yn

)

< ⌘(n),

where ⌘ : N ! R>0 and ⌘(n) ! 0 as n ! 1. Additionally, we require that there

exists ⌘0 : N ! R>0 and ⌘0(n) ! 0 as n ! 1 such that

X

y2Y
n

µ([y]n) < ⌘0(n).

Corollary 3.4.2 (Corollary of Proposition 3.3.2). Suppose µ is an equilibrium state

of Hölder potential. Then, the conclusion of Proposition 3.3.2 is still valid if we

replace the condition of Lipschitz roof function by the condition of roof function

adapted to µ.

Proof. Consider g the adapted roof function to µ of the statement. Notice that to

prove the result it is enough to find {g
n
}, {gn} sets of adapted to µ functions such

that:

1. for some fixed ✏1 > 0, infn infx gn(x) > ✏1,
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2. for every n 2 N, g
n
 g  gn,

3.
�

�

�

gn � g
n

�

�

�

L1
! 0 as n ! 1.

Indeed, suppose we are able to find those sets of functions, then for any k, for all

t > 0, independently of the sets U that K depends on

K(µg
n , t,U ,⇤g

n

) + log

Z

g
n
dµ  K(µg, t,U ,⇤g)  K(µg

n , t,U ,⇤g
n

) + log

Z

gndµ.

Therefore,
�(z)
R

g
n
dµ

= � lim
n!1

1

µ(Un)
lim
t!1

1

t
K(µg

n , t,U ,⇤g
n

)

� � lim
n!1

1

µ(Un)
lim
t!1

1

t
K(µg, t,U ,⇤g)

� � lim
n!1

1

µ(Un)
lim
t!1

1

t
K(µg

n , t,U ,⇤g
n

)

=
�(z)
R

gndµ
.

However, because of our assumptions,

�

�

�

�

�

�(z)
R

g
n
dµ

� �(z)
R

g
n
dµ

�

�

�

�

�

<

R

|gn � g
n
|dµ

✏0✏1
!n!1 0,

and this allows to conclude the result.

For a fixed k, we “repair” g to define g
k
and gk by:

g
k
|{[y]

k

:y2Y
k

}c= gk|{[y]
k

:y2Y
k

}c= g|{[y]
k

:y2Y
k

}c ,

and for all y 2 Yk,

gk|[y]
k

= sup
z2[y]

k

g(z),

g
k
|[y]

k

= inf
z2[y]

k

g(z).

Clearly, by definition, g
k
 g  gk and both g

k
, gk satisfy the following two condi-

tions for f = g
k
, gk :

(a) f > � for some � > 0, and
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(b) there exists � : {1, 2, . . .} ! R+ converging to 0 such that

max

(

sup
x2[y]

m

f(x)� inf
x2[y]

m

f(x) : y 2 ⌃
)

< �(m)

for any positive integer m.

We can replace the condition of Lipchitz roof function by the condition of roof

function satisfying these two conditions and Proposition 3.3.2 remain true, indeed

the same proof works. Finally,

Z

|gk � g
k
|dµ


X

y2Y
k

 

sup
z2[y]

k

g(z)� inf
z2[y]

k

g(z)

!

µ([y]k)

 (C � ✏)
X

y2Y
k

µ([y]k)  (C � ✏)⌘0(k) !k!1 0.

Clearly, we can replace in all the statements in Chapter 3 the assumption of

Lipchitz roof function by adapted to µ, and the results are still valid.

3.4.2 Borel-Cantelli lemma for special flows

Motivated by [27] and following the ideas in the previous chapter, we plan to extend

in a natural way to suspension flows the Borel-Cantelli lemma. Let T : X ! X be a

transformation preserving a probability measure µ. Suppose that {An} is sequence

of subsets of X . Define Vn = T�nAn and

lim sup
n!1

Vn = \1
m=1 [1

n=m Vn,

the set of points that belong to infinitely many Vn’s. The Borel-Cantelli lemma says

that:

1. If
P

µ(Vn) < 1, then µ (lim supn!1 Vn) = 0.

2. If
P

µ(Vn) = 1 and Vn are independent, then µ (lim supn!1 Vn) = 1.

Define for n 2 N Fn(x) :=
Pn

k=1 V
k

(x) and En :=
Pn

k=1 µ(Ak).
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The strong Borell-Cantelli lemma says that if
P

µ(Vn) = 1 and Vn are in-

dependent, then F
n

(x)
E

n

! 1 µ-a.e. as n ! 1.

Definition 3.4.3 (SP condition). We say that the sequence {An} satisfies SP if

there exists a constant C such that

n
X

i,j=m

(µ(Vj \ Vi)� µ(Vj)µ(Vi))  C
n
X

i=m

µ(Vi), for all m,n 2 N, n � m.

When Vn are not independent we have the following theorem.

Theorem 3.4.4 (Theorem 1.4 in [27], Walter Philipp’s Theorem). If {An} satisfies

SP, then it satisfies the strong Borell-Cantelli lemma and for ✏ > 0

Fn = En +O(E1/2
n log3/2+✏En) µ-a.e.

Theorem 3.4.5 (Essentially Theorem 2 in [70]). Let T : [0, 1] ! [0, 1] and µ a

mixing probability measure on [0, 1]. Let {An} be an arbitrary sequence of intervals

in [0, 1]. Then for ✏ > 0

Fn = En +O(E1/2
n log3/2+✏En) µ-a.e.

The extension to suspension flows of this result needs a setting. Suppose

that ([0, 1],B[0,1], µ, T ) is a topologically mixing and measure preserving dynamical

system, and consider the suspension flow �t
g by a roof function g : [0, 1] ! R>0 such

that g([0, 1]) � [0, 1]. Consider the special smooth flow

�

�t
g,Xg := {(x, y) : x 2 [0, 1], y 2 [0, g(x))}

�

has an invariant probability measure ⌫. Define a family of sets Vt := It ⇥ [0, 1]

indexed by t > 0, where It ⇢ [0, 1] are intervals. An immediate consequence of

Theorem 3.4.5 is the following result.

Corollary 3.4.6. If
R

T Vtd⌫ ! 1 as T ! 1, then the set
�

t > 0 : �t
⌧ (x) 2 Vt

 

⇢
R>0 is unbounded for ⌫-a.e. x 2 Xg.

3.4.3 Alternative proofs with an application of its method

The main idea in this subsection is to use a result about the sharp concentration

of the ergodic average around its space average and the Birkho↵ ergodic theorem.
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Doing this we can find a lower bound for the escape rate avoiding the discretisation

of the special flows used in the proof of Proposition 3.3.2. Nevertheless, the result

obtained in this way is weaker. The theorem that we require is the following:

Theorem 3.4.7 (Corollary 3.3 in [25]). Let f : X ! R be ✓-Lipschitz and µ be the

equilibrium state of a Hölder potential '. Then

µ

⇢

x :

�

�

�

�

1

m
S�mf(x)�

Z

fdµ

�

�

�

�

� t

�

 2e�Bmt2

for every t > 0 and for every m 2 N, where B := (4D|f |2✓)�1 and D = D(') is a

constant independent of f.

Let us introduce a definition to state our result.

Definition 3.4.8. Given a family of open sets {Un},Un ⇢ X , define for each n 2 N,

R̃(µ,Un,X ) := � lim sup
t!1

1

t
logµ{x : S�⌧

n

(x)f(x) � t},

where recall that ⌧n : X ! N is defined by ⌧n(x) := inf{m 2 N : �m(x) 2 Un}.

As a consequence of Theorem 3.4.7 we obtain the next proposition which

provides a lower bound for the escape rate. Compare this results with Proposition

3.3.2.

Proposition 3.4.9. Suppose that {Un},Un ⇢ X satisfy the nested condition. Let

' : X ! R be a Hölder continuous function, let µ denote the equilibrium state of '

and let f : X ! R>0 be ✓-Lipschitz; then

lim
n!1

R̃(µ,Un,X )

µ(Un)
� �'(z)
R

fdµ+ kfk .

Proof. Fix 0 < ✏ < 1/kfk and define B as in Theorem 3.4.7.

We have that

�B✏3

µ(Un)
! �1 as n tends to infinity

and

�R(µ,Un,X )

µ(Un)
! ��'(z) as n tends to infinity.

Therefore, there exists n0 2 N and N ⇢ N an infinite set such that for any
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n 2 Z, n > n0 and for any k 2 N

0 >
logµ {x : ⌧n(x) � k}

µ(Un)k
R

fdµ
>

�B✏3

µ(Un)
,

which implies that

µ

⇢

x : ⌧n(x)

✓

Z

fdµ+ ✏

◆

� k

�

> e�B✏3k. (3.22)

We write ⌧n instead of ⌧n(x), S�⌧
n

f instead of S�⌧
n

f(x) and S�s f instead of

S�s f(x) when s � 0. For any n 2 Z, n > n0 and [✏t] 2 N , using inequality (3.22) and

the identity

µ
�

x : S�⌧
n

f � t
 

= µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

< ✏

�

+ µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

� (3.23)

we conclude the inequality

µ
�

x : S�⌧
n

f � t
 

 µ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t

�

+ 2e�B[et]✏2 . (3.24)

Using (3.22) in the inequality above we obtain for ✏, t > 0 and n 2 N :

µ
�

x : S�⌧
n

f � t
 


⇣

1 + 2eB✏
3
⌘

µ
�

x : ⌧n ·
�

✏+
R

fdµ+ kfk
�

� t
 

. (3.25)

Applying logarithms to both sides in (3.25), dividing on both sides by t > 0, then

taking � lim supt!1, and finally dividing both sides by µ(Un) and letting n tend to

infinity, we conclude that

lim
n!1

R̃(µ,Un,X )

µ(Un)
� �'(z) + ✏ kfk
✏+

R

fdµ+ kfk . (3.26)

Because ✏ > 0 is arbitrary, we conclude the result.

We now complete the proof of some identities and inequalities used in the

proof of Proposition 3.4.9.
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Proof of (3.23). We prove the statement:

µ
�

x : S�⌧
n

f � t
 

= µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

< ✏

�

+ µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

�

.

In fact

µ
�

x : S�⌧
n

f � t
 

= µ
�

x : S�⌧
n

f � t, ⌧n  ✏t
 

+ µ
�

x : S�⌧
n

f � t, ⌧n > ✏t
 

,

but

µ
�

x : S�⌧
n

f � t, ⌧n  ✏t
 

 µ {x : ✏t kfk � t} = 0

because 0 < ✏ < 1/kfk .

Proof of (3.24). It is enough to prove the following inequality

µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

< ✏

�

+ µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

�

 µ

8

<

:

x : ⌧n

✓

✏+

Z

fdµ

◆

� t�
⌧
n

�1
X

k=[✏t]

f � �k(x)

9

=

;

+ 2e�B[et]✏2 .

It involves two inequalities:

(i) the first is

µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

< ✏

�

 µ

8

<

:

x : ⌧n

✓

✏+

Z

fdµ

◆

� t�
⌧
n

�1
X

k=[✏t]

f � �k(x)

9

=

;
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that comes from

µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

< ✏

�

 µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,
1

[✏t]
S�[✏t]f 

Z

fdµ+ ✏

�

 µ

(

x :
t�

P⌧
n

k=[✏t] f � �k(x)
⌧n


S�⌧

n

f �
P⌧

n

k=[✏t] f � �k(x)
⌧n


Z

fdµ+ ✏

)

 µ

8

<

:

x : ⌧n

✓

✏+

Z

fdµ

◆

� t�
⌧
n

�1
X

k=[✏t]

f � �k(x)

9

=

;

,

(ii) the second is

µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

�

 2e�B[et]✏2

that comes from

µ

⇢

x : S�⌧
n

f � t, ⌧n > ✏t,

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

�

 µ

⇢

x :

�

�

�

�

1

[✏t]
S�[✏t]f �

Z

fdµ

�

�

�

�

� ✏

�

 2e�B[et]✏2 .

We can apply Theorem 3.4.7 and this concludes the proof.

Proof of (3.25). We have the following inequalities:

µ
�

x : S�⌧
n

f � t
 

 µ

8

<

:

x : ⌧n

✓

✏+

Z

fdµ

◆

� t�
⌧
n

�1
X

k=[✏t]

f � �k(x)

9

=

;

+ 2e�B[et]✏2

 µ

⇢

x : ⌧n

✓

✏+

Z

fdµ

◆

� t� (⌧n � [✏t]) kfk
�

+ 2e�B[et]✏2

 µ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t(1 + ✏ kfk)
�

+ 2e�B[et]✏2

 µ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t

�

+ 2eB✏
3
µ

⇢

x : ⌧n

✓

✏+

Z

fdµ

◆

� t

�


⇣

1 + 2eB✏
3
⌘

µ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t

�

.
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Proof of (3.26). Inequality (3.25) implies

lim sup
t!1

1

t
logµ

�

x : S�⌧
n

f � t
 

 lim sup
t!1

1

t
logµ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t

�

.

Finally, we can write an inequality that does not depend on ✏ > 0 that concludes

the result:

lim
n!1� 1

µ(Un)
lim sup
t!1

1

t
logµ

�

x : S�⌧
n

f � t
 

� lim
n!1� 1

µ(Un)
lim sup
t!1

1

t
logµ

⇢

x : ⌧n

✓

✏+

Z

fdµ+ kfk
◆

� t

�

=
�(z)

✏+
R

fdµ+ kfk .

Application to large deviations. Now we apply Theorem 3.4.7 to obtain

a large deviation result for smooth semi-flows. Recall that large deviations estimate

the asymptotic measure of the bad points for the Birkho↵ ergodic theorem, i.e.,

given a continuous observable ' : X ! R, estimates the function

R+ 3 ✏ 7! µ

⇢

x 2 X :

�

�

�

�

1

T

Z T

0
' � �s(x)ds�

Z

'dµ

�

�

�

�

> ✏

�

as T goes to infinity. Results about large deviations for discrete dynamical systems

can be found in [90, 25, 55] and references there. Our proposition about large

deviations for special smooth semi-flows over non invertible subshifts of finite is the

following:

Proposition 3.4.10. Let f : X+ ! R>1 be a ✓-Lipschitz function, µ an equilibrium

state of Hölder potential, (⇤f ,�t
f ) a special smooth semi-flow over X+ and F : ⇤f !

R a map for which there is a constant C > 0 such that for every x 2 X+ and for

every m 2 N

sup
y2[x]

m

Z min(f(x),f(y))

0
|F (x, s)� F (y, s)|ds  C✓m. (3.27)

Then there exist constants C1, C2 > 0 depending on f and F such that for all ✏ > 0,
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for all t 2 R>max
⇣

kfkkFk(1+kfk)
✏

,2kfk
⌘

,

µ

⇢

x 2 X+ :

�

�

�

�

1

t

Z t

0
F � �s

f (x, 0)ds�
Z

Fdµf

�

�

�

�

� ✏

�

 2t kfk exp
(

�C1

✓

t

kfk � 2

◆✓

✏� kfk kFk
t

(1 + kfk)
◆2

)

+ 2t kfk exp
(

�C2

✓

t

kfk � 2

◆✓

✏� kfk kFk
t

(1 + kfk)
◆2

/(kfk kFk)2
)

,

where
kfk := sup

x2X+

|f(x)|,

kFk := sup
x2X+

sup
s2[0,f(x))

{|F (x, s)|} and

dµf :=
dµ⇥ dµLeb
R

fdµ
.

Notice that a Hölder map F : ⇤f ! R satisfies (3.27), and that under the

same hypotheses we have in particular the following well known result.

Corollary 3.4.11. For every ✏ > 0 we have that

lim sup
t!1

logµ
n

x 2 X+ :
�

�

�

1
t

R t
0 F � �s

f (x, 0)ds�
R

Fdµf
�

�

�

� ✏
o

t
< 0.

The proof of Proposition 3.4.10 uses standard arguments, see [65], Section 5,

in particular the arguments in proofs of Theorem 5.1 and 5.3.

Proposition 3.4.10. The proof is a consequence of Theorem 3.4.7 and some inequal-

ities.

Suppose t > kfk and define F̃ : X+ ! R, x 7!
R f(x)
0 F (x, s)ds. Given x 2 X+ we

can write t = S�n(x)f(x) + t(x) for some n(x) 2 N and f(�nx) > t(x) � 0, then

n(x)  t = S�n(x)f(x) + t(x)  (n(x) + 1) kfk . In particular, t � n(x) � t
kfk � 1.

Keeping this in mind we have the following inequalities:
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µ

⇢

x 2 X+ :

�

�

�

�

1

t

Z t

0
F � �s

f (x, 0)ds�
Z

Fdµf

�

�

�

�

� ✏

�

= µ

8

<

:

x 2 X+ :

�

�

�

�

�

�

S�n(x)F̃ (x) +
R t(x)
0 F (�n(x)x, s)ds

S�n(x)f(x) + t(x)
�
R

F̃ dµ
R

fdµ

�

�

�

�

�

�

� ✏

9

=

;

 µ

(

x 2 X+ :

�

�

�

�

�

S�n(x)F̃ (x)

S�n(x)f(x)

S�n(x)f(x)

S�n(x)f(x) + t(x)
�
R

F̃ dµ
R

fdµ
+

R t(x)
0 F (�n(x)x, s)ds

t

�

�

�

�

�

� ✏

)

 µ

(

x 2 X+ :

�

�

�

�

�

S�n(x)F̃ (x)

S�n(x)f(x)
� t(x)

t

S�n(x)F̃ (x)

S�n(x)f(x)
�
R

F̃ dµ
R

fdµ

�

�

�

�

�

+
kfk kFk

t
� ✏

)

 µ

(

x 2 X+ :

�

�

�

�

�

S�n(x)F̃ (x)

S�n(x)f(x)
�
R

F̃ dµ
R

fdµ

�

�

�

�

�

+
kfk2 kFk

t
+

kfk kFk
t

� ✏

)

=: (?),

where

✏1 := ✏� kfk kFk
t

(1 + kfk).

Furthermore,

(?)

= µ

(

x 2 X+ :

�

�

�

�

�

S�n(x)F̃ (x)

n(x)

n(x)

S�n(x)f(x)
�
Z

F̃ dµ
n(x)

S�n(x)f(x)
+

Z

F̃ dµ
n(x)

S�n(x)f(x)
�
R

F̃ dµ
R

fdµ

�

�

�

�

�

� ✏1

)

 µ

(

x 2 X+ :
n(x)

S�n(x)f(x)

�

�

�

�

�

S�n(x)F̃ (x)

n(x)
�
Z

F̃ dµ

�

�

�

�

�

+

�

�

�

�

Z

F̃ dµ

�

�

�

�

�

�

�

�

�

n(x)

S�n(x)f(x)
� 1
R

fdµ

�

�

�

�

�

� ✏1

)

 µ

(

x 2 X+ :

�

�

�

�

�

S�n(x)F̃ (x)

n(x)
�
Z

F̃ dµ

�

�

�

�

�

� ✏1
2

)

+ µ

(

x 2 X+ :

�

�

�

�

Z

F̃ dµ

�

�

�

�

�

�

�

�

�

S�n(x)f(x)

n(x)
�
Z

fdµ

�

�

�

�

�

� ✏1
2

)

=: (??),

where

✏2 :=
✏1
2
, ✏3 :=

✏1
2 kfk kFk and n1(t) :=

�

T

kfk � 1

⌫

.
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Finally,

(??) 
X

n2{n1(t),n1(t)+1,...,[t]}
µ

(

x 2 X+ :

�

�

�

�

�

S�n F̃ (x)

n
�
Z

F̃ dµ

�

�

�

�

�

� ✏2

)

+
X

n2{n1(t),n1(t)+1,...,[t]}
µ

⇢

x 2 X+ :

�

�

�

�

S�nf(x)

n
�
Z

fdµ

�

�

�

�

� ✏3

�

 2t kfk exp
 

� C̃1

|F̃ |2✓
· n1(t) · ✏22

!

+ 2t kfk exp
 

� C̃2

|f |2✓
· n1(t) · ✏23

!

.

The map F̃ is ✓-Lipschitz, indeed, suppose x, y 2 [z]m for some z 2 X+,m 2 N, and
f(x) > f(y) then

|F̃ (x)� F̃ (y)| 
Z f(y)+|f |

✓

✓m

f(y)
kFk ds+

Z f(y)

0
|F (x, s)� F (y, s)|ds

 (|f |✓kFk+ C)✓m.

Thus, we can write

µ

⇢

x 2 X+ :

�

�

�

�

1

t

Z t

0
F � �s

f (x, 0)ds�
Z

Fdµf

�

�

�

�

� ✏

�

 2t kfk exp

0

@�1/(4D)

|F̃ |2✓
·
�

t

kfk � 1

⌫

·
 

✏� kfkkFk
t (1 + kfk)

2

!2
1

A

+ 2t kfk exp

0

@�1/(4D)

|f |2✓
·
�

t

kfk � 1

⌫

·
 

✏� kfkkFk
t (1 + kfk)

2 kfk kFk

!2
1

A ,

where D is the constant that depends on µ in [25], Theorem 3.1.

Using Proposition 3.4.10 we can obtain a similar proposition for conformal

repellers. We set some notation first. Given a conformal repeller (J , f) with Markov

partition R, for w 2 J and m 2 N0, we define [w]m to be the element W 2
Wm�1

i=0 f�iR such that w 2 W.

Proposition 3.4.12 (Corollary of Theorem 3.4.10). Let (J , f) be a conformal re-

peller, F : J ! R>1 be a ✓-Lipschitz function, µ an equilibrium state for a Hölder

potential and G : ⇤F ! R a map for which there is a constant C such that for every

z 2 J and for every m 2 N

sup
y2[z]

m

Z min(F (y),F (z))

0
|G(z, s)�G(y, s)|ds  C✓m.
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Then there exist constants C1, C2 > 0 depending on F and G such that for all ✏ > 0,

for all t 2 R>max
⇣

kFkkGk(1+kFk)
✏

,2kFk
⌘

,

µ

⇢

z 2 J :

�

�

�

�

1

t

Z t

0
G � �s

F (z, 0)ds�
Z

GdµF

�

�

�

�

� ✏

�

 2t kFk exp
(

�C1

✓

t

kfk � 2

◆✓

✏� kFk kGk
t

(1 + kFk)
◆2

)

+ 2t kFk exp
(

�C2

✓

t

kFk � 2

◆✓

✏� kFk kGk
t

(1 + kFk)
◆2

/(kFk kGk)2
)

,

where kFk := supz2J |F (z)|, kGk := supz2J sups2[0,F (z))|G(z, s)| and dµF := dµ⇥dµLebR
Fdµ

.

3.4.4 Axiom A di↵eomorphisms

In this subsection we state and prove an escape rate result for Axiom A di↵eo-

morphisms. We will require the results and definitions in Subsection 1.2.5. Let

f : M ! M be an Axiom A di↵eomorphism where M is a compact C1 Rieman-

nian manifold. Let ⌦s be a basic set, ' : ⌦s ! R be a Hölder continuous function

and µ = µ' be the unique equilibrium state of '. Suppose in addition that f |⌦
s

is

topologically mixing, R is a Markov partition of ⌦s and ⇡ : X ! ⌦s is the con-

jugation in Theorem 1.2.31. We can now state an escape rate result for Axiom A

di↵eomorphisms.

Corollary 3.4.13. For any z 2 ⌦s \ [j2Zf j(@sR [ @uR) such that x = ⇡�1z 2 X
satisfies Birkho↵ ergodic theorem, we have that

R(µ,⇡([x]n�n),⌦s)

µ(⇡([x]n�n))

accumulates in {1} [ {1� eS
f

p

'(z)�pP (') : p 2 N} as n tends to infinity.

Proof. Suppose that µ is the equilibrium state of '. Let '⇤ = '�⇡ and let µ⇤ be the
equilibrium state of '⇤. For brevity, call x = ⇡�1z 2 X . Let n 2 N and k 2 Z, k > n,

then
µ
�

z0 2 ⌦s : f
i(z0) /2 ⇡

�

[x]n�n

�

, 8i 2 {0, . . . , k � 1}
 

= µ⇤ �x0 2 X : �i(x0) /2 [x]n�n, 8i 2 {0, . . . , k � 1}
 

because ⇡ is 1-1 µ-a.e. We also have

µ(⇡([x]n�n))) = µ⇤([x]n�n),

92



because for any µ⇤-measurable set S, µ⇤(S) = µ(⇡�1S).
Considering µ̃⇤ := µ⇤|X+ , we have that

µ⇤ �x0 2 X : �i(x) /2 [x]n�n, 8i 2 {0, . . . , k � 1}
 

= µ̃⇤ �x0 2 X+ : �i(x0) /2 [��nx]2n0 , 8i 2 {0, . . . , k � n� 1}
 

and

µ⇤([x]n�n) = µ̃⇤([��nx]2n0 ).

Birkho↵ ergodic theorem implies that for every p 2 N there exists a subsequence

(np
q)q2N such that

lim
k!1

(��np

kx) = xp,

where xp 2 X+ is periodic with period p. Also, we can find a subsequence (n1
q )q2N

such that

lim
k!1

(��n1
k x) = x1,

where x1 2 X+ is non periodic.

For every p 2 N [ {1} we can apply Theorem 3.2.3 to conclude that

lim
k!1

lim supm!1
�1
m log µ̃⇤

n

x0 2 X+ : �i(x0) /2 [��np

kx]
2np

k

0 , 8i 2 {0, . . . ,m� np
k � 1}

o

µ̃⇤
⇣

[��np

kx]
2np

k

0

⌘

= �'(x
p),

which completes the proof.

3.4.5 Axiom A flows

In this subsection we present an escape rate result for Axiom A flows. In order to

state it, we require the definitions and results in Subsection 1.2.6. Assume that ⇤

is a basic hyperbolic set for an Axiom A flow �, ' : ⇤ ! R is a Hölder function

and µ is the unique equilibrium state of ' with support in ⇤. Let ⇢ and (�̃f , ⇤̃f , µ̃)

be as in Proposition 1.2.35 and suppose that ⇤̃f is a special flow over a subshift

of finite type X . In particular, we have that µ = ⇢⇤µ̃, i.e. µ(S) = µ̃(⇢�1S) for all

µ-measurable set S ⇢ ⇤.

Corollary 3.4.14. Suppose that P (�|⇤,') = 0 and that the roof function is strictly
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y
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Figure 3.2: Horseshoe map.

bigger than 1. Let x 2 X be a point satisfying the Birkho↵ ergodic theorem; then

lim
�&0

lim
n!1

R(µ, ⇢([x]n�n ⇥ [0, �]),⇤)

µ(⇢([x]n�n ⇥ [0, 1]))

accumulates in {1} [ {1� e
R
⌧

'(⇢x,t)dt : ⌧ is a periodic orbit} as n tends to infinity.

Proof. We have that for all n 2 N, t > 0 and � > 0 small enough

µ
�

z 2 ⇤ : �sz /2 ⇢
�

[x]n�n ⇥ [0, �]
�

, 80 < s  t
 

= µ̃
n

(x0, s0) 2 ⇤̃ : �̃t(x0, s0) /2 [x]n�n ⇥ [0, �], 80 < s  t
o

,

and

µ
�

⇢
�

[x]n�n ⇥ [0, 1]
��

= µ̃
�

[x]n�n ⇥ [0, 1]
�

.

Using same proof of Proposition 3.3.2 and the last part of the proof of Corollary

3.4.13, we conclude the result.

We can consider consider a concrete application of this corollary to the ex-

ample of Axiom A flow in Subsection 1.2.6. Indeed, we can consider the Axiom A

flow (⇤,�t) that coincides with the special flow (⇤g,�t
g) over the horseshoe map

(f,⌦),⌦ ⇢ [0, 1]2 (showed in Figure 3.2) and roof function

g(x, y) =

8

<

:

2 if y < 1/2

1 if y > 1/2.

The horseshoe map (f,⌦) is conjugated by a map ⇡ : {1, 2}Z ! ⌦ with

the subshift of finite type {1, 2}Z. On the other hand, the Axiom A flow (⇤,�t)

is conjugated by a map ⇢ : ⇤ ! ⇤̃ for ⇤̃ a special flow over {1, 2}Z. For some

x0 2 {1, 2}Z and � > 0, the holes ⇢([x0]1�1⇥[0, �]) = ⇡[x0]1�1⇥[0, �], ⇢([x0]2�2⇥[0, �]) =

⇡[x0]2�2 ⇥ [0, �] and ⇢([x0]3�3 ⇥ [0, �]) = ⇡[x0]3�3 ⇥ [0, �] are shown in Figure 3.3.
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Figure 3.3: Example of a shrinking hole for an Axiom A flow.
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Chapter 4

Smoothness of the stationary

measures

4.1 Introduction

In this chapter we study how the stationary measure changes under perturbations

of the (conformal ) iterated function scheme and the weight functions that define it.

Stationary measures in this setting are sometimes called self-similar measures when

the weight functions are constants, and they have been studied by many authors.

Self-similar measures were originally defined in [51], the same paper provides a

proof of its existence and uniqueness for constant weight functions. In [83, 84] finer

analytical properties of self-similar measures are studied, in [74, 60, 68] it is studied

the case with overlaps, in [73] it is explored a relationship with Lyapunov exponents

for random matrix products, in [67, 7] the authors study some iterated function

schemes that are contracting on average. Stationary measures are believed to be

strong extremal measures for irreducible systems of real analytic contractions on

Rn [57]. New ideas in [41] considers the problem of estimation of the Wasserstein

distance between stationary measures for a particular case of contracting iterated

function schemes on the unit interval, the author obtains an explicit formula for

the 1st Wasserstein distance and provide non-trivial upper and lower bounds for

the 2nd Wasserstein distance. On the other hand, the most well studied features of

iterated function schemes are their fractal properties, like the Hausdor↵ dimension

of its limit set [38]. The Hausdor↵ dimension of the limit sets of iterated function

schemes [38] is a vast topic of research and we omit references, as the results in this

chapter only require basic knowledge of this field.

Here we focus on a complete di↵erent problem from the ones referenced
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above: we study the smoothness of the stationary measure and relate it with the

smoothness of the perturbation of the iterated function scheme and of the weight

functions that define it. Our results use basic facts of iterated function scheme and

are closely related to [86]. However, our proof relies on a result of composition of

operators in [35] and structural stability, whereas the proof in [86] uses Proposition

2.3 in [86] and [85]. Classical techniques from thermodynamic formalism allows us

also to obtain results for the smoothness of the Hausdor↵ dimension of the limit

set. In order to postpone technicalities for the next section, rather than stating our

results here, we show two concrete examples of application.

Let us start with a definition for the convergence of measures.

Definition 4.1.1 (Convergence of measures in the weak topology). A sequence of

probability measures {µn} on a metric space X converges in the weak topology to a

probability measure µ on X if and only if for every bounded, continuous function

f : X ! R the sequence {xn} with xn :=
R

fdµn converges to x :=
R

fdµ.

Our first example is an application of the results to a�ne maps.

Example 4.1.2. Let T1, T2 : R ! R be the a�ne maps T1(x) = ↵1x + �1 and

T2(x) = ↵2x + �2 with 0 < ↵1,↵2 < 1. Let us consider the weights p1, p2 > 0 with

p1 + p2 = 1. The unique stationary probability measure µ = µ↵1,↵2,�1,�2,p1,p2 in this

case is given by the limit in the weak topology

µ := lim
n!+1

X

i1,···,in2{1,2}
pi1 · · · pin�T

i1
�···�T

i

n

(0)

where �T
i1
�···�T

i

n

(0) denotes the Dirac measure supported on Ti1 · · ·Ti
n

(0).

If we further assume for simplicity that ↵1 + ↵2 = 1 and �1 = 0, �2 = ↵1

then the two images T1[0, 1] = [0,↵1], T2[0, 1] = [↵1, 1] partition the unit interval

and µ will be supported on the unit interval. Finally, in this case it is simple to see

that µ is then the Lebesgue measure if and only if p1 = ↵1 and p2 = ↵2.

We can consider the dependence of the stationary measure on the parameters

↵j ,�j and pj (j = 1, 2) which form a two dimensional space. For any C2+� function

w : [0, 1] ! R (with 0 < �  1) we then have that the map

(0, 1) 3 ↵1 7!
Z

wdµ↵1,p1 2 R,

is C1, and

(0, 1) 3 p1 7!
Z

wdµ↵1,p1 2 R,
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1

0 1x

T1(x)

T2(x)

↵1

Figure 4.1: The two contractions T1, T2 : [0, 1] ! [0, 1]

is C1, where we write µ↵1,p1 = µ↵1,1�↵1,0,↵1,p1,1�p1

A more geometric example is the following:

Example 4.1.3. For � 2 I✏ = (�✏, ✏), let �� ⇢ SL(2,C) be a classical Schottky

group such that I✏ 3 � 7! �� 2 SL(2,C) is Cm. Consider the conformal probability

measure µ� that satisfies

g⇤µ� = |dg|H�µ�,

where H� is the Hausdor↵ dimension of the limit set ⇤� for ��. If w : C ! R is a

compactly supported Cs+� function then the map

I✏ 3 � 7!
Z

fdµ�

is Cmin(m,s�1).

4.2 Results

In this section we are concerned with conformal iterated function schemes. A par-

ticularly natural special case is that of a finite family of contractions on the unit

interval, since one dimensional maps are automatically conformal. For definiteness,

let us consider the following setting:

Definition 4.2.1. Assume that ✏ > 0 small, �, " > 0, k, l,m 2 N \ {1}, r 2 N and

call the interval (�✏, ✏) ⇢ R by I✏. Then

1. let T (�) = {T (�)
i }ki=1 with � 2 I✏ be a family of Cm+� contractions on [0, 1].

Assume that we can expand for � 2 I✏,

T
(�)
i = Ti + �Ti,1 + · · ·+ �m�1Ti,m�1 + o(�m�1),
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where Ti, Ti,j 2 Cm+�([0, 1], [0, 1]), kdTikC1< 1, dTi = dTj for i 2 {1, . . . , k}
and j 2 {1, . . . ,m� 1}; and

2. let G(✓) = {g(✓)i }ki=1 with ✓ 2 I✏ be a family of Cl+"([0, 1],R+) positive weight

functions on [0, 1] satisfying the following two conditions:

k
X

i=1

g
(✓)
i ⌘ 1 and (4.1)

k
X

i=1

�

�

�

g
(✓)
i

�

�

�

C0
Lip

⇣

T
(�)
i

⌘

< 1 for all �, ✓ 2 I✏ (4.2)

where

g
(✓)
i = gi + ✓gi,1 + · · ·+ ✓rgi,r + o(✓r) and

gi, gi,j 2 Cl+"([0, 1],R+) for i 2 {1, . . . , k} and j 2 {1, . . . , r}.

In this case the stationary measure µ = µ�,✓ is the unique probability measure

on [0, 1] that satisfies

Z

f(x)dµ(x) =
k
X

i=1

Z

gi(x)f(Tix)dµ(x) (4.3)

for any continuous function f : [0, 1] ! R.
The existence of such a measure is well known and discussed in Subsection

1.2.7. Observe that if the sets Ti[0, 1] for i 2 {1, . . . , k} are pairwise disjoint then

the cumulative distribution of the stationary measure µ is a Devil staircase, i.e.

the map f : [0, 1] ! [0, 1], defined by f(t) =
R t
0 dµ(x) is singular (continuous and

di↵erentiable with derivative equal to zero µLeb-a.e in [0, 1], non decreasing and

f(0) < f(1) ) however it may also happen when Ti[0, 1] for i 2 {1, . . . , k} are not

pairwise disjoint. There is an equivalent definition of stationary measure which

is perhaps somewhat more intuitive and particularly useful for simulations that is

given by the following rather well known lemma.

Lemma 4.2.2. For any x0 2 [0, 1] we can write µ as the weak star limit of finitely

supported probability measures, indeed

µ = lim
n!+1

X

i2{1,···,k}n
g
(✓)
i (x0)�T (�)

i

(x0)
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where for each of the kn strings i = (i1, · · · , in) we write (for n 2 N):

T
(�)
i := T

(�)
i1

� · · · � T (�)
i
n

: R ! R; and

g
(✓)
i (x0) := g

(✓)
i1

⇣

T
(�)
i2

· · ·T (�)
i
n

(x0)
⌘

· · · g(✓)i
n�1

⇣

T
(�)
i
n

(x0)
⌘

· g(✓)i
n

(x0).

Our first main result is about the di↵erentiability of the dependence of this

measure.

Theorem 4.2.3. Assume � 2 (0, 1), k, l,m, s 2 N \ {1} and r 2 N, then:

1. Given ✓ 2 I✏, the measure µ�,✓ has a Cmin(l,m,s)�1 dependence on � 2 I✏ as an
element of Cs+�([0, 1],R)⇤.

2. Given � 2 I✏, the measure µ�,✓ has a Cr dependence on ✓ 2 I✏ as an element

of C1([0, 1],R)⇤.

Remark 4.2.4. In Theorem 4.2.3, when we study the dependence of the mea-

sure µ = µ�,✓ on �, it is essential to consider the measure µ as an element of

Cs+�([0, 1],R)⇤ for s 2 N\{1}, i.e. we identify µ with the functional M : Cs+�([0, 1],R) !
R defined by Cs+�([0, 1],R) 3 w 7!

R 1
0 w(x̃)dµ(x̃) 2 R.

In the case that all of the contractions, weights and test functions are smooth

enough it is possible to show a smooth dependence of the stationary measure directly.

Definition 4.2.5 (Real analytic). A function f : E ⇢ R ! R where E is an open

or closed interval, is said to be real analytic on E if there exists an open interval

D � E such that for any point y 2 D one can write

f(x) =
1
X

n=0

an(x� y)n = a0 + a1(x� y) + a2(x� y)2 + · · ·

where {an} ⇢ R and the series is convergent to f(x) for x in a neighborhood of y

We have the following theorem for real analytic functions.

Theorem 4.2.6. In the case that T (�) and G(✓) are real analytic, with a real analytic

dependence on � 2 I✏ and ✓ 2 I✏, we have that the stationary measure has a real

analytic dependence i.e., for w : [0, 1] ! R real analytic,
R

wdµ�,✓ is real analytic in

both � 2 I✏ and ✓ 2 I✏.

Proof. We consider fixed points x(�)i 2 [0, 1] for T (�)
i = T

(�)
i0

�· · ·�T (�)
i
n�1

: [0, 1] ! [0, 1]

where i = (i0, . . . , in�1) 2 {1, . . . , k}n. We can then associate a function of several
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complex variables

⌅(z, t,�, ✓) = exp

0

B

B

@

�
1
X

n=1

zn

n

X

|i|=n

Qn�1
j=0 g

(✓)
i
j

⇣

x
(�)

�ji

⌘

e
t
P

n�1
j=0 w

⇣
x
(�)

�

j

i

⌘

1�
Qn�1

j=0

dT
(�)
i

j

dx

⇣

x
(�)

�ji

⌘

1

C

C

A

,

where �ji = (ij , . . . , ij�1) is the cyclic permutation and w : [0, 1] ! R real analytic.

It follows from a result in [75] that ⌅ is entire as a function of z 2 C and has

a zero at zt = exp(P (� log g(✓) + tw)). Moreover,

@⌅(z=1,t,�,✓)
@t |t=0

@⌅(z,0,�,✓)
@z |z=1

=

Z

wdµ�,✓

by the implicit function theorem and the usual formula for the derivative of pressure

(see [78, 76, 79]). To deduce the analyticity of
R

wdµ�,✓ only requires the corre-

sponding property for the function ⌅. However, it is easy to show that � 7! x
(�)
i

are individually real analytic (by the implicit function theorem) and, moreover, an-

alytic on a common domain U � [0, 1]. The analyticity of ⌅ (and thus of
R

wdµ�,✓)

follows.

We have the following simple corollary from Theorem 4.2.3.

Corollary 4.2.7. Let w : [0, 1] ! R be a C1 function. Given ✓ 2 I✏, the function

(�✏, ✏) 3 � 7!
R

wdµ�,✓ 2 R is Cmin(l,m)�1.

The next corollary applies under the hypothesis that the weight functions

are C1. In particular, this is true in the special case of constant weight functions.

Corollary 4.2.8. Suppose that the family G(✓) = {g(✓)i }ki=1 of weights satisfies g(✓)i 2
C1([0, 1],R+) for every i 2 {1, . . . , k}. Let w : [0, 1] ! R be a C1 function. Given

✓ 2 I✏, the function (�✏, ✏) 3 � 7!
R

wdµ�,✓ 2 R is Cm�1.

Our second result is on the di↵erentiability of the Hausdor↵ dimension of the

limit set K� of T (�).

Theorem 4.2.9. Let T (�) be as before for � 2 I✏ with the property that the images

Ti[0, 1], for i = 1, · · · , k, are pairwise disjoint. Then the dependence (�✏, ✏) 3 � 7!
dimH(K�) of the Hausdor↵ dimension of the limit set of T (�), is Cm�2.

In Section 4.3.1 we start by defining the spaces of functions in Section 4.1 and

we rewrite some lemmas on composition of operators that we will use many times in

this chapter (cf. in [35]). In Section 4.3.2 we prove that I✏ 3 � 7! ⇡(�) 2 C↵(X ,R) is
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Cm�1, where (X ,�) is a subshift of finite type. In Section 4.3.3 we introduce some

thermodynamic concepts that we use in section 4.3.4 to prove Theorem 4.2.3 and

Theorem 4.2.9. Our work follows ideas in [76].

4.3 Proofs

This section gives a systematic review of the components of the proof of the main

theorems in this chapter. It is subdivided into four subsections. The first, about

composition of operators, settles some of our notation and shows results required

in our proof. The second proves a useful result for smoothness of projection maps.

The third reviews some basic thermodynamic formalism results that we apply to

solve our problem in the last subsection.

4.3.1 First requirement: composition of functions

We will use results on composition of functions which are related to those in [35].

To introduce our setting we need to define the metric space

X := {x = (xn)
1
n=0 : xn 2 {1, . . . , k}, n 2 N0} = {1, . . . , k}N0

with the metric

d(x, y) :=
1
X

n=0

1� �{x
n

}(yn)
2n

.

We consider X with the action of the shift � : X ! X , defined by (�(x))n = xn+1 for

n 2 N, where x = (xn)1n=0 2 X . In order to apply the machinery of thermodynamic

formalism we will need to consider our composition operator on the space of ↵-Hölder

continuous functions f : X ! R.

Definition 4.3.1. Given 0 < ↵ < 1, let C↵(X ,R) denote the Banach space of

↵-Hölder continuous functions f : X ! R with norm

kfk:= max{kfk↵,Kkfk1},

where

kfk↵:= sup
x 6=y

⇢

|f(x)� f(y)|
d(x, y)↵

�

and kfk1:= sup
x
{|f(x)|}

and K > 0 is a constant.

For the first part of the proofs, we do not really need to work with the full

composition operator, whose definition depends on further smoothing conditions of
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its domain, but with a simpler map whose definition only depends on the space

C↵(X ,R).

Definition 4.3.2. Given a function v : [0, 1] ! R, we define the map

v⇤ : C↵(X , [0, 1]) ! C↵(X ,R)

f 7! v⇤(f) := v � f.

Most of the results in this section deal with the regularity of the map v⇤.
In order to state them precisely, we need to introduce the spaces of functions

Cn+�([0, 1],R), for 0 < � < 1 and n > 0, which correspond to the classic spaces of

n times continuously di↵erentiable functions with the n-th derivatives are �-Hölder.

We define these spaces rigorously.

Definition 4.3.3. For each i > 0, we denote the i-th derivative of v : [0, 1] ! R,
when it exists, by div (where d0v = v).

Given n > 0 and 0 < � < 1, the space Cn+�([0, 1],R) is defined to be the space

of functions v : [0, 1] ! R such that v is n times di↵erentiable and

kvkC0 := sup
x̃2[0,1]

|v(x̃)|< 1,

kvkCn := max
i2{0,...,n}

kdivkC0< 1

and

kdnvkC�

:= sup
x̃6=ỹ

|dnv(x̃)� dnv(ỹ)|
|x̃� ỹ|� < 1.

We endowed it with the norm

kvkCn+�

= sup(kdnvkC�

, kvkCn).

This is a Banach space and in the case n 2 N we have that

kvkCn+�

= sup(kvkC0 , kdvkCn�1+�

).

Remark 4.3.4. Given an integer n > 0, any function v 2 Cn+1([0, 1],R) has i-th

Lipschitz derivative for i = 0, 1, . . . n, i.e.

Lip(div) := sup
x̃ 6=ỹ

|div(x̃)� div(ỹ)|
|x̃� ỹ| < 1,

for i 2 {0, . . . , n}.
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This implies that Cn([0, 1],R) ⇢ Cm+�([0, 1],R), for every 0  �  1 and

m < n, because Lipschitz functions are automatically �-Hölder for 0 < �  1.

Warning! Warning! We have used the letter d to denote a metric on X
and to denote the derivative of a function v : [0, 1] ! R, i.e. dv = dv

dx . When the

notation dv may be confusing we prefer to use the notation dv
dx .

The following result is analogous to the proof of Proposition 6.2, part ii.2)

in [35].

Lemma 4.3.5. If v 2 C1+�([0, 1],R), then the map v⇤ is C0.

Proof. We can choose arbitrarily f1, f2 2 C↵(X , [0, 1]) and x, y 2 X . We can then

consider a path �1 : [0, 1] ! [0, 1] joining f1(x) and f1(y) defined by �1(t) = (1 �
t)f1(x) + tf1(y) and a path �2 : [0, 1] ! [0, 1] joining f2(x) and f2(y), defined by

�2(t) = (1� t)f2(x) + tf2(y). We then have the following inequalities

|v(f1(x))� v(f2(x))� v(f1(y)) + v(f2(y))|


Z 1

0
|dv(�1(t))

d�1
dt

(t)� dv(�2(t))
d�2
dt

(t)|dt


Z 1

0
|(dv(�1(t))� dv(�2(t)))

d�1
dt

(t)|dt+
Z 1

0
|dv(�2(t))

✓

d�1
dt

(t)� d�2
dt

(t)

◆

|dt

 kvkC1+�

(|f2(x)� f1(x)|
+ |f2(y)� f1(y)|)�|f1(x)� f1(y)|+kvkC1 |f1(x)� f2(x)� f1(y) + f2(y)|.

In particular, dividing both sides of the inequality by d(x, y)↵ and taking the supre-

mum over the set {x, y : x, y 2 X , x 6= y}, we obtain

kv⇤(f1)� v⇤(f2)k↵ = sup
x 6=y

|(v � f1 � v � f2)(x)� (v � f1 � v � f2)(y)|
d(x, y)↵

 2�kvkC1+�

kf2 � f1k�1kf1k↵+kvkC1kf1 � f2k↵.
(4.4)

The result follows.

The next lemma is similar to the proof of Proposition 6.7 in [35]. In prepa-

ration, we need to introduce some definitions of di↵erentiable operators.

Let E ,F be Banach spaces with norms k·kE and k·kF , respectively. We denote

the space of bounded linear functions from E to F by L(E ,F). Let U ⇢ E be an

open set. We recall that a function f : U ! F is Fréchet di↵erentiable at u 2 U if
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we can find a bounded linear function df(u) such that

lim
✏!0

kf(u+ ✏h)� f(u)� ✏df(u)hkF
✏

= 0

for every h 2 E and uniformly with respect to h 2 B1(0) := {y 2 E : kykE< 1}.
We say that f is di↵erentiable in U if f is di↵erentiable at every point u 2 U . We

say that f is of class C1 if it is di↵erentiable and the mapping df : U ! L(E ,F),

u 7! df(u) is continuous for the topology induced by the norm. Inductively, we

define dnf to be the di↵erential of dn�1f and we say that a function f is Cn (n

times continuously di↵erentiable) if df : U ! L(E ,F) is (n� 1) times continuously

di↵erentiable.

Lemma 4.3.6. If v 2 C2+�([0, 1],R), then v⇤ is C1 and for all f, h 2 C↵(X , [0, 1])

the derivative of v⇤ is given by d(v⇤)(f)(h) = (dv)⇤(f) · h.

Proof. If v 2 C2+�([0, 1],R), then it has a C2+� extension to an open neighbourhood

of [0, 1], i.e. v 2 C2+�((�✏1, 1+ ✏1),R) for some ✏1 > 0. This induces an extension of

v⇤ to C↵(X , (�✏1, 1 + ✏1)). Let f 2 C↵(X , [0, 1]) and h 2 C↵(X ,R).
To complete the proof we will need two simple inequalities: choose 0 < ✏2 < 1

su�ciently small such that maxt2[0,1]kf + t✏2hk1< 1 + ✏1, then

Z 1

0
kdv � (f + t✏2h)� dv � fk1dt  khk(kvkC2+1)✏�2 (4.5)

and

kdv � (f + t✏2h)� dv � fk↵ 2�kvkC2+�

k✏2hk�1kfk↵+kvkC2k✏2hk↵. (4.6)

To prove (4.5), we use that for every t 2 [0, 1] and x 2 X

|dv � (f(x) + t✏2h(x))� dv � f(x)|
✏2

=
|d2v(f(x)) · t✏2h(x) + o(t✏2h(x))|

✏2

 |d2v(f(x))|·|h(x)|+|h(x)|o(✏2)
✏2

 khk(kvkC2+1).

To prove (4.6) we notice that by definition dv�(f+t✏2h)�dv�f = (dv)⇤(f+t✏2h)�
(dv)⇤f and use inequality (4.4) with dv instead of v, f + t✏2h instead of f1 and f

instead of f2.
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Fix 0 < ✏2 < 1 su�ciently small for equation (4.5) to hold, then

1

✏2
kv⇤(f + ✏2h)� v⇤(f)� ✏2(dv)⇤(f) · hk↵

=
1

✏2
kv � (f + ✏2h)� v � f � ✏2(dv � f) · hk↵

= k
Z 1

0
[dv � (f + t✏2h)� dv � f ] · hdtk↵

 khk1
Z 1

0
kdv � (f + t✏2h)� dv � fk↵dt

+ khk↵
Z 1

0
kdv � (f + t✏2h)� dv � fk1dt


⇣

2�kvkC2+�

k✏2hk�1kfk↵+kvkC2k✏2hk↵
⌘

+ khk(kvkC2+1)✏�2

 (4kvkC2+�

max{kfk↵, 1}+ 1)khk✏�2,

which proves the second part of the lemma. We used inequalities (4.5) and (4.6) in

the penultimate inequality.

Now that we have the formula for the derivative of v⇤ :

d(v⇤)(f)(h) = (dv)⇤(f) · h (4.7)

for all f, h 2 C↵(X , [0, 1]), we can prove that v⇤ is C1. For this, it is enough to show

that d(v⇤) is continuous. From (4.7) we can see that d(v⇤) corresponds to (dv)⇤
followed by the continuous linear map

L : C↵(X , L(R,R)) ! L(C↵(X , [0, 1]), C↵(X ,R)),

⇠ 7! [L (⇠) : h 7! ⇠ · h].

Thus we have that d(v⇤) = L � (dv)⇤ is continuous, since (dv)⇤ is continuous by

Lemma 4.3.5.

The next corollary follows by induction.

Corollary 4.3.7. If v 2 Cn+�([0, 1],R) for some integer n 2 N, and thus v⇤ is Cn�1,

as required.

Proof. The case n = 1 is covered by Lemma 4.3.5. If the result holds for n and

v 2 Cn+1+�([0, 1],R), then (dv)⇤ is Cn�1 by the inductive hypothesis. We can use

the same argument as in the last lines of the proof of Lemma 4.3.6 to obtain that

d(v⇤) = L �(dv)⇤, where L is a continuous linear map, then d(v⇤) is Cn�1. Therefore,

by definition, v⇤ is Cn, which concludes the proof.
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A simple argument based in the previous corollary gives the following result

that we use to prove the smoothness of the stationary probability measure.

Corollary 4.3.8. Suppose that we have a family of maps {vi 2 Cn+�([0, 1],R) :

i 2 {1, . . . , k}} for some integer n 2 N, and consider the map F : C↵(X , [0, 1]) !
C↵(X ,R), defined1 by F (⇧)(x) := vx0(⇧(�x)), where ⇧ 2 C↵(X , [0, 1]) and x 2 X .

Then F is Cn�1. Moreover, for all f, h 2 C↵(X , [0, 1]) the derivative of F is given by

d(F )(f)(h)(x) = (d(vx0))⇤(f(�x)) · h(�x) for x 2 X .

Proof. The map l1 : C↵(X , [0, 1]) ! [C↵(X ,R)]k, defined by

l1(⇧(x)) := [v1(⇧(x)), . . . , vk(⇧(x))] 2 [C↵(X ,R)]k

is Cn�1 by Lemma 4.3.6, and the map l2 : [C↵(X ,R)]k ! C↵(X ,R), defined by

l2([f1(x), . . . , fk(x)]) = fx0(�x)

is linear and continuous. It follows that the map F = l2 � l1 is Cn�1.

To prove the formula for the derivative of F we can use the chain rule and the

fact that l2 is linear to deduce that dF = l2 �dl1 and dl1 = [d(v1)⇤, . . . , d(vk)⇤]. This
together with the formula for d(vi)⇤ for i 2 {1, . . . , k} in Lemma 4.3.6 concludes the

proof.

To prove the smoothness of the Hausdor↵ dimension of the support of the

stationary measure we additionally need the following results, whose proofs are anal-

ogous to the proofs in [35] combined with simple arguments similar to the used in

this section.

Definition 4.3.9. Given n > 0 and 0 < � < 1, we define the composition operator

by

Comp : Cn+�([0, 1],R)⇥ C↵(X ,R) ! C↵(X ,R)

(v, f) 7! Comp(v, f) := v � f.

Proposition 4.3.10. Given n 2 N and 0 < � < 1, the composition operator Comp :

Cn+�([0, 1],R)⇥ C↵(X ,R) ! C↵(X ,R) is Cn�1.

This leads to the following corollaries.

1
The notation v

x0(⇧(�x)) denotes v

i

(⇧(�x)) if x0 = i.
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Corollary 4.3.11. The map [Cn+�([0, 1],R)]k⇥C↵(X ,R) 3 ([v1, . . . , vk], f) 7! vx0 �
f(x) 2 C↵(X ,R) is Cn�1.

Corollary 4.3.12. Let n 2 N, 0 < � < 1, ✏ > 0 and suppose that we have for

each � 2 I✏ a family of maps {v(�)i 2 Cn+�([0, 1],R) : i 2 {1, . . . , k}} and a map

f (�) 2 C↵(X ,R). If the map I✏ 3 � 7! [v(�)1 , . . . , v
(�)
k ] 2 [Cn+�([0, 1],R)]k is Cn1 for

some n1 > 0, and the map I✏ 3 � 7! f (�) 2 C↵(X ,R) is Cn2 for some n2 > 0, then

the map I✏ 3 � 7! v
(�)
x0 � f (�)(x) 2 C↵(X ,R) is Cmin(n1,n2,n�1).

4.3.2 Second requirement: projection map

We will introduce a projection map ⇡(�) : X ! [0, 1] for � 2 I✏ that will be essential
to study the di↵erentiability of the stationary measure.

Definition 4.3.13. For each � 2 I✏ we define the projection map ⇡(�) : X ! [0, 1]

by

⇡(�)(x) := lim
n!1T (�)

x0
� T (�)

x1
� · · · � T (�)

x
n

(0),

where x = (xi)1i=0.

The following result is easily seen.

Lemma 4.3.14. There exists ↵ > 0 such that each individual map ⇡(�) : X ! [0, 1]

is ↵-Hölder continuous.

Proof. Define a := maxi2{1,...,k} sup�2I
✏

{kdT (�)
i kC0} < 1 and ↵ := � log(a)

log(2) . Suppose

that x, y 2 X and chose n = n(x, y) such that xi = yi for i  n and xn+1 6= yn+1,

then

|⇡(�)(x)� ⇡(�)(y)| an =
1

2↵n
 d(x, y)↵.

This completes the proof.

To make further use of the functional analytic approach it helps to choose a

specific Banach space of Hölder continuous functions.

Remark 4.3.15. We are now at liberty to choose values of ↵ and K which are most

convenient for us in definition of Hölder norm on X (i.e., Definition 4.3.1). Denote

✓0 := kdT (0)
1 kC0 and then fix a choice of ✓0 < ✓ < 1. We can then choose 0 < ↵ < 1

su�ciently small such that 2↵✓0 < ✓+✓0
2 . Finally, let us choose K > 0 su�ciently

large such that

Lip(dT1)k⇡(0)k↵
2↵

K
< ✓ � ✓0

where Lip(dT1) is the Lipschitz constant of the derivative of the contraction T1.
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We may now prove the main proposition in this section.

Proposition 4.3.16. Provided ↵ > 0 is chosen su�ciently small, the map I✏ 3
� 7! ⇡(�) 2 C↵(X ,R) is Cm�1.

Proof. For each � 2 (�✏, ✏) we let R(�) : C↵(X ,R) ! C↵(X ,R) be defined by

(R(�)⇧)(x) := T (�)
x0

(⇧(�x)),

and we construct the map F : I✏ ⇥ C↵(X ,R) ! C↵(X ,R) defined by F (�,⇧) =
�

I �R(�)
�

(⇧), where ⇧ 2 C↵(X ,R). As usual D2F (0,⇡(0)) denotes the partial

derivative of F with respect to the second coordinate and evaluated in (0,⇡(0)),

i.e. for F (0, ·) : C↵(X ,R) ! C↵(X ,R) defined by F (0, ·)(⇧) = F (0,⇧), we define

D2F (0,⇡(0)) := dF (0, ·)(⇡(0)).

We begin with some preliminary observations.

1. First observe that ⇡(�) is a fixed point, i.e., R(�)⇡(�) = ⇡(�).

2. We next observe that the family of maps (�✏, ✏) ⇥ C↵(X ,R) 3 (�,⇧) 7!
R(�)(⇧) 2 C↵(X ,R) is Cm�1. Clearly it is Cm�1 in �, whilst it is Cm�1 in

⇧ by Corollary 4.3.8.

3. D2F (0,⇡(0)) is a linear homeomorphism of C↵(X ,R) onto C↵(X ,R). Moreover,

we will prove that (I �D2(R(0)⇡(0))) is invertible. We call

R(0) := D2(R
(0)⇡(0)).

On ⇧ 2 C↵(X ,R), R(0) is given by

R(0)(⇧)(x) = dT (0)
x0

⇣

⇡(0)(�x)
⌘

·⇧(�x), x 2 X ,

and this is clear using Corollary 4.3.8. Since each Ti is a contraction it is

easy to see that R(0) : C0(X ,R) ! C0(X ,R) satisfies kR(0)k1< 1, i.e. R(0)

is a contraction on C0. Using Remark 4.3.15 we will prove that R(0) is also

a contraction on C↵(X ,R). For this, assume k⇧k 1 (and thus, in particular,
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k⇧k↵ 1 and k⇧k1 1/K). We can then use the triangle inequality to bound

|R(0)(⇧)(x)� R(0)(⇧)(y)|

=
�

�

�

dT (0)
x0

⇣

⇡(0)(�x)
⌘

⇧(x)� dT (0)
y0 (⇡(�y))⇧(y)

�

�

�


�

�

�

dT (0)
x0

⇣

⇡(0)(�x)
⌘

⇧(�x)� dT (0)
x0

⇣

⇡(0)(�x)
⌘

⇧(�y)
�

�

�

+
�

�

�

dT (0)
x0

⇣

⇡(0)(�x)
⌘

⇧(�y)� dT (0)
y0

⇣

⇡(0)(�y)
⌘

⇧(�y)
�

�

�

 kdT (0)
1 kC0 |⇧(�x)�⇧(�y)|+

�

�

�

dT (0)
x0

⇣

⇡(0)(�x)
⌘

� dT (0)
y0

⇣

⇡(0)(�y)
⌘

�

�

�

.k⇧k1

 kdT (0)
1 kC0k⇧k↵d(�x,�y)↵ + Lip(dT (0)

1 )|⇡(0)(�x)� ⇡(0)(�y)| 1
K


⇣

2↵kdT (0)
1 kC0

⌘

d(x, y)↵ +

✓

Lip(dT (0)
1 )k⇡(0)k↵

2↵

K

◆

d(x, y)↵

 ✓d(x, y)↵,

where we have used Remark 4.3.15 in the last inequality. This implies that

kR(0)k↵< 1.

To end the proof we will use the implicit function theorem for Banach spaces

(see for example [89]). The map F is Cm�1 in a neighbourhood of (0,⇡(0)) of

I✏ ⇥ C↵(X ,R) and since max{kR(0)k1, kR(0)k↵} < 1 we see that D2F (0,⇡(0)) =

I � R(0) is invertible. Thus the hypotheses of the implicit function theorem are

satisfied and the result follows.

Example 4.3.17. If T0(x) = �x, T1(x) = �x + t and X = {0, 1}N0 , then we can

explicitly write the map ⇡ : X ! R as an infinite series:

⇡ ((xn)
1
n=0) = t

1
X

n=0

�nxn.

4.3.3 Third requirement: thermodynamic formalism

The basic definitions and results on thermodynamic formalism in Section 2.4 will

be used in the proofs of the main theorems in the next subsection. Indeed, we can

deduce by classical techniques and an argument based in composition of operators

the di↵erentiability of a Gibbs measure that we will relate with the stationary mea-

sure using the projection maps. Also, we relate the Hausdor↵ dimension with the

zero of t 7! P (�t�) by Bowen’s method for some appropriate function �. This will

be use to deduce the di↵erentiability of the Hausdor↵ dimension.
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Consider the family G(✓) of weights G(✓) = {g(✓)i }ki=1 and ✓ 2 I✏ := (�✏, ✏).
We can associate a Hölder continuous function  (�,✓) 2 C↵(X ,R) defined by

 (�,✓)(x) = log
⇣

g(✓)x0
(⇡(�)(�x))

⌘

.

Now we proceed to the definition of the Transfer operator in this setting.

Definition 4.3.18 (Transfer operator). We can define a transfer operator L (�,✓) :

C↵(X ,R) ! C↵(X ,R) by

L (✓,�)w(x) =
X

�y=x

e 
(�,✓)(y)w(y) where w 2 C↵(X ,R).

We see from the definition of L (�,✓) and the property that
Pk

i=1 g
(✓)
i = 1

that L (�,✓)1 = 1, i.e., L (�,✓) preserves the constant functions.

We next recall the following classical result.

Theorem 4.3.19 (Ruelle Operator Theorem). There exists a maximal positive sim-

ple isolated eigenvalue 1. Moreover,

1. there is a positive eigenvector w (�,✓), i.e., L (�,✓)w (�,✓) = w (�,✓);

2. the equilibrium state ⌫ (�,✓) is a fixed point for the dual operator, i.e.,

L ⇤
 (�,✓)⌫ (�,✓) = ⌫ (�,✓)

thus
R

fd⌫ (�,✓) =
R

(L (�,✓)f)d⌫ (�,✓) for every continuous f : X ! R.

Proof. The spectral properties of the operator follow from the general results of

Ruelle for transfer operators with any Hölder continuous function [16], [78]. In this

particular case the fact that the maximal eigenvalue is 1 and the corresponding eigen-

distribution is the equilibrium state follows from the property that L (�,✓)1 = 1 and

[88], [61].

4.3.4 Proof of Theorem 4.2.3

We need to relate the Gibbs measure to the stationary measure µ�,✓, recall its defi-

nition in (4.3). The strategy of the proof of Theorem 4.2.3 consists of the following

steps:

i. We construct a probability measure ⌫�,✓ on the Borel sets of X := {1, . . . , k}N
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such that for w 2 Cs+�([0, 1],R) we have

Z

X
w � ⇡�(x)d⌫�,✓(x) =

Z 1

0
w(x̃)dµ�,✓(x̃), (4.8)

where ⇡(�) 2 C↵(X , [0, 1]) for � 2 I✏. The probability measure ⌫�,✓ corresponds

to the Gibbs measure of an explicitly constructed Hölder potential that depends

on both T (�) and G(✓).

ii. We prove that C↵(X ,R) 3 ⇧ 7! w � ⇧ 2 C↵(X ,R) is Cs�1. To achieve this, we

use an argument of composition of operators (following de la Llave and Obaya)

which requires w 2 Cs+�([0, 1],R).

iii. A similar argument is used to show that I✏ 3 � 7! ⇡(�) 2 C↵(X ,R) is Cm�1.

In order to apply the result in this case we need to use that T (�) is a family of

Cm+� functions. We use an argument based on the implicit function theorem

that requires the family T (�) to be contractions.

iv. We use a classical result about regularity of Gibbs measures to prove that I✏ 3
� 7! ⌫�,✓ 2 C↵(X ,R)⇤ is Cl�1.

v. As a consequence of the previous parts, we have that the map I✏ 3 � 7! (⌫�,✓, w�
⇡(�)) 2 C↵(X ,R)⇤ ⇥ C↵(X ,R) is Cmin(l,m,s)�1. On the other hand, the map

C↵(X ,R)⇤⇥C↵(X ,R) 3 (⌫�,✓, w�⇡(�)) 7! ⌫�,✓(w�⇡(�)) =
R

X w�⇡(�)(x)d⌫�,✓(x) 2
R is C1. This, together with equation (4.8) concludes the proof.

Now we can show the following result.

Lemma 4.3.20. Consider the family G(✓) of weights g(✓)j for j = 1, · · · , k and �✏ <
✓ < ✏. Then the stationary measure for T (�) and G(✓) is the image of the eigen-

distribution ⌫ (�,✓) for  (�), i.e., (⇡(�))⇤⌫ (�,✓) = µ�,✓.

Proof. By the uniqueness of the stationary measure, it is enough for us to check

that

Z

f(x̃)d
⇣

(⇡(�))⇤⌫ (�,✓)

⌘

(x̃) =
k
X

i=1

Z

g
(✓)
i (x̃)f(Tix̃)d

⇣

(⇡(�))⇤⌫ (�,✓)

⌘

(x̃)

holds for any continuous f : [0, 1] ! R and x̃ 2 [0, 1]. A straightforward manipula-

112



tion yields

k
X

i=1

Z

g
(�)
i (x̃)f(Tix̃)d

⇣

(⇡(�))⇤⌫ (�,✓)

⌘

(x̃) =

Z

0

@

X

y2��1x

e 
(�,✓)(y)f(⇡(�)y)

1

A d⌫ (�,✓)(x)

=

Z

L (�,✓)(f � ⇡(�))(x)d⌫ (�,✓)(x)

=

Z

f � ⇡(�)(x)d⌫ (�,✓)(x)

=

Z

f(x̃)d
⇣

(⇡(�))⇤⌫ (�,✓)

⌘

(x̃)

for every continuous function f : [0, 1] ! R, where we have used that L ⇤
 (�,✓)(⌫ (�,✓)) =

⌫ (�,✓) .

Lemma 4.3.21. For fixed ✓ 2 I✏, the map I✏ 3 � 7!  (�,✓) 2 C↵(X ,R) is Cmin(l,m)�1.

Proof. Consider ✓ 2 I✏ fixed. By Corollary 4.3.8 we have that C↵(X ,R) 3 ⇧ 7!
g
(✓)
x0 (⇧(�x)) 2 C↵(X ,R) is Cl�1 and by Proposition 4.3.16 the map I✏ 3 � 7! ⇡(�) 2
C↵(X ,R) is Cm�1, then the map I✏ 3 � 7! g

(✓)
x0 (⇡

(�)(�x)) 2 C↵(X ,R) is Cmin(m,n)�1.

This proves that the map I✏ 3 � 7!  (�,✓)(x) = log
⇣

g
(✓)
x0 (⇡

(�)(�x))
⌘

2 C↵(X ,R) is

Cmin(m,n)�1, which concludes the proof.

Lemma 4.3.22. For fixed � 2 I✏, the map I✏ 3 ✓ 7!  (�,✓) 2 C↵(X ,R) is Cr.

Proof. From the hypothesis on the family G(✓) and the definition of  (�,✓)

 (�,✓)(x) = log
⇣

g(✓)x0
(⇡(�)(�x))

⌘

= log
⇣

gx0(⇡
(�)(�x)) + ✓gx0,1(⇡

(�)(�x)) + · · ·+ ✓rgx0,r(⇡
(�)(�x)) + o(✓r)

⌘

=: t(✓)

where t(✓) = t(0) + dt(0)✓ + 1
2!d

2t(0)✓ + · · ·+ o(✓r), and where dit(0) 2 C↵(X ,R) is
given by

dit(0)(x) =
pi
⇥

gx0(⇡
(�)(�x)), gx0,1(⇡

(�)(�x)), · · · , gx0,i(⇡
(�)(�x))

⇤

gx0(⇡
(�)(�x))i

,

where pi (i 2 {0, . . . , r}) are polynomials.

Using standard analytic perturbation theory (cf. [78]) and the previous corol-

lary we have the following.

Corollary 4.3.23.
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1. For fixed ✓ 2 I✏, the map (�✏, ✏) 3 �! ⌫ (�,✓) 2 C↵(X ,R)⇤ is Cmin(l,m)�1.

2. For fixed � 2 I✏, the map (�✏, ✏) 3 ✓ ! ⌫ (�,✓) 2 C↵(X ,R)⇤ is Cr.

In particular, this implies the following.

Corollary 4.3.24. Given a Hölder continuous function f 2 C↵(X ,R).

1. For any fixed ✓ 2 (�✏, ✏), the map (�✏, ✏) 3 � 7!
R

fd⌫ (�,✓) 2 R is Cmin(l,m)�1.

2. For any fixed � 2 (�✏, ✏), the map (�✏, ✏) 3 ✓ 7!
R

fd⌫ (�,✓) 2 R is Cr.

We now turn to the proof of Theorem 4.2.3.

Proof of Theorem 4.2.3. There are two parts.

1. From Corollary 4.3.7 we deduce that for f 2 Cs+�([0, 1],R), the map C↵(X ,R) 3
⇧ 7! f � ⇧ 2 C↵(X ,R) is Cs�1 and we know from Proposition 4.3.16 that

I✏ 3 � 7! ⇡(�) 2 C↵(X ,R) is Cm�1, then the map I✏ 3 �! f �⇡(�) 2 C↵(X ,R)
is Cmin(s,m)�1. Using Corollary 4.3.23 we have that (�✏, ✏) 3 � ! ⌫ (�,✓) 2
C↵(X ,R)⇤ is Cmin(l,m)�1, therefore the map l1 : I✏ ! C↵(X ,R) ⇥ C↵(X ,R)⇤,
defined by l1(�) = (f � ⇡(�), ⌫ (�,✓)) is Cmin(l,m,s)�1. We define the map l2 :

C↵(X ,R) ⇥ C↵(X ,R)⇤ ! R by l2(v, ⌫) =
R

vd⌫ for v 2 C↵(X ,R) and ⌫ 2
C↵(X ,R)⇤. The map l2 is C1.

We consider the map F := l2 � l1, so F (�) =
R

f � ⇡(�)d⌫ (�,✓) is Cmin(l,m,s)�1.

Finally by Lemma 4.3.20,
R

f � ⇡(�)d⌫ (�,✓) =
R

fdµ�,✓, which concludes the

proof of part 1.

2. For f 2 C1([0, 1],R), f � ⇡(�) 2 C↵(X ,R) and the map l3 : I✏ ! C↵(X ,R)⇤

defined by l3(✓) = ⌫ (�,✓) is Cr by Corollary 4.3.23. We consider the map

G : I✏ ! R, defined by G(✓) = l2(f � ⇡(�), l3(✓)), where l2 is defined in the

part 1 of this proof. By Lemma 4.3.20 we have G(✓) =
R

fdµ�,✓ and G is Cr

since l3 is Cr and l2 is C1. This finishes the proof.

4.4 Conclussions

4.4.1 Applications

A seminal paper [18], Bowen introduced a method relating the Hausdor↵ dimension

s of an invariant set for a certain family of transformations F with the solution of
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the equation P (s�) = 0, where P is the pressure function and � is an appropriate

function that depends on F . Some memorable references for applications of this

approach are [76],[77],[64], [63]. The next proposition is an application of Bowen’s

method to compute Hausdor↵ dimension.

Proposition 4.4.1. Independently of G(✓), there exists a unique t = t� = dimH(supp µ�,✓)

such that

P
⇣

�t log
⇣

dT (�)
x0

(⇡(�)(x))
⌘⌘

= 0.

We are interested in the di↵erentiability of the map I✏ 3 � 7! t� 2 R. Using
Corollary 4.3.12 we can prove the main proposition we need.

Proposition 4.4.2. The map I✏ 3 � 7! log
⇣

dT
(�)
x0 (⇡(�)(x))

⌘

2 C↵(X ,R) is Cm�2.

We can now prove our second theorem.

Proof of Theorem 4.2.9. Since P : C↵(X ,R) ! R is real analytic it follows that

I✏ 3 � 7! t� 2 R is Cm�2 and using Proposition 4.4.1 we conclude the proof of

Theorem 4.2.9.

We can also prove the example in the introduction of the chapter.

Proof of Example 4.1.3. Suppose that �� is generated by some Möbius transforma-

tions {��i }ki=1 and for each i 2 {1, . . . , k} define U�i := {z 2 C : |d��i (z)|< 1} ⇢ C.
For each i, j 2 {1, . . . , k} call by T �i the map ��i |C\U

i

: C \ Ui ! Ui and define the

map T �i,j : Ui ! Uj such that T �i,j = T �j |Ui

. We consider the shift space

⌃ := {x = (xn)
1
n=0 : xn 2 {1, . . . , k}, xn 6= xn+1, n 2 N0} ⇢ {1, . . . , k}N0

and define the projection map ⇡� : ⌃! ⇤� ⇢ C, by x 7! limn!1 T �x0
T �x1

· · ·T �x
n

(z0)

where z0 2 C is fixed and ⇤� := {limn!1 T �x0
T �x1

· · ·T �x
n

(z0) : x 2 ⌃} is the limit

set for ��. We notice that ⇡� 2 C↵(⌃,C) for some small ↵ > 0. The conformal

probability measure µ� satisfies that µ� = ⇡�⇤µ� for L⇤
�µ

� = µ� where

L�w(x) =
X

y2��1x
y2⌃

|dT �y0,x0
(⇡�y)|H�w(T �y0,x0

(⇡�y)), w : ⌃! R, x 2 ⌃.

We know from [76] that the Hausdor↵ dimensions of the limit set for � is a real

analytic function on the deformation space of a Schottky group, then the map

I✏ 3 � 7! H� 2 R is Cm. On the other hand, the map I✏ 3 � 7! ⇡� 2 C↵(⌃,C) is Cm

(we can use the same proof of Proposition 4.3.16, the main di↵erence is that now
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when applying Corollary 4.3.8 we obtain Cm and not Cm�1 as the maps T �i are C1

and not just Cm+�). Then the map I✏ 3 � 7! H� log|dT �y0,x0
(⇡�y)⇡�|2 R is Cm and

by perturbation theory so is the map I✏ 3 � 7! µ� 2 C↵(⌃,R)⇤. Finally, we have

that for w : C ! R a compactly supported C1 function
R

w � ⇡�dµ� =
R

wdµ� and

therefore the map � 7!
R

wdµ� is Cm by an application of Corollary 4.3.7, which

concludes the proof.

4.4.2 Generalisations

A careful look at Theorem 4.2.3 and to it proof allows to obtain similar results to

the ones showed in Section 4.2 under much weaker hypotheses. This is the propose

of this subsection. We start by modifying Definition 4.2.1 and replacing it by:

Definition 4.4.3. Assume that �, ✏ 2 (0, 1) , k, l,m, n, p 2 N \ {1}, q 2 N and let

⇤,⇥ be open intervals ⇤,⇥ ⇢ R.

1. Let

T = T (⇤, k, l,m, �) :=
n

{T (�)
i }ki=1 : � 2 ⇤

o

be a family of contractions such that for � 2 ⇤ and i 2 {1, . . . , k} :

T
(�)
i = T̃i(�, ·),

where

(i) T̃i(�, ·) 2 Cl+�([0, 1], [0, 1]),

(ii) sup�2⇤k @
@x T̃1(�, ·)kC0< 1,

(iii) T̃1(·, ·) 2 Cm(⇤⇥ [0, 1], [0, 1]), and

(iv) @
@x T̃i(0, x) =

@
@x T̃j(0, x) for all i, j.

2. On a family T for every � 2 ⇤, we define the limit set K(�) as the unique non

empty closed set K ⇢ [0, 1] such that

K = [k
i=1T

(�)
i K.

3. We define (T ,G), where

G = G(⇥, k, n, p, ✏) :=
⇢

n

g
(✓)
i

ok

i=1
: ✓ 2 ⇥

�

is a family of weight functions such that
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(a)
k
X

i=1

�

�

�

g
(✓)
i

�

�

�

C0
Lip

⇣

T
(�)
i

⌘

< 1 for all � 2 ⇤, ✓ 2 ⇥;

and

(b) for every ✓ 2 ⇥, i 2 {1, . . . , k} :

g
(✓)
i = g̃i(✓)

where for some � 2 (0, 1/2) we have

(i) g̃i(✓) 2 Cn+✏([0, 1],R+),

(ii) g̃i(·) 2 Cq (I, Cn+✏([0, 1],R+)) .

If we do not consider the normalisation condition on the weight functions,

we require a generalised definition of stationary measures. In order to deal with this

we introduce the next definition.

Definition 4.4.4. Given the families (T ,G), define h(�,✓)i :=
⇣

g
(✓)
i

⌘s�,✓

, where s�,✓ 2

[0, 1] is unique solution of P
⇣

s�,✓ log
⇣

g
(✓)
x0 (⇡

(�)(�x)
⌘⌘

= 0 and P is the Pressure.

A generalized stationary measure µ = µ�,✓ is the unique probability measure on [0, 1]

that satisfies
Z

f(x)dµ(x) =
k
X

i=1

Z

h
(�,✓)
i (x)f(T (�)

i (x))dµ(x),

for any continuous function f : [0, 1] ! R.

Under the hypotheses of Definition 4.4.3, a step-by-step equal proof that the

one given for Theorem 4.2.3 gives us the following result:

Theorem 4.4.5. Let fix a 2 (N \ {1}) [ {1} and ⇢ 2 (0, 1). On (T ,G), for the

generalized stationary probability measure µ�,✓ with � 2 ⇤, ✓ 2 ⇥, or in the case

⇤ = ⇥, for the generalized stationary probability measure µ�,� = µ� for � 2 ⇤, we
have:

1. For ✓ 2 ⇥ and f 2 Ca+⇢(K̂,R), where K̂ � [�2⇤K(�), the map F : ⇤ ! R
defined by

F (�) =

Z

fdµ�,✓

belongs to Cr(⇤,R) with r = min{l � 1,m� 1, a� 1}.

2. For � 2 ⇤ and f 2 C1(K̂,R), the map F : ⇥! R defined by

F (✓) =

Z

fdµ�,✓
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belongs to Cq(⇥,R).

3. For ⇤ = ⇥ and f 2 Ca+⇢(K̂,R), the map F : ⇤! R defined by

F (�) =

Z

fdµ�

belongs to Cr(⇤,R) with r = min{l � 1,m� 1, a� 1, n� 1, q}.

An easy example of application of Theorem 4.4.5 that Theorem 4.2.3 fails is

the case that x0 2 [0, 1] \ [�2⇤K(�) and f(x) = |x� x0|.

We end this subsection with two examples. In the first we can apply our

theorem and it is possible to experimentally see the regularity of the map F (�). In

the second, the hypothesis on the smoothness of the contractions is not satisfied.

In this case, experimentally the map F (�) looks C0 but not C1, however we cannot

prove it, as our method of composition of operator does not work. The first example

is the following:

Example 4.4.6. Let us consider ⇤ = ⇥ = [1/6, 1/3], x 2 [0, 1], n 2 N,� 2 ⇤,

�(x, n) = xn+1 sin(1/x) 2 Cn(R,R) \ Cn+1(R,R),

T
(�)
1 (x) = �x+ �(�� 0.25, 3) + 0.01,

T
(�)
2 (x) = �x+

2

3
+ �(�� 0.25, 3),

g
(�)
1 (x) = � [0,1/2)(x) + (1� �) [1/2,1](x),

g
(�)
2 (x) = (1� �) [0,1/2)(x) + (�) [1/2,1](x), and

f(x) =

8

<

:

�x if x 2 [0, 1/2)

x2 if x 2 [1/2, 1].

Then the map F : ⇤ ! R, defined by F (�) =
R

f(x)dµ�(x), belongs to C1(⇤,R).
Moreover, for any interval ⇤0 ⇢ [1/6, 1/4) or ⇤0 ⇢ (1/4, 1/3], we have that F |⇤02
C1(⇤0,R).

The second example, where our results are not longer valid, is the following:
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Figure 4.2: Graph of F : ⇤! R in Example 4.4.6

Example 4.4.7. Let us consider ⇤ = ⇥ = [1/6, 1/3], x 2 [0, 1], n 2 N,� 2 ⇤,

T
(�)
1 (x) = �x+ �(�� 0.25, 1) + 0.01,

T
(�)
2 (x) = �x+

2

3
+ �(�� 0.25, 1),

g
(�)
1 (x) = � [0,1/2)(x) + (1� �) [1/2,1](x),

g
(�)
2 (x) = (1� �) [0,1/2)(x) + (�) [1/2,1](x), and

f(x) =

8

<

:

�x if x 2 [0, 1/2)

x2 if x 2 [1/2, 1].

Does the map F : ⇤! R, defined by F (�) =
R

f(x)dµ�(x), belongs to C0(⇤,R)?

4.4.3 Comparison

Our results were compared to the one obtained in [86] once we finished to write

the previous part. We conclude that we can apply our methods to obtain similar

results that in [86], indeed we can do the following. Consider an iterated function

scheme T as in Definition 4.4.3 such that the sets T
(�)
i [0, 1] are pairwise disjoint
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Figure 4.3: Graph of F : ⇤! R in Example 4.4.7

for i 2 {1, . . . , k} and such that m = l. Recall the definition of the projection

map ⇡(�) : X ! R and the definition of the pressure P (Definition 1.2.9). It is

well known that the Hausdor↵ dimension of the limit set K(�), that we call by

dimH(K(�)), corresponds to the unique s 2 [0, 1] such that P (s (�)) = 0, where

 (�) : X ! R is defined by  (�)(x) = log|dT (�)
x0 (⇡(�)(�x))|. We directly obtain from

our proofs the following theorem:

Theorem 4.4.8. 1. The dependence I 3 � 7! dimH(K(�)) of the Hausdor↵

dimension of the limit set is Cm�2.

2. For ↵ 2 (0, 1) small enough, the Gibbs measure µ' of ' = dimH(K(�)) (�) 2
C↵(X ,R) has a Cm�2 dependence on � 2 I, when we consider µ' as an oper-

ator on C↵(X ,R)⇤.

From Theorem 1.1 and Theorem 1.2 in [86], under hypotheses similar to

ours, it is possible to conclude that the regularity is Cm�1 instead of Cm�2 as we

could prove. In their analog to the part 2. of the previous theorem, however, in [86]

is necessary to consider µ' as an operator on C↵0
(X ,R)⇤, where ↵0 2 (r� , 1) and

r 2 (0, 1) depends on the rate of contraction of T (�). Whereas we need ↵ 2 (0, 1)

small enough so that 2↵kdT1kC0< 1 and ⇡(�) : X ! R is ↵-Hölder.
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Glossary

µ-a.e. Subsection 1.2.1.

Birkho↵ ergodic theorem Theorem 1.2.7.

Conformal repeller Definition 1.2.18.

Convergence in law Definition 2.2.10.

Di↵eomorphism Definition 1.2.1.

Dynamical system Subsection 1.2.1.

Entrance time Definition 2.2.2.

Ergodic probability measure Definition 1.2.6.

Escape rate Section 3.1.

Exponential random variable Definition 2.2.9.

Gibbs measure Definition 1.2.12.

Homeomorphism Definition 1.2.1.

Invariant probability measure Definition 1.2.4.

Iterated function scheme Definition 1.2.36.

Measure preserving dynamical system Definition 1.2.5.

Measure theoretic entropy Definition 1.2.8.

Pressure Definition 1.2.9.
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Real analytic Definition 4.2.5.

Smooth flow Definition 1.2.2.

Smooth semi-flow Definition 1.2.2.

Stationary measure Definition 1.2.37.

Subshift of finite type Subsection 1.2.2.

Topologically mixing Definition 1.2.3.

Topologically transitive Definition 1.2.3.

Transfer operator Definition 1.2.15, Remark 2.3.3, Definition 4.3.18.
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