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“To get a consistent picture, we must tmagine that something holds the
electron together. The charges must be held to the sphere by some kind of
rubber bands—something that keeps the charges from flying off.”

R.P. Feynman, The Feynman Lectures, chapter 28
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Abstract

A covariant theory of the Maxwell-Lorentz electron can be established in
a spherical four-coordinate system having basis vectors describing a spacetime
with a distorted solid angle as viewed by a moving observer. Although the
spacetime remains flat, its implementation requires the use of ten independent
Christoffel symbols generated by the coordinate transformation. Velocity and
acceleration field strength tensors occupy independent subspaces and are easily
constructed in the spherical system. Symmetric and total stress tensors are also
more tractable and can be derived from a basis-independent approach. The
spherically based system is highly efficient and complimentary to a description
of the classical electron in the vacuum gauge.
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1 Spherical Four-Coordinates

A mathematical introduction precedes the description of the vacuum gauge electron in
the spherically based four-coordinate system. The coordinate transformation derives
four mutually orthogonal basis vectors constructed from coordinates relative to the
retarded position of the particle.

1.1 Coordinate Transformation

Two coordinate systems in Minkowski space are linked by a four-coordinate transfor-
mation parameterized by the quantity B representing the velocity of one frame relative
to another. In the frame S, the coordinates of the spacetime event P shown in figure
1 can be written as the sum of purely timelike and purely spacelike components

Ty =zl + o (1.1)

The same event viewed in the frame S—and connected by a homogeneous Lorentz

r o> >

Figure 1: Spacetime event x¥ analyzed in terms of timelike and spacelike components.

transformation—can be represented by the expansion
¥ = (2*B))B" — (2 U\UY (1.2)

where the timelike and spacelike unit vectors 8” and U are Lorentz transformations
of their rest frame counterparts having norms of 1 and —1, respectively. Component
lengths along each direction are easily determined to be the Lorentz scalars

By = cT and Uy = —p (1.3)
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and the transformation law follows from the observation that U/* can be written as a
function of two appropriately chosen angular coordinates (, ¢) allowing the present
time coordinates to be written =¥ = z¥(cT, p, 0, ¢) or

' =crp’ +pU” (1.4)

The quantities p and c7 are assumed to be independent of each other and also inde-
pendent of the angular coordinates since it can be shown that

0 0 0 0

a0 0o 00  0¢
In general, it will not be necessary to consider points x” outside the particles causal
light cone which will follow as long as p < cr.

Now suppose the world line of the particle is described by the four-vector w”. This

can also be projected onto spacelike and timelike vectors via

w” = (w*By) B — (wU\U” (1.6)
and the light cone condition in the new coordinate system is
R” = (e — w’B) B + (p + w U\ )U” (1.7)
Contracting on both sides of the equation with 8” and U then shows that
wBy = cr —p (1.8a)
w\Uy =0 (1.8b)

This means that for any point along the world line of the particle, the transformation
in (1.4) requires the position of the particle to point instantaneously along the direc-
tion of its four-velocity. Equations (1.8) may now be re-inserted into (1.7) to derive
the general form of the null vector.

Basis Vectors and Unit Vectors: Basis vectors with lowered indices are easily
derived from the coordinate transformation in (1.4). As an intermediate step one can
calculate angular derivatives of U”

ou” R ou”  Rsinf
_ Lo = v 1.
T 9 ¢ (1.9)
leading to the four basis vectors
Ox Ox

& =—~2=243, & =—=U, 1.1
& = B g, o U, (1.10a)
, Oz, _ Oz, _
=27 = R0, €, = 90 = Rsinf ¢, (1.10b)
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These vectors include the scale factors

h,=1 h,=1 hy=R  h,=Rsinf (1.11)

P

which can be divided out to give an orthonormal set of unit four-vectors written
explicitly as functions of an accompanying set of three-vectors. Raising indices for
convenience yields

B = pﬂ} (1.12a)
ol e
" Ew o 5 ¢ 2
¢ = m ¢ _ﬁ[j’x é: (1.12d)

In an arbitrary frame of reference the spacelike vectors may be difficult to visualize,

especially 0¥ and ¢” which generally have non-zero time components. Regardless,
figure 2 makes an attempt to show them at a present time event. Timelike and
spacelike unit magnitudes consistent with the spacetime metric are

B, =1 Uuu, =-1 06, = —1 ¢’ d, = —1 (1.13)

and the six different orthogonality relations can also be verified.
The total differential calculated from the coordinate transformation is
dx dx
ds* = dz¥dx, = Y dgdg® 1.14
dq}\ dQOz ( )

and this produces the specific form of the interval

2

ds® = 2dr? — dp* — ——L——_[d6* + sin® 0 d¢y® 1.15

o o’] (1.15)

From here the diagonal metric tensor can be easily constructed. Using R as a function
of the spatial coordinates (p, 0, ¢) an appropriate matrix representation is

1 0 0 0
0 —1 0 0
0 0 0 —R’sin?6
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Figure 2: Orthonormal set of unit four-vectors at the point (ct, r) defined relative to
the retarded position of an electron moving along its world line.

Inverse Transformation: The inversion of (1.4) can be written ¢* = ¢*(z"). Con-
sidering each of the components (R,, R,, R.) as functions of the present time coordi-
nates a simple representation of the inverse transformation is

ctr=ct./v+p p=7R—~7R-B
R2 —|—R2 1/2
0 = tan"* % ¢ = tan ! [%] (1.17)

Each spherical coordinate here can be set to a constant value which will define a
three-dimensional hypersurface in Minkowski space. Once again, these surfaces may
be difficult to visualize except in the rest frame where the spacelike surfaces become
identical to those of the standard spherical-polar coordinate system. Dual basis vec-
tors, similar to those in equation (1.10) except with raised indices, follow from the
inverse transformation as:

G =0t =B G =0 = -U" (1.18)
59:8”9:—19’ G =0 = — ! o (1.19)
R Rsin '
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In this case the scale factors appear in the denominators and a general relation con-
necting the two sets of basis vectors is given by

€, w’=20," (1.20)
Christoffel Symbols: Derivatives of the basis vectors define ten independent
Christoffel symbols thru the relations

0wt
= e
aqu pv S aqu

= -I% @* (1.21)

which can also be determined directly from the metric tensor:

F;O;l/ = %gAa [g/\u,u + vy — guu,)\] (122)
L Tp, =~ 2. TV =
pd P PO p
3 TP — P i T psin? 6
Y (1 -n-B)? C T T 21— h-B)
B o B
5. Ty = 6. T¢, =
Y 1-n-B 00 1-n-8
¢ _ .B'A 6 ,3§£ .
7 F9¢—Cot6’+1_ﬁ‘ﬂ 8. Iy 1_ﬁ.ﬂsm9
é 4
9 Fi(b:—sinécos@— _ﬁ.'BsiDQO 10 F£¢ 1?7}.381119

The Christoffel symbols will naturally be useful for future calculations, but it will be
unnecessary to use them to calculate components of a curvature tensor since we are
working exclusively in a flat spacetime. If 5 — 0, several of the symbols vanish while
the remaining non-zero symbols reduce to those of a 3D spherical-polar coordinate
system.
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1.2 Tensors and Differential Operations

Vectors: In general, a four-vector V in the spherical basis can be written in terms
of either set of dual basis vectors:

— —

vV =V", V=V,c (1.23)

However, like the well known 3D curvi-linear coordinate systems, it is frequently
easier to write vectors in terms of the corresponding unit four-vectors. In particular,
the components V¥ of an arbitrary vector generally has an immediate expansion

VY = (VBB — (VUIU — (V0,8 — (V)" (1.24)

If the vector is radial from the retarded position of the charge then components
along 0¥ and ¢" are automatically zero. As an example, the vacuum gauge velocity
potentials have a repesentation in terms of the ordered quadruplet

AV = F, o, 0} (1.25)

The set of four-space cartesian unit vectors is rarely included in the literature to
adequately represent a four vector, but its transformation to the spherical system is
important since it generates a rotation matrix defined by the matrix equation

e° [e°B, —eU, —e°b, —e°¢,] [B”]

e’ e’B, —e'U, —e*f, —ev9, u”
_ . (1.26)
eV evB, —e'U, —e¥8, —eVo, 0

e® e*B, —e*U, —e*0, —e¢,| o

Labeling the 4 x 4 matrix as U*” it is easy to see that its four columns are the
components of the unit coordinate vectors. Moreover, one finds

det [U"] = 1 (1.27)

which is entirely appropriate for a rotation matrix.

Second Rank Tensors: The outer product symbol is ® and it can be used to
define basis vectors for a rank 2 tensor

€ =€, ®E, o =dt @ d” (1.28)
Sidestepping mixed basis vectors for now, tensors with raised and lowered indices are:

T =T"g,, T=T,,&" (1.29)

10
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Once again however, it is possible to write individual components of a cartesian tensor
T in terms of spherical components which serve as unit coordinate vectors. Using

cart

the rotation tensor U*” the appropriate transformation is

T = Uk, TN U,Y (1.30)

sph cart

A matrix format for each of the sixteen components of 77 is shown in figure 3 for
convenience.

B X 1 X 1 X

G| x ' x ' x ' X
| | |

Pl XXX X

Figure 3: Showing the sizteen components of an arbitrary tensor X', in the spherical

basis.

An example of a second rank tensor using equation (1.29) is the metric tensor
given by

=g G+ 2y G 4 oo B 4 g4y 397 (1.31)

But the scale factors in the components of the tensor cancel with scale factors in the

basis vectors and this allows for a simple representation of the metric in terms of the
spherical unit vectors

g = BUBY — UMY — 0"0” — ¢t (1.32)

In other words, the metric has identical components when referenced to unit vectors
in the cartesian or spherical coordinate system.

The spherical basis is also well-suited for the construction of anti-symmetric ten-
sors. Using vectors in (1.12) six possible tensor brackets are

A = (6", U] Ay =[5, 0] Hy" =[5, ]
H = U, 07 Hy" = U", o7 Hy" = [0", 0] (1.33)

11
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and any anti-symmetric tensor follows by summing over independent components
6
X =30 Gyt (1.34)
k=1

Two other brackets having units of length are the linear combinations
HY = [RH, 0] HLY = [RH, ¢"] (1.35)

The importance of these can be understood by writing them in the cartesian basis
where the three-space unit vectors @ and ¢ separate into individual components:

~

o 64, 6, 6. 0 ¢ & ¢
_‘935 0 ¢z _¢ _¢$ _HZ 0
HY — R 7 ; wy HY — R . N Y 1.36
—by —¢. 0 o v — ¢y 0. 0 =0, ( )
_ez (by _¢z 0 _¢z _ey em 0

These are zero norm dual tensors to each other related by the Levi-Civita permutation

tensor:
HE” = $e**H,, (1.37)

2 Fields in the Spherical Basis

The dynamical variables of the electron are determined from the particles world line
w” = wY(7). The four-velocity also serves as the timelike coordinate vector in the
spherical basis, but the four-acceleration should have a general expansion along several
of the four coordinate vectors. Since a*3, = 0 it will be composed of purely spacelike
vectors. In terms of basis vectors it can be written

a = (a"Uy\) &G + (Ra*0y) 3% + (Rsinf a*py) G? (2.1)
On the other hand, with the definitions
a, = ad'U, a, = a’0, a, = a’p, (2.2)

then components a” can be written
a’ = —a, U — ay0” — a,0” (2.3)

The norm of this vector along with the norm of the vector a’ orthogonal to " are
easily determined to be

2, 2, 2 L_ 2 2
—a'a, = a, + a; +a, —a'la; = a; +a; (2.4)

As an example of the usefulness of these expressions, the power formula for transverse

radiation can be written 02
e
P, = 33 [ai + a2 + aﬂ (2.5)

12
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2.1 Velocity Fields

Dropping the subscript label, the vacuum gauge velocity potentials in the spherical
basis can be written

A=A,&" (2.6)

As noted earlier, both angular coordinates are zero while the non-zero coordinates
are only functions of p. The covariant derivative follows from

VA=[A,, — Al = A, &% (2.7)

In general, A,., has sixteen components but the simple functional form of A reduces
this number to four components which are all proportional to the vacuum dilation 7.
Using the rules of covariant differentiation and keeping careful track of minus signs
shows that

Arp=Arp =1 Apip=App=1 (2.82)
Ag.o = =A%, = —nR? Ap.g=—Al0, = —nR*sin* 6 (2.8b)
The vacuum strain tensor can then be written
ﬁ:AT;ch”T+Ap;pc3pp+A9;9¢399+A¢;¢d}’¢¢ (2.9)
In terms of unit coordinate vectors components of this tensor are
n =n U +UMUY — 010" — @' ¢Y] (2.10)

Both the field strength tensor and the vacuum tensor can now be easily calculated
using the formulas

B =g = AR = — gin (2.11)

Neither tensor has any component along angular coordinates and are best represented
in a 2 x 2 subspace of the matrix format in figure 3:

v — [2 —g] A — [—Z 207;} (2.12)

These tensors can also be constructed thru a simple change of variables from Cartesian
to spherical coordinates. A divergence on the first index of either tensor follows from
a differential operation on an arbitrary second rank tensor T leading to

T, =T  + TV T, +T"T¥, (2.13)
For the case where o — p one finds

Fr = F"  + FYTh + FTY, (2.14)

AW = A AVTH 4+ APATY (2.15)

13
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When p > 0 all components of both tensors which require a calculation can ultimately

be reduced to : v
n 0 b1 _ 2 €| _
The case where p — 0 is more complicated but it may be assumed that the point
charge delta function arises in both cases so that
4 4
v = 2 A= 2T (2.17)
c

T

2.2 Acceleration Fields

One way to determine the acceleration strain and acceleration field strength tensor is
by differentiating the vacuum gauge acceleration potentials. Since acceleration fields
fall like 1/p the acceleration potential will not have any dependence on p and this is
clearly visible in the spherical basis by writing

A, = —ea’Uy(E, +&,) (2.18)

Acceleration Strain Tensor: The covariant derivative of /Ya is somewhat difficult
to calculate in the spherical basis and it is probably easier to begin with the cartesian

tensor
PAY = —dMy - AY — xn™ + O(a?) (2.19)

where y¥ = a*R), and then transform components to the spherical basis. The result

is ~
@Ry 'R, 0 0

@Ry 'R, 0 0
A, — —— (2.20)
P ardy a0y —alU 0

L a’py @', 0 —a’U]

Labeling the six symmetric elements of this tensor as s*” leads to the extraction of
the strain tensor thru the relation

OF'A, = s 4 € (2.21)

Acceleration strain is actually a bi-linear quantity which can be written as a vector
outer product

—

e=A,®d, (2.22)
and having an explicit representation

~ € ag—» _}_a’e—» +
€= ——|—=¢6€ — €0
p LR R

Ay

aqf) — —
_%e g4 2.23
Rsin96¢+Rsm9ep¢ ( )

14
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In the basis of unit vectors define the 2 x 2 matrix

F=-° [ag %} (2.24)
p Qo Qg
so that two forms of the strain tensor can be identified as
0 % 0 0
wo_ a v _
€ [0 O} € {fj O] (2.25)

The requirement € = 0 follows by inspection along with the equation det[e"’] = 0.
Moreover, since det[%] = 0 this implies the vanishing determinants of all individual
two-by-two minors in the cartesian basis as well.
The divergence applied to the first index of the acceleration strain is
v v A A
e = e Ty, e Ty, (2.26)

The first two components of the resulting vector are automatically zero while the
remaining components are determined from

Oer? P!
0 _ 6 0 ] _
=t [zrpg v Fp¢] = (2.27a)
OeP? eP?
¢ ¢ |0 ¢ | _
=g T [Fpe + 2rp¢] = (2.27h)

These are components of the strain current which allows the divergence equation to
be written
e, =mna (2.28)

Acceleration Field Strength Tensor: A fundamental representation of the ac-
celeration field strength tensor in the spherical basis can be derived by writing the
tensors in equation (1.35) as

0 0 1 0 0 0 0 1
ol 0 ol M rlo o0 0 oo @)
0O 0 0 0 -1 -1 0 0
Couple this with equations (2.25) and the acceleration fields become
v = (A, %) = —na,[RY, 6] — na,[R", ¢") (2.30)

This looks like a separation of the fields into independent polarization states with
unitless terms multiplying the dilatation n. In fact, all three polarization states can

15
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be written together in the unit coordinate basis since velocity and acceleration fields
belong to their own independent subspaces. Defining % the total field is

% T
uvo v a
FHv — {—ﬂ 0} (2.31)
and an extension of (2.30) is
FH = nlUu*, %] — na,|R*, 6”] — na,[R", ¢"] (2.32)

3 Total Stress Tensor in the Spherical Basis

The velocity portion of the symmetric stress tensor is O] and can be derived begin-
ning with
47
A v RNV
A’u;un AT 7]@ U/IDY (31>
This equation is just the second equation in (2.17) multiplied by the velocity strain.
Operations on the left side are
AM;” n'\= (AMUVA);# — A 77V>\;p
= ("0 =™ = 00 s+, (3.2)

but each of the last two terms can be written as total derivatives

00y = 38" (1% an) s m’™., = 38" (%) . (3.3)
so the first equation can be re-arranged to read
1 AV v, 1 _.pv A 2 1 kA UV
o = = e e = )], = 250 (34)
The free term vacuum Lagrangian is
1
L,=——A»A"n,, 3.5
87T 77# ( )
which easily finds its way into (3.4) with the inclusion of an overall minus sign to read
oL, L .
Yy — g”"ﬁo} =——75"n" 3.6
[ amn A y - UIDY (3.6)

The term in brackets is the vacuum form of the canonical stress tensor. Like the
electromagnetic theory it must be symmetrized by removing the superfluous term
with zero divergence:

(™) ;u =0 (3.7)
What remains is the symmetric stress tensor
174 1 v v
Ol = - [z&" " — 0" (3.8)
obeying the divergence relation
v 1 % v
@'z/fac A - _EjeA T] A (39>

16
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3.1 Solution to the Stability Problem

To complete the velocity theory it will be necessary to propagate the velocity fields.
This can be done with the addition of a term linear in the vacuum dilatation. The
complete Lagrangian for the velocity theory inclusive of an interaction term is then

1 1 1
Loe = ——A"n,, + —0.n— —jFA
vac 87'{' 77/.14 + 2 77 C]e 1

=L, +Ly+ L, (3.10)
The total stress tensor associated with this Lagrangian can be written
TH = M + N (3.11)
and is easily transformed to the spherical basis by writing

Thy = Uk, T,

sph

= U, 01 U + U AU = o), + N (3.12)
Matrix representation of both tensors are
n” 0 0 0 -7 n 0 0
1 {0 -2 0 O o | 0 2np 0 0
wo T o= =
@1 sph 871 0 0 772 0 Asph 2 0 0 00 (313>
0 0 0 n? 0 0 00

The symmetric stress tensor is diagonal implying that the spherical basis vectors
are also eigenvectors. This is not true of the vacuum tensor which has a single off
diagonal element and no components along 6 or ¢”. To show stability of the particle,
conveniently write the sum of these two tensors as

y 1 1 y 1 5
(prh = {8_71'772 - §Uen:| 1# + 50'677 62# (314)

where G/ and G5 are matrices of ones and zeros only and defined by

1 0 00 0100
0 -1 0 0 0100

=10 0 10 > =1loo010 (3.15)
0 0 01 000 1

In terms of components of the orignal Lagrangian, (3.14) may be written more con-
cisely as
T = —(Lo+ Ly) G + L, G (3.16)

sph

17
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and stability will be determined by the condition p = r. for which the value of the
vacuum Lagrangian is zero. Meanwhile, the remaining tensor is canonical energy flux
thru the radius and not associated with local stress on the particle. It can also be
written

g = —L,-0"R!

rad

(3.17)

where the tensor on the right indicates directly, the dispersion of radiation from the
retarded position of the charge. As a final step, vacuum gauge theory can be brought
full circle by re-deriving the vacuum Lagrangian from the contraction

Looe = —=BuI% 00 (3.18)

and subsequent application of the vacuum gauge condition.

Symmetric Stress Tensor for Accelerated Motions: Accelerated motions of
the electron can be accommodated by applying a perturbation to the vacuum strain
of the form

N — Y — (3.19)

The dilatation is unaltered by the perturbation since g, e = 0, but the stress tensor
will acquire terms linear and quadratic in the acceleration strain:

v 11

S w2
9vac 47_(_ |:2g n

LA,V

[//SWan U“AGV,\ - E’MEV,\ + E’M??VA] (3.20)

It is useful to construct this tensor in the spherical basis where its matrix represen-
tation is given by

[5 + p*(a; + a?) p*(a; +a3)  —pa, —pa,]
. pPlai +a3) —3+p%(af+al)  —pa, —pa,
o — — (3.21)
4dm 1
— PGy — PGy 2 0
1
L —Pay —Pay 0 3 |

This tensor should be compared with its cumbersome and lengthy cartesian counter-
part found in many textbooks. The matrix above is not only concise, but each of the
two components linear and quadratic in the quantities a, and a, is easily discernable
by inspection. More precisely, one can write

,uy_ﬂ 0 .{}; ,uu_ﬂ 2 2 L1
Sl = [If 01 (& —47T(a9—|—a¢) L ] (3.22)

18
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3.2 Independent Derivation of the Total Stress Tensor

The tensor T* can be constructed from a theory of vacuum stresses in either a carte-
sian or spherical coordinate system without appealing to a Lagrangian formulation.
This derivation enjoys the added benefit of producing the symmetric stress tensor
O with no additional requirement to eliminate a superfluous term like 7"

For general motions of the electron, the vacuum tensor is

AW = (" — g"(  where (M =M — " (3.23)

A fourth rank Maxwell-Lorentz deformation tensor is generated from A*” by the
bi-linear construction

RNV = 4i [ARA® — AMA® L AN AV APA A0 (3.24a)
7
1

— E [gukgau o C/\“CCW + C)xuclla o Cu)\cua} (324b)

Clearly an undistorted, ‘flat’ vacuum is associated with R***” = 0. It is useful to
write R** in the simplified form

1
:Ru)\ow = _j'_'MAJT_'OW (325)
AT

Although F#* is identical to the field strength tensor, it has a role in terms of inde-
pendent strain tensors which warrants the new descriptive variable. Contracting on
the second and third indices produces the second rank tensor

RV = gy REAY = RIA Y (3.26)

but this is not the only possible contraction. There are a total of five others shown in
Table 1. The fact that each of the contractions produces only variations of a single
tensor R is related to symmetry properties of R***¥ which can be written

Rudav — _phuar _ _ QuAva _ Qavid (3.27)

along with
:Ry,/\ozu T :RMV)\C% + RNQVA =0 (328)

Aside from symmetry properties, a Lorentz scalar can be formed by contracting on

R so that )
R =g, R = ——F"F,, (3.29)

Now consider a useful property of F* in the form

‘FAV;M—I'_‘FVM;)\—‘F‘F[A)\;V:O (330)

19



VG FElectron in the Spherical Basis www.vgelectron.net

Contraction Indices | Result | Contraction Indices | Result
2 and 3 RH 1 and 4 RA«
1 and 2 0 1 and 3 —RA
3 and 4 0 2 and 4 — R

Table 1: Contractions on RHA¥

An equation similar to the Bianchi identities of General Relativity follows by multi-
plying this tensor equation by F,u:

]:Uoz]:)\l/;y, + fUQ‘FVM;)\ + ]:aa]:u)\;u =0 (331>
Two contractions on (3.31) result by multiplying through by g*g°* leading to
f)\ufz\l/;u + -F)\'LLJ—:VH;)\ + f)\“.FHA;V =0 (332)

The first two terms can be combined using the anti-symmetry of F#” and a change
of indices. Writing the last term as a total derivative, the previous equation then
follows as

2F M Faviy — S(FM¥Fau)iw =0 (3.33)

The first term can also be written as a total derivative at the expense of introducing
a point source. For a Big Bang cosmology this source can be labeled j** where the
asterisk is representative of a time ct, before which the particle does not exist. The
appropriate divergence relation is

A AT
then 8
2(-7:)\'“‘7"/\1/);# - %(]:)\“]r)\u);u = _%fkvj:/\ <3'35>

The stress tensor follows from writing each term on the left in terms of contractions
on RHAev

FMFy, = —4nR*, and  FMF,, = —47R (3.36)

Introducing the metric tensor and raising the index v to a contravariant status leads
to the source equation

1
(RHV - iguyfR);u =0 = E-’TAV]:/\ (3'37>

vac; (b -

This is a gauge invariant derivation of ©"” even though vacuum gauge potentials
have been assumed throughout. On the other hand, gauge invariance must be broken
to propagate the vacuum—made possible by adding a single instance of the vacuum
tensor—Ileading to the total stress tensor

TH = R Lol R 4 N (3.38)
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For accelerated motions R*” is the sum of sixteen components determined from bi-
linear combinations of velocity and acceleration tensors n** and e*”. This is an
over-specfication of the tensor which can be minimized to four components thru the
definition

R = (¢, (3:39)

Components of the stress tensor can then be re-organized as
FMF\Y = 4r (‘J{‘“’ — %g“”ﬂ{) and FMFy, = —4AnR. (3.40)

and equations for a stable classical particle become

LR — RV = T A (3.41)

This set of equations, while designed specifically for the classical particle, can
also be applied to other macroscopic phenomena in electromagnetism. One such
application is a more general formulation the theory of transverse electromagnetic
waves as a vacuum gauge theory. In this case the vacuum gauge condition is

19, A4%| = VE? — B2 = 0 (3.42)

implying that such waves are not to be associated with vacuum dilatation. According
to equation (3.38), the theory follows by removing source and the propagation terms
leaving

1
T = =R = (3.43)

For waves propagating in the direction k, the appropriate form of A must be inserted
by hand along with the requirement A -k = 0. A vacuum strain tensor can then be
constructed satisfying

P =0 (3.44)
4 Integrals in the Spherical Basis

A primary advantage of using the spherically based four-coordinate system is to facil-
iate the integration of scalars, vectors, and second rank tensors. One may also apply
the divergence theorem over the causal light cone to derive relations among integrals.

4.1 Volume and Surface Elements

Scale factors are immediately available from equation (1.11) in section 1 to construct
both volume and surface elements. The four-volume element is

d*V = R*dp dQ cdr = p*dp dSY cdr (4.1)
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and the invariant volume of the light cone follows almost immediately by placing

appropriate integration limits on the variable p:
eright cone — %ﬂ- 047-4 (42>

Spacelike and timelike 3-surface elements having the same Doppler factor as d*¥ are

d*G, = [R*dpdS) €, (4.3a)
d*c. = [R*cdr dU €, (4.3b)

Dropping the superscript 3, these may be written more usefully in terms of contravari-
ant unit vectors

do = [R*dp dQ)) B* (4.4a)
do* = [R*cdT d U" (4.4b)

Equating increments of dp and cdt the combination of both 3-elements in (4.4) leads
to the light cone 3-surface element

1
dot = —=[R*dp dQ)] R* (4.5)
P
where the sign has been introduced for simple applications of the divergence theorem.

4.2 Integral of the Total Stress Tensor

From the matrix representation of equation (3.13), the symmetric stress tensor and
the vacuum tensor can be immediately written

O = o [ — WU + 06" + 5] (16)

1
N = o [UU” — BB + BU] (4.7)
Four-volume integrals of both tensors can be performed by separating the timelike
energy terms from spacelike pressure terms. For the symmetric stress tensor radial
integrals extend from the radius 7, to a large time ¢7 + . which can be approximated

by infinity

v 1 14 v
s = - /7726“5 d*V = mc*BtB” - cdr (4.8)

1
dsfy = = / W [UUY + 616" + ¢V AV = tmc [B4BY — ] - cdr (4.9)
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A similar procedure for the vacuum tensor follows by first observing that only the
symmetric terms make contributions to the integral. Moreover, the lower limit to the
radial integration must be extended to zero so that

Te+cT
ASfyry = / / nBBUd Y = =l + T BB ¢ (4.10)
Te+cCT
0 Q

Summing individual terms with the inclusion of a necessary integration constant leads
to

ds8* = d8”

[17]

+ d8I 4 dSIY, + dStY, + g"'mc? - cdr (4.12)

[1s] [27] [2s]

A second rank total energy tensor written exclusively in terms of spherical basis unit
vectors is

1ds*

c dr

= mc* B — %pcrﬁ“ﬁ” + %Q'CT (U U + 010" + ¢ p”) (4.13)
= E, + El + Phic (4.14)

The invariant hamiltonian can be extracted immediately from the single timelike
component

H =mc* — Lper (4.15)

Using A, a diagonal matrix representation of a total energy tensor £ valid in the
spherical basis is easily shown to be

SN
oo R O
o

E =

tot

(4.16)

wl=

coo R
oR oo
)

R ooco

1
3 Cc

To complete the calculation it is also useful to form scalar contractions of the vacuum
terms deriving the general relation

P,..C (4.17)

These calculations are quite general and should apply independent of accelerations of
the particle.
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4.3 Applications of the Divergence Theorem

The three hyper-surfaces in equations (4.3) and (4.4) can be combined to form a
closed surface §” on the casual light cone. The divergence theorem for vectors and
second rank tensors is then

/ 0,X"d*v = f XVd*S, (4.18)
v S
/ oYM dty = ]{ YRS, (4.19)
v S

Four-Volume: A spacetime diagram showing the four-volume inside the light cone
for an electron moving at speed (¥ is shown in figure 4. The radius of the central
hyper-cylinder is given by p =, and the world line of the particle travels through
its center. Probably the simplest example of the use of the divergence theorem is a
calculation of the surrounding four-volume. This can be accomplished begininning
with the function

1

f= gaARA =1 (4.20)

Limits for p and c7 are identical and may be written
re < p<ct, (4.21a)
r. <er <ecr, (4.21b)

The volume of 4-solid is then
4 Loya 1 4 4 4

Vy= [ d*V = 3TC T, = g, = 37, (cTo —12) (4.22)

This volume may also be determined by integrating over the spacelike plane and the
timelike tubular hyper-surface

1 1
YV, = / —R,do} +/ —R,do? (4.23)
S1 3 S2 3

Velocity Potentials: The vacuum gauge condition can also be integrated over the
volume using the same limits given in (4.21):

/8,,A”R2dp dQ cdr = 2me(cr, — 1.)?

Instead, one may also integrate the velocity potentials over the spacelike and time
like surfaces rendering

/ O,AYd* Y = %1 + X, (4.24)
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where the two contributing surface integrals are given by

¥ = / A, - do? = 2me [*T% — 7] (4.25a)
S1

Yo = / A, -do? = 4Ar [r? — cr] (4.25Db)
52

and the integration over S3 is zero.

ct
A

3"

4
S1 5\4 ‘,-"'
| A P =Te
< | / ) e 52 _____ v
53 1 T
Ss—LLS

Figure 4: Causal light cone surrounding a constant velocity electron.

Vacuum Tensor: A more challenging problem for constant velocity motion is the
application of the divergence theorem to the vacuum tensor. Once again, we refer to
figure 4 but this time the theorem will be applied to both the central hyper-cylinder
and also to the causal light cone less the hyper-cylinder.

For the first problem, three surface integrals replace the four dimensional volume
integral producing

/q/ ONVA* Y = —/ A’“’daj—i—/ A“”dalf—/ Ndo, (4.26)

cyl S4 Ss Sz

But the divergence on the left side of the equation is zero along with the surface
integral over S,. This implies that integrals over the two hyper-ellipses are the same
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to within a sign. If the radius is p = r. these integrals also determine the energy-
momentum four-vector of the particle:

/ N"do? = £mc? B (4.27)

Sa45

A slightly more complicated problem is to re-write equation (4.26) with contrac-
tions on the second index. In this case the divergence on the left side of the equation
is a delta function so the volume integral is non-zero. The integrals over the ends of
the cylinder still cancel and this requires the integral over S, to be non-zero. In fact,
to within a sign, each of the remaining integrals is equal to the energy-momentum
four-vector of the electron multiplied by an appropriate time interval:

mpt = = [ 9,Nvd*Y = — / N daT (4.28)

T
Te Veyt S2

This equation relates a point source to a flux integral over S, which determines the
inertia of the particle.

For the second problem, the vacuum tensor is integrated over the three surfaces
81, S2, and S3. The analysis is similar to the hyper-cylinder and includes contractions
on either index. Choosing the second index renders the equation

ONYdY = | NVdof + | NVdo + [ AN*do] (4.29)

Vie S1 S2 S3

On the left, the four-volume avoids the delta function produced by the integrand so
the integral is zero. On the right, integrals over the spacelike and timelike surfaces
are identical. This means the integral over the lightlike surface is twice the value of
either one except for a sign change:

1
- / N ol = — / N do® = mc? B {1 - 11 (4.30)
2 S3 S1 Te

This verifies the divergence theorem but it is also important to exhibit a general
relation among the timelike and spacelike surface integrals. If the initial and final
proper times are such that A7 = 7 — 7, then

- / N"doT = — / N"do? (4.31)
AT T

Equation (4.31) says that the total flux of vacuum energy through the particle radius
over a proper time A7 is equal to the energy density in the vacuum at time 7 integrated
over the space which it occupies.
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A Classical Action

To calculate the action for the vacuum gauge particle assume that a differential change
in the vacuum strain dn,,, is accompanied by a differential change in the action d§

through the relation
1
dS = ——— | A™dn,, d*V Al
drme T (A1)
where the volume element is given in equation (4.1). It is straightforward to show

that the integrand can be written as a total differential

1 d

vV 1 v
A dip = 5d [A"n,,] = QdR[

A" dR (A.2)
where R is a variable representing intermediate states of the electron radius as it
expands towards its value of r,.. The action follows as

(AR 4 A.
swc// g A el ARV (A.3)

But the integration over the radius is trivial so that

S = L A"” % (A.4)
87

The propagation of the field follows from the symmetry operation
AW — AW — Aro, gt (A.5)

and the transformed action becomes § = 8§; 4+ 85 with individual contributions given
by

1 1
81 - A“Vnw/ d4‘V 82 = 2— /Jen d4'V (A6)
Te ¢

8rc

Both integrals are Lorentz scalars and constrained by the causality step (7 —p/c+re).
The value of §; can be determined using a lower integration limit at the classical

electron radius leading to
d8, — —mc*dr - (A.7)

for large times.

Unfortunately, the term 8y will diverge unless causality forces an upper limit to
the integral. Furthermore, it will be mandatory to extend the lower integration limit
to include p = 0. Distinct portions of 8, corresponding to volumes inside an outside
the electrons’ vacuum boundary are

1 1
52:—/ aend4‘V+2— ond'V =8_+8. (A.8)
Ve c

2c s
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Figure 5: Spacetime diagram showing four-volumes V- and V-~ associated with the
causal light cone.

The relevant volumes are shown in figure 5 in an abitrary Lorentz frame. Evaluating
the integrals over the spatial variables shows that

1
ds$. =mc® - dr ds. = 5@'07’ ~dr (A.9)

Individual conributions to the action can now be added together. For consistency an
integration constant can be included in the form dS;, = —mc?dr to show that the
total rate at which the action changes with respect to proper time is given by

s

— = —H A.10
dr ( )

where # is the Hamiltonian of equation (4.15). Of particular interest is a slice of the
action from the radiation term. If 07, is the time required for light to traverse the
radius of the particle then

ds.
dr

A Dirac plane wave in moving frame coordinates is easily constructed from

08, = 07, = mc*r (A.11)

P(ct,r) = e’ 5>/ = ) e FPTI/h (A.12)

where 1), is the appropriate spinor field.
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B Present Position Coordinates

The vector R causally connects the retarded position of the electron to the present
time event where the field is evaluated. However, a theory of the electron can also
be rationalized using the vector R from the present position to the field point. For
constant velocity motion R is defined by

R=r—Bct (B.1)

Its relationship to the vector R derives from the light cone condition and is illustrated
in figure 6 for the simplified case of z-directed motion. The resulting formula reads

R=R-Rp (B.2)

It is important to determine the inverse transformation R = R(R) which can be

8

n

Figure 6: A sphere of radius R in grey and a sphere of radius R in red. Associated
coordinate systems are related by a rotation through angle o = & — 6.

accomplished by squaring (B.2) and using the quadratic formula to yield

R=7"R -B+1[R*++*(R-B)’"* = f(R) (B.3)
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Inserting this result back into (B.2) gives the vector relation
R=R+ f(R)B (B-4)

Also of importance is a formula for p in terms of present position coordinates. This
can be determined beginning with (B.2) and dotting both sides with 7:

p=7R -7 =R+ (R-B)*" (B.5)

Present Position Potentials: There are probably several ways to derive moving
frame vacuum gauge velocity potentials in terms of the present position vector. The
most straight forward approach is to Lorentz transform the rest frame potentials
and coordinates, and then substitute equation (B.1). An easier method is to simply
insert the transformations in (B.3) and (B.4) into the retarded vacuum gauge velocity
potentials:

A:QJFﬁﬁ-R (B.6a)
PP
A- % + 5 [R++%B-R)B (B.6b)

The Liénard-Weichert potentials are easily discernable as the first term on the right of
both equations. This requires the remaining terms to be representations of the gauge
field. In fact, since the gauge field is proportional to the spacelike vector U”, then
the remaining terms can be multiplied by p/e to give the present position formula

U = % 8-R. R+ (8- R)B] (B.7)

A useful graphic is provided by figure 7 showing the congruency between the potentials
and coordinate vectors. In the moving frame, A moves with the particle. Although
it does not point radially from the present position, it is still radial with respect to
the retarded position and its magnitude and direction are independent of which set
of coordinates are used.

Spherical Coordinates at the Present Position: For the present time problem
the coordinate transformation is still

¥ =crf’ + pU” (B.8)

with the provision that the four-vector 4 must be written in terms of present time
angles. Defining present time unit vectors by the set (§,£, @) then the components of
U" are

v

537 |
IR ROR

‘B-3,8++%(B-3)B] (B.9)
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—B+ =7 (B-R)B

Figure 7: Vacuum gauge vector potential A decomposed into components along the
vectors R, and B.

and angular basis vectors & and €4 can be determined from

L ou L our

€ = o€ €y = 9 (B.10)

A problem arises however because orthogonality € - €, = 0 mandates an additional
requirement that at least one of the three-space angles be orthogonal to @. For this
reason it is much easier to specify that B point along the z-axis with the requirement
that B - ¢ = 0. The transformation (B.8) then simplifies to

yBcos | sinfcos¢ |

ct = | (1— 2sin?€)1/2) p+ et x = = 6 p (B.11a)
vy cosé 1 sin{sing |

z= (11— g2sinZ )2 p+ Bt y = 0= st e p (B.11b)
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Basis vectors and unit vectors derived from this transformation are

5
& =5 =1 (B.12a)
oL

2
=G cos§
2 _ v 1 sin & cos ¢
%=t U = = Fsne)i2 |sinésing (B.12b)
72 cos &
—fsiné
g P v 1 cos £ cos ¢
- v = : B.12
=i pEang " S S AT e | cosésing (B-12¢)
—siné
0
= psing , | —sing
- v = B.12d
o v(1 — B2sin® €)1/2 ¢ ¢ cos ¢ ( )
0
and the differential element of the interval is
2 d 2
ds? = 2dr? — dp? — P & sinedd? (B.13)

y2(1 — B2sin?€) |1 — B2sin?¢

The metric tensor is still diagonal in the present position basis but not as clean as
equation (1.16). In terms of the present position R it reads

1 0 0 0
0 -1 0 0

S 0 —R?/(1 — B%sin* &) 0 (B.14)
0 0 0 —R?sin® ¢

Four-Volume and the Present Position: Using the present position scale factors
the four-volume element is constructed as
2

dgy _ P
d*v, = 21— 5o 5)3/2de dp cdr (B.15)
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The volume of the light cone is easy to calculate by separating out the angular inte-

grations
CT CT
I

[t is instructive to implement a change of variables p = p(R) using equation (B.5) so
that

!

s} 1
2 P _ 4,4
p dp] det" - {/ 20— Fsn’ )R] gmeT (B.16)

dp = dR - ~v(1 — f*sin? €)"/? (B.17)

This leads to a more easily recognizable volume element
d'v, = R*dRdQ,, cdt (B.18)

where cdt = yedr. The connection with the four-volume element of equation (4.1)
can be immediately established by calculating the Jacobian determinant associated
with the transformation of equation (B.2). One finds J = p/yR so that the radial
integration can be replaced by

R2ARAQ, — R*ARIQ(1 —# - B) (B.19)

which re-derives (4.1). Now suppose the present position volume element is used to
calculate the volume of the light cone. In this case the radial integral can still be
performed but limits of integration will now depend on the polar angle. The rate of
change of volume with proper time may be written

1dv Rler)
—— = R*dR| dS B.20
= [ / : (B.20)

where the upper limit of integration is given by
Rlcr, €) = T (B.21)

(1= FZ s )12

The final result is (B.16).

Integral of the Null Current: A charged particle created at the origin of a co-
ordinate system propagates a null delta current given by

Jy = —EF(S(CT - p) (B.22)

But the delta function is easily written in terms of present time coordinates

S(er — p) —> dly(ct — )] = %5(@ 1) (B.23)
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Use of the volume element in (B.18) generates the present position integral

1dQ” ec 1
- =—— | —[U” + 5] 6(ct — 2ARAO B.24
= e | M8 st = RAARAD, (B.24)

To proceed further it will be necessary to write the delta function in terms of present
posisition coordinates 6 = d(ct, R, §). Using equation (B.5) and the coordinate trans-
formation in (B.11) it is easy to show that for motion in the z-direction

dct—r)=9 [ct — /R2 + 2BRct cos € + (222 (B.25)

The value of R which makes the argument zero is

R(ct, &) = ct[(1 — f?sin?€)Y? — Bcos ] (B.26)

Now use the well known properties of delta functions to derive
1

(1— Fsine)

inserting this into the integral then leads to the simple formula

1dQ”  ec, aQ,
P e e T (D2%)

S(ct —r) — 75 0{R —ct](1 — fsin® Y2 — Beos€]}  (B.27)

A vector charge density now presents itself by multiplying and dividing this equation
by the electron radius and using the surface element da = 8r2d<,:

1dQ¥

c dr

_ e / 0.(€) - da (B.29)

Vacuum power in the Present Position Theory: Electric and magnetic energy
flux vectors are particularly simple at the present position,

S, = 26—7;%(5) (B.30a)
S, = 5758 x 0.(¢) (B.30D)

An equation for the associated surface can be determined by evaluating R(ct,§) in
equation (B.26) at ¢t = 7.. Coordinates of the vector from the present position to the
surface are then

R. = R(r., &) sin€ cos ¢
Ry, = R(r., &) sin&sin ¢ (B.31)
R. =R(r., &) cos&

34



VG FElectron in the Spherical Basis www.vgelectron.net

7 >~ T

Figure 8: Surface of the classical electron shown in red with particle present position
shifted by Br. from the center of the sphere.

Two tangent vectors can be constructed from

OR IR

T = — = — B.32
¢ 85 ct=re ¢ 8925 ct=re ( )

so that Bsing

) . sin A
Te x Ty = R*(r., &) sin € {s — (1= s’ e)1/? ] (B.33)
The area of the sphere follows from

S = / | Te x Ty||d€ dp = dmr? (B.34)

but the total charge is determined by integrating the vector charge density over the
surface

o= / 0u(€) - Tp x Ty de dg (B.35)

Invariant vacuum power from both electric and magnetic energy flux will also be
determined by similar surface integrals

mc?

B, = /SE T x Ty dé dop = (B.36)

e

g:/sB-Tng¢d§d¢=0 (B.37)
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