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“To get a consistent picture, we must imagine that something holds the
electron together. The charges must be held to the sphere by some kind of
rubber bands—something that keeps the charges from flying off.”

R.P. Feynman, The Feynman Lectures, chapter 28
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Abstract

A covariant theory of the Maxwell-Lorentz electron can be established in
a spherical four-coordinate system having basis vectors describing a spacetime
with a distorted solid angle as viewed by a moving observer. Although the
spacetime remains flat, its implementation requires the use of ten independent
Christoffel symbols generated by the coordinate transformation. Velocity and
acceleration field strength tensors occupy independent subspaces and are easily
constructed in the spherical system. Symmetric and total stress tensors are also
more tractable and can be derived from a basis-independent approach. The
spherically based system is highly efficient and complimentary to a description
of the classical electron in the vacuum gauge.

3



VG Electron in the Spherical Basis www.vgelectron.net

Contents

1 Spherical Four-Coordinates 5
1.1 Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Tensors and Differential Operations . . . . . . . . . . . . . . . . . . . 10

2 Fields in the Spherical Basis 12
2.1 Velocity Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Acceleration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Total Stress Tensor in the Spherical Basis 16
3.1 Solution to the Stability Problem . . . . . . . . . . . . . . . . . . . . 17
3.2 Independent Derivation of the Total Stress Tensor . . . . . . . . . . . 19

4 Integrals in the Spherical Basis 21
4.1 Volume and Surface Elements . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Integral of the Total Stress Tensor . . . . . . . . . . . . . . . . . . . . 22
4.3 Applications of the Divergence Theorem . . . . . . . . . . . . . . . . 24

A Classical Action 27

B Present Position Coordinates 29

List of Figures

1 Coordinate transformation in spherical coordinates . . . . . . . . . . 5
2 Orthonormal unit four-vectors . . . . . . . . . . . . . . . . . . . . . . 8
3 Tensor components in the spherical basis . . . . . . . . . . . . . . . . 11
4 Causal light cone surrounding a constant velocity electron . . . . . . 25
5 Spacetime diagram for calculation of the Action . . . . . . . . . . . . 28
6 Retarded and present time coordinates . . . . . . . . . . . . . . . . . 29
7 Present time vacuum gauge vector potential . . . . . . . . . . . . . . 31
8 Present time particle radius . . . . . . . . . . . . . . . . . . . . . . . 35

List of Tables

1 Possible contractions of the fourth rank tensor . . . . . . . . . . . . . 20

4



VG Electron in the Spherical Basis www.vgelectron.net

1 Spherical Four-Coordinates

A mathematical introduction precedes the description of the vacuum gauge electron in
the spherically based four-coordinate system. The coordinate transformation derives
four mutually orthogonal basis vectors constructed from coordinates relative to the
retarded position of the particle.

1.1 Coordinate Transformation

Two coordinate systems in Minkowski space are linked by a four-coordinate transfor-
mation parameterized by the quantityβββ representing the velocity of one frame relative
to another. In the frame So the coordinates of the spacetime event P shown in figure
1 can be written as the sum of purely timelike and purely spacelike components

xνo = xντ + xνs (1.1)

The same event viewed in the frame S—and connected by a homogeneous Lorentz

Figure 1: Spacetime event xν analyzed in terms of timelike and spacelike components.

transformation—can be represented by the expansion

xν = (xλβλ)β
ν − (xλUλ)Uν (1.2)

where the timelike and spacelike unit vectors βν and Uν are Lorentz transformations
of their rest frame counterparts having norms of 1 and −1, respectively. Component
lengths along each direction are easily determined to be the Lorentz scalars

xλβλ = cτ and xλUλ = −ρ (1.3)
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and the transformation law follows from the observation that Uν can be written as a
function of two appropriately chosen angular coordinates (θ, φ) allowing the present
time coordinates to be written xν = xν(cτ, ρ, θ, φ) or

xν = cτβν + ρUν (1.4)

The quantities ρ and cτ are assumed to be independent of each other and also inde-
pendent of the angular coordinates since it can be shown that

∂τ

∂θ
=
∂τ

∂φ
= 0

∂ρ

∂θ
=
∂ρ

∂φ
= 0 (1.5)

In general, it will not be necessary to consider points xν outside the particles causal
light cone which will follow as long as ρ ≤ cτ .

Now suppose the world line of the particle is described by the four-vector wν . This
can also be projected onto spacelike and timelike vectors via

wν = (wλβλ)β
ν − (wλUλ)Uν (1.6)

and the light cone condition in the new coordinate system is

Rν = (cτ − wλβλ)βν + (ρ+ wλUλ)Uν (1.7)

Contracting on both sides of the equation with βν and Uν then shows that

wλβλ = cτ − ρ (1.8a)

wλUλ = 0 (1.8b)

This means that for any point along the world line of the particle, the transformation
in (1.4) requires the position of the particle to point instantaneously along the direc-
tion of its four-velocity. Equations (1.8) may now be re-inserted into (1.7) to derive
the general form of the null vector.

Basis Vectors and Unit Vectors: Basis vectors with lowered indices are easily
derived from the coordinate transformation in (1.4). As an intermediate step one can
calculate angular derivatives of Uν

∂Uν

∂θ
=
R

ρ
θν

∂Uν

∂φ
=
R sin θ

ρ
φν (1.9)

leading to the four basis vectors

~eτ =
∂xν
∂cτ

= βν ~eρ =
∂xν
∂ρ

= Uν (1.10a)

~eθ =
∂xν
∂θ

= Rθν ~eφ =
∂xν
∂φ

= R sin θ φν (1.10b)
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These vectors include the scale factors

hτ = 1 hρ = 1 hθ = R hφ = R sin θ (1.11)

which can be divided out to give an orthonormal set of unit four-vectors written
explicitly as functions of an accompanying set of three-vectors. Raising indices for
convenience yields

βν =

[
γ
γβββ

]
(1.12a)

Uν =
1

γ(1−βββ · n̂̂n̂n)

[
1
n̂̂n̂n

]
−
[
γ
γβββ

]
(1.12b)

θν =
1

(1−βββ · n̂̂n̂n)

[
βββ · θ̂̂θ̂θ

θ̂̂θ̂θ +βββ × φ̂̂φ̂φ

]
(1.12c)

φν =
1

(1−βββ · n̂̂n̂n)

[
βββ · φ̂̂φ̂φ

φ̂̂φ̂φ−βββ × θ̂̂θ̂θ

]
(1.12d)

In an arbitrary frame of reference the spacelike vectors may be difficult to visualize,
especially θν and φν which generally have non-zero time components. Regardless,
figure 2 makes an attempt to show them at a present time event. Timelike and
spacelike unit magnitudes consistent with the spacetime metric are

βνβν = 1 UνUν = −1 θνθν = −1 φνφν = −1 (1.13)

and the six different orthogonality relations can also be verified.
The total differential calculated from the coordinate transformation is

ds2 = dxνdxν =
dxν

dqλ

dxν
dqα

dqλdqα (1.14)

and this produces the specific form of the interval

ds2 = c2dτ 2 − dρ2 − ρ2

γ2(1− n̂̂n̂n ·βββ)2

[
dθ2 + sin2 θ dφ2

]
(1.15)

From here the diagonal metric tensor can be easily constructed. Using R as a function
of the spatial coordinates (ρ, θ, φ) an appropriate matrix representation is

gµν =


1 0 0 0
0 − 1 0 0
0 0 −R2 0
0 0 0 −R2 sin2 θ

 (1.16)
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Figure 2: Orthonormal set of unit four-vectors at the point (ct, rrr) defined relative to
the retarded position of an electron moving along its world line.

Inverse Transformation: The inversion of (1.4) can be written qµ = qµ(xν). Con-
sidering each of the components (Rx, Ry, Rz) as functions of the present time coordi-
nates a simple representation of the inverse transformation is

cτ = ctr/γ + ρ ρ = γR− γR ·βββ

θ = tan−1

[
(R2

x +R2
y)

1/2

Rz

]
φ = tan−1

[
Ry

Rx

]
(1.17)

Each spherical coordinate here can be set to a constant value which will define a
three-dimensional hypersurface in Minkowski space. Once again, these surfaces may
be difficult to visualize except in the rest frame where the spacelike surfaces become
identical to those of the standard spherical-polar coordinate system. Dual basis vec-
tors, similar to those in equation (1.10) except with raised indices, follow from the
inverse transformation as:

~ω τ = ∂νcτ = βν ~ω ρ = ∂νρ = −Uν (1.18)

~ω θ = ∂νθ = − 1

R
θν ~ω φ = ∂νφ = − 1

R sin θ
φν (1.19)
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In this case the scale factors appear in the denominators and a general relation con-
necting the two sets of basis vectors is given by

~eµ · ~ω ν = δ ν
µ (1.20)

Christoffel Symbols: Derivatives of the basis vectors define ten independent
Christoffel symbols thru the relations

∂~eµ
∂qν

= Γλµν ~eλ
∂ ~ω µ

∂qν
= −Γµλν ~ω

λ (1.21)

which can also be determined directly from the metric tensor:

Γαµν = 1
2
gλα [gλµ,ν + gλν,µ − gµν,λ] (1.22)

——————————————————————————————————–

1. Γφρφ =
1

ρ
2. Γθρθ =

1

ρ

3. Γρθθ = − ρ

γ2(1− n̂̂n̂n ·βββ)2
4. Γρφφ = − ρ sin2 θ

γ2(1− n̂̂n̂n ·βββ)2

5. Γθθθ =
βββ · θ̂̂θ̂θ

1− n̂̂n̂n ·βββ
6. Γφθθ = − βββ · φ̂̂φ̂φ

1− n̂̂n̂n ·βββ

7. Γφθφ = cot θ +
βββ · θ̂̂θ̂θ

1− n̂̂n̂n ·βββ
8. Γθθφ =

βββ · φ̂̂φ̂φ
1− n̂̂n̂n ·βββ

sin θ

9. Γθφφ = − sin θ cos θ − βββ · θ̂̂θ̂θ
1− n̂̂n̂n ·βββ

sin2 θ 10. Γφφφ =
βββ · φ̂̂φ̂φ

1− n̂̂n̂n ·βββ
sin θ

———————————————————————————————————
The Christoffel symbols will naturally be useful for future calculations, but it will be
unnecessary to use them to calculate components of a curvature tensor since we are
working exclusively in a flat spacetime. If β → 0, several of the symbols vanish while
the remaining non-zero symbols reduce to those of a 3D spherical-polar coordinate
system.
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1.2 Tensors and Differential Operations

Vectors: In general, a four-vector ~V in the spherical basis can be written in terms
of either set of dual basis vectors:

~V = V ν~eν ~V = Vν ~ω
ν (1.23)

However, like the well known 3D curvi-linear coordinate systems, it is frequently
easier to write vectors in terms of the corresponding unit four-vectors. In particular,
the components V ν of an arbitrary vector generally has an immediate expansion

V ν = (V αβα)βν − (V αUα)Uν − (V αθα)θν − (V αφα)φν (1.24)

If the vector is radial from the retarded position of the charge then components
along θν and φν are automatically zero. As an example, the vacuum gauge velocity
potentials have a repesentation in terms of the ordered quadruplet

Aνv =

[
e

ρ
,
e

ρ
, 0, 0

]
(1.25)

The set of four-space cartesian unit vectors is rarely included in the literature to
adequately represent a four vector, but its transformation to the spherical system is
important since it generates a rotation matrix defined by the matrix equation

eo

ex

ey

ez


=



eoβµ −eoUµ −eoθµ −eoφµ

exβµ −exUµ −exθµ −exφµ

eyβµ −eyUµ −eyθµ −eyφµ

ezβµ −ezUµ −ezθµ −ezφµ


·



βν

Uν

θν

φν


(1.26)

Labeling the 4 × 4 matrix as Uµν it is easy to see that its four columns are the
components of the unit coordinate vectors. Moreover, one finds

det [Uµν ] = 1 (1.27)

which is entirely appropriate for a rotation matrix.

Second Rank Tensors: The outer product symbol is ⊗ and it can be used to
define basis vectors for a rank 2 tensor

~eµν ≡ ~eµ ⊗~eν ~ω µν ≡ ~ω µ ⊗ ~ω ν (1.28)

Sidestepping mixed basis vectors for now, tensors with raised and lowered indices are:

T̂ ≡ T µν~eµν T̂ ≡ Tµν ~ω
µν (1.29)
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Once again however, it is possible to write individual components of a cartesian tensor
T µνcart in terms of spherical components which serve as unit coordinate vectors. Using
the rotation tensor Uµν the appropriate transformation is

T µνsph = Uµα T
αλ
cart U

ν
λ (1.30)

A matrix format for each of the sixteen components of T µνsph is shown in figure 3 for
convenience.

Figure 3: Showing the sixteen components of an arbitrary tensor Xµν
sph in the spherical

basis.

An example of a second rank tensor using equation (1.29) is the metric tensor
given by

ĝ = gττ ~ω
ττ + gρρ ~ω

ρρ + gθθ ~ω
θθ + gφφ ~ω

φφ (1.31)

But the scale factors in the components of the tensor cancel with scale factors in the
basis vectors and this allows for a simple representation of the metric in terms of the
spherical unit vectors

gµν = βµβν − UµUν − θµθν − φµφν (1.32)

In other words, the metric has identical components when referenced to unit vectors
in the cartesian or spherical coordinate system.

The spherical basis is also well-suited for the construction of anti-symmetric ten-
sors. Using vectors in (1.12) six possible tensor brackets are

H µν
1 = [βµ, Uν ] H µν

2 = [βµ, θν ] H µν
3 = [βµ, φν ]

H µν
4 = [Uµ, θν ] H µν

5 = [Uµ, φν ] H µν
6 = [θµ, φν ] (1.33)
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and any anti-symmetric tensor follows by summing over independent components

Xµν
[AS] =

6∑
k=1

Ck · H µν
k (1.34)

Two other brackets having units of length are the linear combinations

Hµν = [Rµ, θν ] HµνD = [Rµ, φν ] (1.35)

The importance of these can be understood by writing them in the cartesian basis
where the three-space unit vectors θ̂̂θ̂θ and φ̂̂φ̂φ separate into individual components:

Hµν = R


0 θ̂x θ̂y θ̂z
−θ̂x 0 φ̂z −φ̂y
−θ̂y −φ̂z 0 φ̂x
−θ̂z φ̂y −φ̂x 0

 HµνD = R


0 φ̂x φ̂y φ̂z

−φ̂x 0 −θ̂z θ̂y
−φ̂y θ̂z 0 −θ̂x
−φ̂z −θ̂y θ̂x 0

 (1.36)

These are zero norm dual tensors to each other related by the Levi-Civita permutation
tensor:

HµνD = 1
2
εµναλHµν (1.37)

2 Fields in the Spherical Basis

The dynamical variables of the electron are determined from the particles world line
wν = wν(τ). The four-velocity also serves as the timelike coordinate vector in the
spherical basis, but the four-acceleration should have a general expansion along several
of the four coordinate vectors. Since aνβν = 0 it will be composed of purely spacelike
vectors. In terms of basis vectors it can be written

~a = (aλUλ) ~ω ρ + (Raλθλ) ~ω
θ + (R sin θ aλφλ) ~ω

φ (2.1)

On the other hand, with the definitions

au ≡ aνUν aθ ≡ aνθν aφ ≡ aνφν (2.2)

then components aν can be written

aν = −au Uν − aθθν − aφφν (2.3)

The norm of this vector along with the norm of the vector aν⊥ orthogonal to Uν are
easily determined to be

−aνaν = a2
u + a2

θ + a2
φ −aν⊥a⊥ν = a2

θ + a2
φ (2.4)

As an example of the usefulness of these expressions, the power formula for transverse
radiation can be written

Pacc =
2

3

e2

c3

[
a2
u + a2

θ + a2
φ

]
(2.5)
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2.1 Velocity Fields

Dropping the subscript label, the vacuum gauge velocity potentials in the spherical
basis can be written

~A = Aν ~ω
ν (2.6)

As noted earlier, both angular coordinates are zero while the non-zero coordinates
are only functions of ρ. The covariant derivative follows from

~∇ ~A =
[
Aν, µ − AλΓλνµ

]
~ω νµ = Aν;µ ~ω

νµ (2.7)

In general, Aν;µ has sixteen components but the simple functional form of ~A reduces
this number to four components which are all proportional to the vacuum dilation η.
Using the rules of covariant differentiation and keeping careful track of minus signs
shows that

Aτ ; ρ = Aτ, ρ = −η Aρ ; ρ = Aρ, ρ = η (2.8a)

Aθ ; θ = −AρΓρθθ = −ηR2 Aφ ;φ = −AρΓρφφ = −ηR2 sin2 θ (2.8b)

The vacuum strain tensor can then be written

η̂ = Aτ ; ρ ~ω
ρτ + Aρ ; ρ ~ω

ρρ + Aθ ; θ ~ω
θθ + Aφ ;φ ~ω

φφ (2.9)

In terms of unit coordinate vectors components of this tensor are

ηµν = η [Uµβν + UµUν − θµθν − φµφν ] (2.10)

Both the field strength tensor and the vacuum tensor can now be easily calculated
using the formulas

F µν
v = ηµν − ηνµ ∆µν = ηµν − gµνη (2.11)

Neither tensor has any component along angular coordinates and are best represented
in a 2× 2 subspace of the matrix format in figure 3:

F µν
v =

[
0 −η
η 0

]
∆µν =

[
−η 0
η 2η

]
(2.12)

These tensors can also be constructed thru a simple change of variables from Cartesian
to spherical coordinates. A divergence on the first index of either tensor follows from
a differential operation on an arbitrary second rank tensor T µν leading to

T µν;α = T µν, α + T λν Γµλα + T µλ Γνλα (2.13)

For the case where α→ µ one finds

F µν
;µ = F µν

, µ + F λν Γµλµ + F µλ Γνλµ (2.14)

∆µν
;µ = ∆µν

, µ +∆λν Γµλµ +∆µλ Γνλµ (2.15)
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When ρ > 0 all components of both tensors which require a calculation can ultimately
be reduced to

∂η

∂ρ
+ η[Γθρθ + Γφρφ] =

1

ρ2

∂

∂ρ

[
ρ2 e

ρ2

]
= 0 (2.16)

The case where ρ → 0 is more complicated but it may be assumed that the point
charge delta function arises in both cases so that

F µν
;µ =

4π

c
j∗νe ∆µν

;µ =
4π

c
j∗νe (2.17)

2.2 Acceleration Fields

One way to determine the acceleration strain and acceleration field strength tensor is
by differentiating the vacuum gauge acceleration potentials. Since acceleration fields
fall like 1/ρ the acceleration potential will not have any dependence on ρ and this is
clearly visible in the spherical basis by writing

~Aa = −eaλUλ(~eτ +~eρ) (2.18)

Acceleration Strain Tensor: The covariant derivative of ~Aa is somewhat difficult
to calculate in the spherical basis and it is probably easier to begin with the cartesian
tensor

∂µAνa = −∂µχ · Aν − χηµν +O(a2) (2.19)

where χ = aλRλ, and then transform components to the spherical basis. The result
is

∂µAνa −→ −
e

ρ



ȧλRλ ȧλRλ 0 0

ȧλRλ ȧλRλ 0 0

aλθλ aλθλ −aλUλ 0

aλφλ aλφλ 0 −aλUλ


(2.20)

Labeling the six symmetric elements of this tensor as sµν leads to the extraction of
the strain tensor thru the relation

∂µAνa = sµν + ενµ (2.21)

Acceleration strain is actually a bi-linear quantity which can be written as a vector
outer product

ε̂ = ~Av ⊗ ~a⊥ (2.22)

and having an explicit representation

ε̂ = −e
ρ

[aθ
R
~eτθ +

aθ
R
~eρθ +

aφ
R sin θ

~eτφ +
aφ

R sin θ
~eρφ

]
(2.23)
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In the basis of unit vectors define the 2× 2 matrix

Fa ≡ −
e

ρ

[
aθ aφ
aθ aφ

]
(2.24)

so that two forms of the strain tensor can be identified as

εµν =

[
0 Fa
0 0

]
ενµ =

[
0 0

F †a 0

]
(2.25)

The requirement ε = 0 follows by inspection along with the equation det[εµν ] = 0.
Moreover, since det[Fa] = 0 this implies the vanishing determinants of all individual
two-by-two minors in the cartesian basis as well.

The divergence applied to the first index of the acceleration strain is

εµν;µ = εµν, µ + ελν Γµλµ + εµλ Γνλµ (2.26)

The first two components of the resulting vector are automatically zero while the
remaining components are determined from

εµθ ;µ =
∂ερθ

∂ρ
+ ερθ

[
2Γθρθ + Γφρφ

]
=
ερθ

ρ
(2.27a)

εµφ;µ =
∂ερφ

∂ρ
+ ερφ

[
Γθρθ + 2Γφρφ

]
=
ερφ

ρ
(2.27b)

These are components of the strain current which allows the divergence equation to
be written

εµν;µ = ηaν⊥ (2.28)

Acceleration Field Strength Tensor: A fundamental representation of the ac-
celeration field strength tensor in the spherical basis can be derived by writing the
tensors in equation (1.35) as

Hµν = ρ


0 0 1 0
0 0 1 0
−1 −1 0 0

0 0 0 0

 HµνD = ρ


0 0 0 1
0 0 0 1
0 0 0 0
−1 −1 0 0

 (2.29)

Couple this with equations (2.25) and the acceleration fields become

F µν
a = [Aµ, aν⊥] = −ηaθ[Rµ, θν ]− ηaφ[Rµ, φν ] (2.30)

This looks like a separation of the fields into independent polarization states with
unitless terms multiplying the dilatation η. In fact, all three polarization states can

15
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be written together in the unit coordinate basis since velocity and acceleration fields
belong to their own independent subspaces. Defining Fv the total field is

F µν =

[
Fv Fa
−F †a 0

]
(2.31)

and an extension of (2.30) is

F µν = η[Uµ, βν ]− ηaθ[Rµ, θν ]− ηaφ[Rµ, φν ] (2.32)

3 Total Stress Tensor in the Spherical Basis

The velocity portion of the symmetric stress tensor is Θµν
1 and can be derived begin-

ning with

∆µλ
;µ η

ν
λ =

4π

c
j∗λe ηνλ (3.1)

This equation is just the second equation in (2.17) multiplied by the velocity strain.
Operations on the left side are

∆µλ
;µ η

ν
λ = (∆µληνλ);µ −∆µλ ηνλ ;µ

= (ηµληνλ − ηηνµ) ;µ − ηµληνλ ;µ + ηηνµ;µ (3.2)

but each of the last two terms can be written as total derivatives

ηµληνλ ;µ = 1
2
gµν(ηαληαλ) ;µ ηηνµ ;µ = 1

2
gµν(η2) ;µ (3.3)

so the first equation can be re-arranged to read

1

4π

[
ηµληνλ − ηηνµ − 1

2
gµν(ηµληµλ − η2)

]
;µ

=
1

c
j∗λe ηνλ (3.4)

The free term vacuum Lagrangian is

Lo = − 1

8π
∆µνηµν (3.5)

which easily finds its way into (3.4) with the inclusion of an overall minus sign to read[
∂Lo
∂ηµλ

ηνλ − gµνLo
]

;µ

= −1

c
j∗λe ηνλ (3.6)

The term in brackets is the vacuum form of the canonical stress tensor. Like the
electromagnetic theory it must be symmetrized by removing the superfluous term
with zero divergence:

(ηηνµ) ;µ = 0 (3.7)

What remains is the symmetric stress tensor

Θµν
vac =

1

4π

[
1
2
gµνη2 − ηµληνλ

]
(3.8)

obeying the divergence relation

Θµν
vac ;µ = −1

c
j∗λe ηνλ (3.9)
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3.1 Solution to the Stability Problem

To complete the velocity theory it will be necessary to propagate the velocity fields.
This can be done with the addition of a term linear in the vacuum dilatation. The
complete Lagrangian for the velocity theory inclusive of an interaction term is then

Lvac = − 1

8π
∆µνηµν +

1

2
σe η −

1

c
j∗µe Aµ

= Lo + LΛ + Lint (3.10)

The total stress tensor associated with this Lagrangian can be written

Tµν = Θµν
1 + Λµν (3.11)

and is easily transformed to the spherical basis by writing

Tµνsph = Uµα T
αλ U ν

λ

= UµαΘ
αλ
1 U ν

λ + Uµα Λαλ U ν
λ = Θµν

1 sph + Λµνsph (3.12)

Matrix representation of both tensors are

Θµν
1 sph =

1

8π


η2 0 0 0
0 −η2 0 0
0 0 η2 0
0 0 0 η2

 Λµνsph =
σe
2


−η η 0 0

0 2η 0 0
0 0 0 0
0 0 0 0

 (3.13)

The symmetric stress tensor is diagonal implying that the spherical basis vectors
are also eigenvectors. This is not true of the vacuum tensor which has a single off
diagonal element and no components along θν or φν . To show stability of the particle,
conveniently write the sum of these two tensors as

Tµνsph =

[
1

8π
η2 − 1

2
σeη

]
Gµν

1 +
1

2
σeη Gµν

2 (3.14)

where Gµν
1 and Gµν

2 are matrices of ones and zeros only and defined by

Gµν
1 ≡


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 Gµν
2 ≡


0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.15)

In terms of components of the orignal Lagrangian, (3.14) may be written more con-
cisely as

Tµνsph = −(Lo + LΛ) Gµν
1 + LΛ Gµν

2 (3.16)
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and stability will be determined by the condition ρ = re for which the value of the
vacuum Lagrangian is zero. Meanwhile, the remaining tensor is canonical energy flux
thru the radius and not associated with local stress on the particle. It can also be
written

Eµνrad = −LΛ · ∂νRµ (3.17)

where the tensor on the right indicates directly, the dispersion of radiation from the
retarded position of the charge. As a final step, vacuum gauge theory can be brought
full circle by re-deriving the vacuum Lagrangian from the contraction

Lvac = −βµTµνsphβν (3.18)

and subsequent application of the vacuum gauge condition.

Symmetric Stress Tensor for Accelerated Motions: Accelerated motions of
the electron can be accommodated by applying a perturbation to the vacuum strain
of the form

ηµν −→ ηµν − εµν (3.19)

The dilatation is unaltered by the perturbation since gµνε
µν = 0, but the stress tensor

will acquire terms linear and quadratic in the acceleration strain:

Θµν
vac =

1

4π

[
1
2
gµνη2 − ηµληνλ + ηµλενλ − εµλενλ + εµληνλ

]
(3.20)

It is useful to construct this tensor in the spherical basis where its matrix represen-
tation is given by

Θµν
vac →

η2

4π



1
2

+ ρ2(a2
θ + a2

φ) ρ2(a2
θ + a2

φ) − ρaθ −ρaφ

ρ2(a2
θ + a2

φ) −1
2

+ ρ2(a2
θ + a2

φ) − ρaθ −ρaφ

−ρaθ −ρaθ 1
2

0

−ρaφ −ρaφ 0 1
2


(3.21)

This tensor should be compared with its cumbersome and lengthy cartesian counter-
part found in many textbooks. The matrix above is not only concise, but each of the
two components linear and quadratic in the quantities aθ and aφ is easily discernable
by inspection. More precisely, one can write

Θµν
2 =

eη

4π

[
0 Fa

F †a 0

]
Θµν

3 =
eη

4π
(a2

θ + a2
φ)

[
1 1
1 1

]
(3.22)
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3.2 Independent Derivation of the Total Stress Tensor

The tensor Tµν can be constructed from a theory of vacuum stresses in either a carte-
sian or spherical coordinate system without appealing to a Lagrangian formulation.
This derivation enjoys the added benefit of producing the symmetric stress tensor
Θµν with no additional requirement to eliminate a superfluous term like T µνD .

For general motions of the electron, the vacuum tensor is

∆µν = ζµν − gµνζ where ζµν = ηµν − εµν (3.23)

A fourth rank Maxwell-Lorentz deformation tensor is generated from ∆µν by the
bi-linear construction

Rµλαν ≡ 1

4π

[
∆µλ∆αν −∆λµ∆αν +∆λµ∆να −∆µλ∆να

]
(3.24a)

=
1

4π

[
ζµλζαν − ζλµζαν + ζλµζνα − ζµλζνα

]
(3.24b)

Clearly an undistorted, ‘flat’ vacuum is associated with Rµλαν = 0. It is useful to
write Rµλαν in the simplified form

Rµλαν ≡ 1

4π
FµλFαν (3.25)

Although Fµλ is identical to the field strength tensor, it has a role in terms of inde-
pendent strain tensors which warrants the new descriptive variable. Contracting on
the second and third indices produces the second rank tensor

Rµν ≡ gλαR
µλαν = R

µλ ν
λ (3.26)

but this is not the only possible contraction. There are a total of five others shown in
Table 1. The fact that each of the contractions produces only variations of a single
tensor Rµν is related to symmetry properties of Rµλαν which can be written

Rµλαν = −Rλµαν = −Rµλνα = Rανµλ (3.27)

along with
Rµλαν + Rµνλα + Rµανλ = 0 (3.28)

Aside from symmetry properties, a Lorentz scalar can be formed by contracting on
Rµν so that

R = gµνR
µν = − 1

4π
FµνFµν (3.29)

Now consider a useful property of Fµν in the form

Fλν;µ + Fνµ;λ + Fµλ; ν = 0 (3.30)
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Contraction Indices Result Contraction Indices Result
2 and 3 Rµν 1 and 4 Rλα

1 and 2 0 1 and 3 −Rνλ

3 and 4 0 2 and 4 −Rλα

Table 1: Contractions on Rµλαν

An equation similar to the Bianchi identities of General Relativity follows by multi-
plying this tensor equation by Fσα:

FσαFλν;µ + FσαFνµ;λ + FσαFµλ; ν = 0 (3.31)

Two contractions on (3.31) result by multiplying through by gαµgσλ leading to

FλµFλν;µ + FλµFνµ;λ + FλµFµλ; ν = 0 (3.32)

The first two terms can be combined using the anti-symmetry of Fµν and a change
of indices. Writing the last term as a total derivative, the previous equation then
follows as

2FλµFλν;µ − 1
2
(FλµFλµ); ν = 0 (3.33)

The first term can also be written as a total derivative at the expense of introducing
a point source. For a Big Bang cosmology this source can be labeled j∗λe where the
asterisk is representative of a time cto before which the particle does not exist. The
appropriate divergence relation is

Fλµ;µ = −4π

c
j∗λe (3.34)

then

2(FλµFλν);µ − 1
2
(FλµFλµ); ν = −8π

c
Fλνj∗λe (3.35)

The stress tensor follows from writing each term on the left in terms of contractions
on Rµλαν

FλµFλν = −4πRµ
ν and FλµFλµ = −4πR (3.36)

Introducing the metric tensor and raising the index ν to a contravariant status leads
to the source equation

(Rµν − 1
4
gµνR);µ ≡ Θµν

vac ;µ =
1

c
Fλνj∗e λ (3.37)

This is a gauge invariant derivation of Θµν
em even though vacuum gauge potentials

have been assumed throughout. On the other hand, gauge invariance must be broken
to propagate the vacuum—made possible by adding a single instance of the vacuum
tensor—leading to the total stress tensor

Tµν = Rµν − 1
4
gµνR + Λµν (3.38)
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For accelerated motions Rµν is the sum of sixteen components determined from bi-
linear combinations of velocity and acceleration tensors ηµν and εµν . This is an
over-specfication of the tensor which can be minimized to four components thru the
definition

Rµν ≡ ζµλζνλ (3.39)

Components of the stress tensor can then be re-organized as

FλµF ν
λ = 4π

(
Rµν − 1

2
gµνR

)
and FλµFλµ = −4πR (3.40)

and equations for a stable classical particle become

1
4
gµνR − Rµν = Tµν − Λµν (3.41)

This set of equations, while designed specifically for the classical particle, can
also be applied to other macroscopic phenomena in electromagnetism. One such
application is a more general formulation the theory of transverse electromagnetic
waves as a vacuum gauge theory. In this case the vacuum gauge condition is

|∂νAν | =
√

E2 − B2 = 0 (3.42)

implying that such waves are not to be associated with vacuum dilatation. According
to equation (3.38), the theory follows by removing source and the propagation terms
leaving

Tµν = −Rµν = − 1

4π
ηµληνλ (3.43)

For waves propagating in the direction kkk, the appropriate form of A must be inserted
by hand along with the requirement A · kkk = 0. A vacuum strain tensor can then be
constructed satisfying

�2ηµν = 0 (3.44)

4 Integrals in the Spherical Basis

A primary advantage of using the spherically based four-coordinate system is to facil-
iate the integration of scalars, vectors, and second rank tensors. One may also apply
the divergence theorem over the causal light cone to derive relations among integrals.

4.1 Volume and Surface Elements

Scale factors are immediately available from equation (1.11) in section 1 to construct
both volume and surface elements. The four-volume element is

d4V = R2dρ dΩ cdτ = ρ2dρ dΩ′ cdτ (4.1)
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and the invariant volume of the light cone follows almost immediately by placing
appropriate integration limits on the variable ρ:

Vlight cone = 1
3
π c4τ 4 (4.2)

Spacelike and timelike 3-surface elements having the same Doppler factor as d4V are

d3~σs = [R2dρ dΩ]~eτ (4.3a)

d3~στ = [R2cdτ dΩ]~eρ (4.3b)

Dropping the superscript 3, these may be written more usefully in terms of contravari-
ant unit vectors

dσµs = [R2dρ dΩ] βµ (4.4a)

dσµτ = [R2cdτ dΩ]Uµ (4.4b)

Equating increments of dρ and cdτ the combination of both 3-elements in (4.4) leads
to the light cone 3-surface element

dσµl = −1

ρ
[R2dρ dΩ]Rµ (4.5)

where the sign has been introduced for simple applications of the divergence theorem.

4.2 Integral of the Total Stress Tensor

From the matrix representation of equation (3.13), the symmetric stress tensor and
the vacuum tensor can be immediately written

Θµν
1 =

1

8π
η2 [βµβν − UµUν + θµθν + φµφν ] (4.6)

Λµν =
1

2
σeη [2UµUν − βµβν + βµUν ] (4.7)

Four-volume integrals of both tensors can be performed by separating the timelike
energy terms from spacelike pressure terms. For the symmetric stress tensor radial
integrals extend from the radius re to a large time cτ + re which can be approximated
by infinity

dSµν[1τ ] =
1

8π

∫
η2βµβνd4V = mc2βµβν · cdτ (4.8)

dSµν[1s] =
1

8π

∫
η2 [−UµUν + θµθν + φµφν ] d4V = 1

3
mc2 [βµβν − gµν ] · cdτ (4.9)
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A similar procedure for the vacuum tensor follows by first observing that only the
symmetric terms make contributions to the integral. Moreover, the lower limit to the
radial integration must be extended to zero so that

dSµν[2τ ] = −σe
2

∫ re+cτ

0

∫
Ω

ηβµβνd4V = −1
2
ρ̇[re + cτ ]βµβν · cdτ (4.10)

dSµν[2s] = σe

∫ re+cτ

0

∫
Ω

ηUµUνd4V = 1
3
%̇[re + cτ ] [βµβν − gµν ] · cdτ (4.11)

Summing individual terms with the inclusion of a necessary integration constant leads
to

dSµν = dSµν[1τ ] + dSµν[1s] + dSµν[2τ ] + dSµν[2s] + gµνmc2 · cdτ (4.12)

A second rank total energy tensor written exclusively in terms of spherical basis unit
vectors is

1

c

dSµν

dτ
= mc2βµβν − 1

2
ρ̇cτβµβν + 1

3
%̇cτ (UµUν + θµθν + φµφν) (4.13)

= Eµν
part + Eµν

vac + Pµν
vacc (4.14)

The invariant hamiltonian can be extracted immediately from the single timelike
component

H = mc2 − 1
2
ρ̇cτ (4.15)

Using H , a diagonal matrix representation of a total energy tensor Eµν
tot valid in the

spherical basis is easily shown to be

Eµν
tot =


H 0 0 0
0 1

3
Pc 0 0

0 0 1
3

Pc 0
0 0 0 1

3
Pc

 (4.16)

To complete the calculation it is also useful to form scalar contractions of the vacuum
terms deriving the general relation

Evac = 1
2

Pvacc (4.17)

These calculations are quite general and should apply independent of accelerations of
the particle.
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4.3 Applications of the Divergence Theorem

The three hyper-surfaces in equations (4.3) and (4.4) can be combined to form a
closed surface Sν on the casual light cone. The divergence theorem for vectors and
second rank tensors is then ∫

V
∂νX

ν d4V =

∮
S
Xνd3Sν (4.18)

∫
V
∂νY

µν d4V =

∮
S
Y µνd3Sν (4.19)

Four-Volume: A spacetime diagram showing the four-volume inside the light cone
for an electron moving at speed βν is shown in figure 4. The radius of the central
hyper-cylinder is given by ρ = re and the world line of the particle travels through
its center. Probably the simplest example of the use of the divergence theorem is a
calculation of the surrounding four-volume. This can be accomplished begininning
with the function

f =
1

3
∂λR

λ = 1 (4.20)

Limits for ρ and cτ are identical and may be written

re ≤ ρ ≤ cτo (4.21a)

re ≤ cτ ≤ cτo (4.21b)

The volume of 4-solid is then

V4 =

∫
d4V =

1

3
πc4τ 4

o −
1

3
πr4
e −

4

3
πr3
e (cτo − re) (4.22)

This volume may also be determined by integrating over the spacelike plane and the
timelike tubular hyper-surface

V4 =

∫
S1

1

3
Rνdσ

ν
s +

∫
S2

1

3
Rνdσ

ν
τ (4.23)

Velocity Potentials: The vacuum gauge condition can also be integrated over the
volume using the same limits given in (4.21):∫

∂νA
νR2dρ dΩ cdτ = 2πe(cτo − re)2

Instead, one may also integrate the velocity potentials over the spacelike and time
like surfaces rendering ∫

∂νA
νd4V = Σ1 + Σ2 (4.24)
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where the two contributing surface integrals are given by

Σ1 =

∫
S1

Aν · dσνs = 2πe
[
c2τ 2 − r2

e

]
(4.25a)

Σ2 =

∫
S2

Aν · dσντ = 4π
[
r2
e − cτre

]
(4.25b)

and the integration over S3 is zero.

Figure 4: Causal light cone surrounding a constant velocity electron.

Vacuum Tensor: A more challenging problem for constant velocity motion is the
application of the divergence theorem to the vacuum tensor. Once again, we refer to
figure 4 but this time the theorem will be applied to both the central hyper-cylinder
and also to the causal light cone less the hyper-cylinder.

For the first problem, three surface integrals replace the four dimensional volume
integral producing∫

Vcyl

∂µΛµνd4V = −
∫

S4

Λµνdσsµ +

∫
S5

Λµνdσsµ −
∫

S2

Λµνdστµ (4.26)

But the divergence on the left side of the equation is zero along with the surface
integral over S2. This implies that integrals over the two hyper-ellipses are the same
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to within a sign. If the radius is ρ = re these integrals also determine the energy-
momentum four-vector of the particle:∫

S 4,5

Λµνdσsµ = ±mc2βµ (4.27)

A slightly more complicated problem is to re-write equation (4.26) with contrac-
tions on the second index. In this case the divergence on the left side of the equation
is a delta function so the volume integral is non-zero. The integrals over the ends of
the cylinder still cancel and this requires the integral over S2 to be non-zero. In fact,
to within a sign, each of the remaining integrals is equal to the energy-momentum
four-vector of the electron multiplied by an appropriate time interval:

mc2βµ · τ
τe

=

∫
Vcyl

∂νΛ
µνd4V = −

∫
S2

Λµνdστµ (4.28)

This equation relates a point source to a flux integral over S2 which determines the
inertia of the particle.

For the second problem, the vacuum tensor is integrated over the three surfaces
S1, S2, and S3. The analysis is similar to the hyper-cylinder and includes contractions
on either index. Choosing the second index renders the equation∫

Vlc

∂νΛ
µνd4V =

∫
S1

Λµνdσsν +

∫
S2

Λµνdστν +

∫
S3

Λµνdσlν (4.29)

On the left, the four-volume avoids the delta function produced by the integrand so
the integral is zero. On the right, integrals over the spacelike and timelike surfaces
are identical. This means the integral over the lightlike surface is twice the value of
either one except for a sign change:

1

2

∫
S3

Λµνdσlν = −
∫

S1

Λµνdσsν = mc2βµ
[
1− τ

τe

]
(4.30)

This verifies the divergence theorem but it is also important to exhibit a general
relation among the timelike and spacelike surface integrals. If the initial and final
proper times are such that ∆τ = τ − τo then

−
∫

∆τ

Λµνdστν = −
∫
τ

Λµνdσsν (4.31)

Equation (4.31) says that the total flux of vacuum energy through the particle radius
over a proper time ∆τ is equal to the energy density in the vacuum at time τ integrated
over the space which it occupies.
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A Classical Action

To calculate the action for the vacuum gauge particle assume that a differential change
in the vacuum strain dηµν , is accompanied by a differential change in the action dS
through the relation

dS = − 1

4πc

∫
∆µνdηµν d

4V (A.1)

where the volume element is given in equation (4.1). It is straightforward to show
that the integrand can be written as a total differential

∆µνdηµν =
1

2
d [∆µνηµν ] =

1

2

d

dR
[∆µνηµν ] dR (A.2)

where R is a variable representing intermediate states of the electron radius as it
expands towards its value of re. The action follows as

S = − 1

8πc

∫ ∫ re

0

d

dR
[∆µνηµν ] dR d

4V (A.3)

But the integration over the radius is trivial so that

S = − 1

8π

∫
re

∆µνηµν d
4V (A.4)

The propagation of the field follows from the symmetry operation

∆µν −→ ∆µν − 4πσe gµν (A.5)

and the transformed action becomes S = S1 + S2 with individual contributions given
by

S1 = − 1

8πc

∫
re

∆µνηµν d
4V S2 =

1

2c

∫
σeη d

4V (A.6)

Both integrals are Lorentz scalars and constrained by the causality step ϑ(τ−ρ/c+re).
The value of S1 can be determined using a lower integration limit at the classical
electron radius leading to

dS1 −→ −mc2dτ · ϑ (A.7)

for large times.
Unfortunately, the term S2 will diverge unless causality forces an upper limit to

the integral. Furthermore, it will be mandatory to extend the lower integration limit
to include ρ = 0. Distinct portions of S2 corresponding to volumes inside an outside
the electrons’ vacuum boundary are

S2 =
1

2c

∫
V<
σeη d

4V +
1

2c

∫
V>
σeη d

4V = S< + S> (A.8)
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Figure 5: Spacetime diagram showing four-volumes V< and V> associated with the
causal light cone.

The relevant volumes are shown in figure 5 in an abitrary Lorentz frame. Evaluating
the integrals over the spatial variables shows that

dS< = mc2 · dτ dS> =
1

2
%̇cτ · dτ (A.9)

Individual conributions to the action can now be added together. For consistency an
integration constant can be included in the form dS0 = −mc2dτ to show that the
total rate at which the action changes with respect to proper time is given by

dS

dτ
= −H (A.10)

where H is the Hamiltonian of equation (4.15). Of particular interest is a slice of the
action from the radiation term. If δτe is the time required for light to traverse the
radius of the particle then

δS> =
dS>
dτ
· δτe = mc2τ (A.11)

A Dirac plane wave in moving frame coordinates is easily constructed from

ψ(ct, rrr) = ψoe
i δS>/~ = ψoe

i(Et−p·rrr)/~ (A.12)

where ψo is the appropriate spinor field.
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B Present Position Coordinates

The vector R causally connects the retarded position of the electron to the present
time event where the field is evaluated. However, a theory of the electron can also
be rationalized using the vector R from the present position to the field point. For
constant velocity motion R is defined by

R ≡ rrr −βββct (B.1)

Its relationship to the vector R derives from the light cone condition and is illustrated
in figure 6 for the simplified case of z-directed motion. The resulting formula reads

R = R −Rβββ (B.2)

It is important to determine the inverse transformation R = R(R) which can be

Figure 6: A sphere of radius R in grey and a sphere of radius R in red. Associated
coordinate systems are related by a rotation through angle α = ξ − θ.

accomplished by squaring (B.2) and using the quadratic formula to yield

R = γ2R ·βββ + γ[R2 + γ2(R ·βββ)2]1/2 ≡ f(R) (B.3)
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Inserting this result back into (B.2) gives the vector relation

R =R+ f(R)βββ (B.4)

Also of importance is a formula for ρ in terms of present position coordinates. This
can be determined beginning with (B.2) and dotting both sides with n̂̂n̂n:

ρ = γR · n̂̂n̂n = [R2 + γ2(R ·βββ)2]1/2 (B.5)

Present Position Potentials: There are probably several ways to derive moving
frame vacuum gauge velocity potentials in terms of the present position vector. The
most straight forward approach is to Lorentz transform the rest frame potentials
and coordinates, and then substitute equation (B.1). An easier method is to simply
insert the transformations in (B.3) and (B.4) into the retarded vacuum gauge velocity
potentials:

A =
eγ

ρ
+
eγ2

ρ2
βββ ·R (B.6a)

A =
eγβββ

ρ
+

e

ρ2

[
R+ γ2(βββ ·R)βββ

]
(B.6b)

The Liénard-Weichert potentials are easily discernable as the first term on the right of
both equations. This requires the remaining terms to be representations of the gauge
field. In fact, since the gauge field is proportional to the spacelike vector Uν , then
the remaining terms can be multiplied by ρ/e to give the present position formula

Uν =
1

ρ

[
γ2βββ ·R, R+ γ2(βββ ·R)βββ

]
(B.7)

A useful graphic is provided by figure 7 showing the congruency between the potentials
and coordinate vectors. In the moving frame, A moves with the particle. Although
it does not point radially from the present position, it is still radial with respect to
the retarded position and its magnitude and direction are independent of which set
of coordinates are used.

Spherical Coordinates at the Present Position: For the present time problem
the coordinate transformation is still

xν = cτβν + ρUν (B.8)

with the provision that the four-vector Uν must be written in terms of present time
angles. Defining present time unit vectors by the set (ŝ̂ŝs, ξ̂̂ξ̂ξ, φ̂̂φ̂φ) then the components of
Uν are

Uν =
1

[1 + γ2(βββ · ŝ̂ŝs)2]1/2
[
γ2βββ · ŝ̂ŝs, ŝ̂ŝs+ γ2(βββ · ŝ̂ŝs)βββ

]
(B.9)
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Figure 7: Vacuum gauge vector potential A decomposed into components along the
vectors R, and βββ.

and angular basis vectors ~eξ and ~eφ can be determined from

~eξ =
∂Uν

∂ξ
~eφ =

∂Uν

∂φ
(B.10)

A problem arises however because orthogonality ~eξ ·~eφ = 0 mandates an additional
requirement that at least one of the three-space angles be orthogonal to βββ. For this
reason it is much easier to specify that βββ point along the z-axis with the requirement
that βββ · φ̂̂φ̂φ = 0. The transformation (B.8) then simplifies to

ct =

[
γβ cos ξ

(1− β2 sin2 ξ)1/2

]
ρ+ γcτ x =

[
sin ξ cosφ

γ(1− β2 sin2 ξ)1/2

]
ρ (B.11a)

z =

[
γ cos ξ

(1− β2 sin2 ξ)1/2

]
ρ+ γβcτ y =

[
sin ξ sinφ

γ(1− β2 sin2 ξ)1/2

]
ρ (B.11b)

31



VG Electron in the Spherical Basis www.vgelectron.net

Basis vectors and unit vectors derived from this transformation are

~eτ = βν βν =


γ
0
0
γβ

 (B.12a)

~eρ = Uν Uν =
1

γ(1− β2 sin2 ξ)1/2


γ2β cos ξ
sin ξ cosφ
sin ξ sinφ
γ2 cos ξ

 (B.12b)

~eξ =
ρ

γ(1− β2 sin2 ξ)
ξν ξν =

1

(1− β2 sin2 ξ)1/2


−β sin ξ

cos ξ cosφ
cos ξ sinφ
− sin ξ

 (B.12c)

~eφ =
ρ sin ξ

γ(1− β2 sin2 ξ)1/2
φν φν =


0

− sinφ
cosφ
0

 (B.12d)

and the differential element of the interval is

ds2 = c2dτ 2 − dρ2 − ρ2

γ2(1− β2 sin2 ξ)

[
dξ2

1− β2 sin2 ξ
+ sin2 ξdφ2

]
(B.13)

The metric tensor is still diagonal in the present position basis but not as clean as
equation (1.16). In terms of the present position R it reads

gµν =


1 0 0 0
0 − 1 0 0
0 0 −R2/(1− β2 sin2 ξ) 0
0 0 0 −R2 sin2 ξ

 (B.14)

Four-Volume and the Present Position: Using the present position scale factors
the four-volume element is constructed as

d4Vp =
ρ2

γ2(1− β2 sin2 ξ)3/2
dΩp dρ cdτ (B.15)
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The volume of the light cone is easy to calculate by separating out the angular inte-
grations ∫ cτ

0

[∫ cτ ′

0

ρ2dρ

]
dcτ ′ ·

[∫
dΩp

γ2(1− β2 sin2 ξ)3/2

]
=

1

3
πc4τ 4 (B.16)

It is instructive to implement a change of variables ρ = ρ(R) using equation (B.5) so
that

dρ = dR · γ(1− β2 sin2 ξ)1/2 (B.17)

This leads to a more easily recognizable volume element

d4Vp = R2dRdΩp cdt (B.18)

where cdt = γcdτ . The connection with the four-volume element of equation (4.1)
can be immediately established by calculating the Jacobian determinant associated
with the transformation of equation (B.2). One finds J = ρ/γR so that the radial
integration can be replaced by

R2dRdΩp −→ R2dRdΩ(1− n̂̂n̂n ·βββ) (B.19)

which re-derives (4.1). Now suppose the present position volume element is used to
calculate the volume of the light cone. In this case the radial integral can still be
performed but limits of integration will now depend on the polar angle. The rate of
change of volume with proper time may be written

1

c

dV
dτ

= γ

∫
Ω

[∫ R(cτ,ξ)

0

R2dR

]
dΩp (B.20)

where the upper limit of integration is given by

R(cτ, ξ) =
cτ

γ(1− β2 sin2 ξ)1/2
(B.21)

The final result is (B.16).

Integral of the Null Current: A charged particle created at the origin of a co-
ordinate system propagates a null delta current given by

JνN = − ec
4π

Rν

ρ3
δ(cτ − ρ) (B.22)

But the delta function is easily written in terms of present time coordinates

δ(cτ − ρ) −→ δ[γ(ct− r)] =
1

γ
δ(ct− r) (B.23)
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Use of the volume element in (B.18) generates the present position integral

1

c

dQν

dτ
= − ec

4π

∫
1

ρ2
[Uν + βν ] · δ(ct− r)R2dRdΩp (B.24)

To proceed further it will be necessary to write the delta function in terms of present
posisition coordinates δ = δ(ct,R, ξ). Using equation (B.5) and the coordinate trans-
formation in (B.11) it is easy to show that for motion in the z-direction

δ(ct− r) = δ
[
ct−

√
R2 + 2βRct cos ξ + β2c2t2

]
(B.25)

The value of R which makes the argument zero is

R(ct, ξ) = ct[(1− β2 sin2 ξ)1/2 − β cos ξ] (B.26)

Now use the well known properties of delta functions to derive

δ(ct− r) −→ 1

(1− β2 sin2 ξ)1/2
· δ
{
R− ct[(1− β2 sin2 ξ)1/2 − β cos ξ]

}
(B.27)

inserting this into the integral then leads to the simple formula

1

c

dQν

dτ
= − ec

4π
βν
∫

dΩp

γ2(1− β2 sin2 ξ)1/2
(B.28)

A vector charge density now presents itself by multiplying and dividing this equation
by the electron radius and using the surface element da = ŝr2

e dΩp:

1

c

dQν

dτ
= −cβν

∫
σe(ξ) · da (B.29)

Vacuum power in the Present Position Theory: Electric and magnetic energy
flux vectors are particularly simple at the present position,

SSSE =
ec

2R2
σe(ξ) (B.30a)

SSSB =
ec

2R2
βββ × σe(ξ) (B.30b)

An equation for the associated surface can be determined by evaluating R(ct, ξ) in
equation (B.26) at ct = re. Coordinates of the vector from the present position to the
surface are then

Rx = R(re, ξ) sin ξ cosφ

Ry = R(re, ξ) sin ξ sinφ (B.31)

Rz = R(re, ξ) cos ξ
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Figure 8: Surface of the classical electron shown in red with particle present position
shifted by βββre from the center of the sphere.

Two tangent vectors can be constructed from

Tξ =
∂R
∂ξ

∣∣∣∣
ct=re

Tφ =
∂R
∂φ

∣∣∣∣
ct=re

(B.32)

so that

Tξ × Tφ = R2(re, ξ) sin ξ

[
ŝ̂ŝs− β sin ξ

(1− β2 sin2 ξ)1/2
ξ̂̂ξ̂ξ

]
(B.33)

The area of the sphere follows from

S =

∫
‖Tξ × Tφ‖dξ dφ = 4πr2

e (B.34)

but the total charge is determined by integrating the vector charge density over the
surface

e =

∫
σe(ξ) · Tξ × Tφ dξ dφ (B.35)

Invariant vacuum power from both electric and magnetic energy flux will also be
determined by similar surface integrals

PE =

∫
SSSE · Tξ × Tφ dξ dφ =

mc2

τe
(B.36)

PB =

∫
SSSB · Tξ × Tφ dξ dφ = 0 (B.37)
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