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“Whatever you call them—rubber bands, or Poincaré stresses, or some-
thing else—there have to be other forces in nature to make a consistent
theory of this kind.”

R.P. Feynman, The Feynman Lectures, chapter 28
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Abstract

The vacuum gauge requires velocity and acceleration fields of the electron
to be considered as independent phenomena—and this remains valid for a de-
scription of multipole fields. For the velocity theory, all electric and magnetic
multipoles can be written as linear combinations of vector multipole potentials.
For the acceleration fields the proportionality between the fields and potentials
is equally beneficial allowing for simple calculations associated with multipole
radiation.
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1 Multipole Velocity Fields

In the vacuum gauge both scalar and vector potentials require Taylor expansions
for small displacements from the origin. The presence of the vector potential is not
only useful, but also necessary for an accurate description of multipole electric and
magnetic velocity fluxes.

1.1 Multipole Expansion in the Vacuum Gauge

A charged particle is displaced from the origin of a coordinate system by an amount
rrro having arbitrary rectangular coordinates

rrro = ro(sin θ
′ cosφ′x̂̂x̂x+ sin θ′ sinφ′ŷ̂ŷy + cos θ′ẑ̂ẑz) (1.1)

A graphic showing the coordinate system along with vectors rrr and rrro is shown in
figure 1. The angle γ between the vectors is determined by the trigonometric identity

cos γ = sin θ′ sin θ cos(φ− φ′) + cos θ′ cos θ (1.2)

Now assume ro � r and define the small quantity

εεε ≡ ro
r

[
cos γ r̂̂r̂r +

∂

∂θ
cos γ θ̂̂θ̂θ +

1

sin θ

∂

∂φ
cos γ φ̂̂φ̂φ

]

=
ro
r

[cos γ r̂̂r̂r + r∇ cos γ] (1.3)

The well known scalar potential for this particle can be written as a sum over
Legendre polynomials in cos γ and is given by

A(r, θ, φ) = e
∞∑
l=0

rlo
rl+1
Pl(cos γ) (1.4)

However, as already discussed, the expansion of the potentials is not yet complete
and must include the vector potential also. The vector potential proves to be a more
difficult expansion since the general displacement includes two instances of the small
variable εεε:

A =
e

r

[
r̂̂r̂r − εεε

1− 2 r̂̂r̂r · εεε+ ε2

]
(1.5)

A power series in A is

A =
∞∑
n=0

An

=
∞∑
n=0

erno
rn+1

[
cosnγ r̂̂r̂r − r

n
∇ cosnγ

]
(1.6)
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Figure 1: Plot showing variables appropriate for a classical electron displaced from
the origin of coordinates.

For a stationary charge there is no need to consider magnetic fields at all. This means
each multipole vector potential must obey

∇×An = 0 (1.7)

as can be easily verified.
The importance of the vector potential arises when considering expansions of the

electric field vector. Since the field is moving an appropriate electric flux vector must
be written

πππE = σeEEE (1.8)

It is not difficult to show that a given electric flux multipole is determined by admix-
ture of potentials according to the formula

πππEm =
σe
r

m∑
n=0

Pm−n(cos γ)εm−nAn (1.9)
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Now observe that a sum of equation (1.9) over all multipoles can be written

πππE =
1

ae

∞∑
m,n=0

AmAn (1.10)

where ae is the minimum classical surface element given by ae = 4πr2e . Written this
way the total electric flux is purely a function of vacuum gauge potentials and each
multipole l can be read from the formula by including all terms such that l = m+ n.
For the record, the three lowest order contributions are

πππE0 =
1

ae
A0A0 (1.11a)

πππE1 =
1

ae
[A1A0 + A0A1] (1.11b)

πππE2 =
1

ae
[A2A0 + A1A1 + A0A2] (1.11c)

This completes the multipole expansion of the electric flux vector, but it is also useful
to write each multipole field in terms of cos γ. This can be accomplished using the
relations

(l + 1)Pl(cos γ) =
l∑

n=0

Pl−n(cos γ) cosnγ (1.12)

∇Pl(cos γ) =
l∑

n=1

1

n
Pl−n(cos γ)∇ cosnγ (1.13)

which leads to a sum over all multipoles

πππE = σee

∞∑
l=0

rlo
rl+2

[(l + 1)Pl(cos γ)r̂̂r̂r − r∇Pl(cos γ)] (1.14)

Of course this equation can also be derived directly from equation (1.4) from a gra-
dient operation.

1.2 Multipole Expansion along the Z-Axis:

A nifty simplification occurs in the expansion of the vector potential when considering
displacement from the origin along the z-axis. Equation (1.1) simplifies to rrro = zoẑ̂ẑz
while the value of εεε in spherical-polar coordinates reads

εεε =
zo
r

(cos θ r̂̂r̂r − sin θ θ̂̂θ̂θ) (1.15)
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In the cartesian coordinate system the multipole potentials are determined from

A(rrr) =
∞∑
n=1

ezn−1o

rn
[sinnθ cosφ, sinnθ sinφ, cosnθ] (1.16)

but an expansion in curvi-linear coordinates gives pure multi-angle contributions
along each of two components:

A(r, θ) =
e

r

∞∑
n=0

(zo
r

)n [
cosnθ r̂̂r̂r + sinnθ θ̂̂θ̂θ

]
(1.17)

Each component of the vector potential is also a Fourier series in the polar angle.
Fourier coefficients along each direction are identical but follow from separate inte-
grals,

εn =
2

π

∫ π

0

gε(θ) cosnθ dθ =
2

π

∫ π

0

hε(θ) sinnθ dθ (1.18)

where the two functions gε(θ) and hε(θ) are given by

gε(θ) =
1− ε cos θ

1− 2ε cos θ + ε2
(1.19)

hε(θ) =
ε sin θ

1− 2ε cos θ + ε2
(1.20)

Based on the construction of equation (1.17), it may also be reasonable to consider

individual multipole potentials in term of the complex scalar potential Ã defined by

Ã ≡ e

r

∞∑
n=0

(zo
r
eiθ
)n

(1.21)

Components of the vector potential can then be written

Ar = ReÃ =
e

r
gε(θ) Aθ = ImÃ =

e

r
hε(θ) (1.22)

The divergence of A is also important. Since the scalar potential is not a function
of time then the measure of vacuum dilatation is given by

∇ ·A =
e

r2

∞∑
n=0

[zo
r

]n [sin(n+ 1)θ

sin θ

]
(1.23)

According to this formula the total dilatation receives contributions from multipoles
of all orders. The dilatation from each multipole is a function of angle and can be
either positive or negative. However, the total dilation is positive and this can be
shown by replacing sin(n+ 1)θ with complex exponentials and summing the series to
determine

∇ ·A =
e

r2(1− 2ε cos θ + ε2)
(1.24)
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Multipole Fields of an Oscillating Charge: Now suppose that the static prob-
lem is replaced with a particle undergoing oscillations at angular frequency ω. The
position of the particle as a function of time on the z-axis is given by

zzz(tr) = zoe
−iωtrẑ̂ẑz (1.25)

where tr is the retarded time. In general

ctr = ct− ‖rrr − zzz(tr)‖ (1.26)

but if ‖zzz(tr)‖ � r for all tr then (1.26) can be replaced with

ctr = ct− r (1.27)

and this adds time dependence to the electric field vector so that (1.10) generalizes
to

πππE =
1

ae

∞∑
m,n=0

AmAne
i(kr−ωt) (1.28)

Meanwhile, a changing electric multipole field of order ` generates a magnetic flux
multipole of order `+ 1 calculated from the expression

πππB`+1 = βββ × πππE` (1.29)

where βββ = −iωzzz/c. By design, the lowest order magnetic pole is πππB1 leaving only the
radiating electric monopole πππE0. For the dipole fields it is convenient to define the
electric dipole moment ppp = ezoẑ̂ẑz. The associated velocity fields can then be written
in coordinate–free form as

πππE1 = σe [3(ppp · r̂̂r̂r)r̂̂r̂r −ppp]
ei(kr−ωt)

r3
(1.30a)

πππB1 = ikσe(r̂̂r̂r ×ppp)
ei(kr−ωt)

r2
(1.30b)

A similar procedure can also be applied to determine the quadrupole fields. In this
case it is convenient to calculate the traceless quadrupole tensor determined from

Qij =

∫
(3xixj − r2δij)ρ(rrr)d3r (1.31)

The charge density can be written ρ = eδ(x)δ(y)δ(z − zo) producing the tensor

Q̂̂Q̂Q = ez2o ·

−1 0 0
0 −1 0
0 0 2

 (1.32)
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Quadrupole electric and magnetic flux vectors are then

πππE2 = σe

[
3

2
(r̂̂r̂r · Q̂̂Q̂Q · r̂̂r̂r) r̂̂r̂r − (r̂̂r̂r · Q̂̂Q̂Q · θ̂̂θ̂θ) θ̂̂θ̂θ

]
ei(kr−ωt)

r4
(1.33a)

πππB2 = ikσe

[
r̂̂r̂r × Q̂̂Q̂Q · r̂̂r̂r

] ei(kr−ωt)
r3

(1.33b)

As a check it can be shown that the correct order in r satisfies

∇× πππBn = −ink πππEn (1.34)

for both dipole and quadrupole fields.

1.3 Ring of Charge

The theory of the vector potential is not limited to oscillating charges only. As an
example, the formalism developed here can also be applied in a many particle theory.
Begin with an electron located in the xy-plane with position vector

sss = ro(cosφ′ x̂̂x̂x+ sinφ′ ŷ̂ŷy) (1.35)

In a spherical coordinate system this vector is

sss = ro

[
sin θ cos(φ− φ′) r̂̂r̂r + cos θ cos(φ− φ′) θ̂̂θ̂θ − sin(φ− φ′) φ̂̂φ̂φ

]
(1.36)

For θ′ = π/2, the quantity cos γ simplifies to

cos γ = sin θ cos(φ− φ′) (1.37)

and the lowest order contributions to the vector potential from equation (1.6) are:

Ao =
e

r
r̂̂r̂r (1.38a)

A1 =
ero
r2

[
sin θ cos(φ− φ′) r̂̂r̂r − cos θ cos(φ− φ′) θ̂̂θ̂θ + sin(φ− φ′) φ̂̂φ̂φ

]
(1.38b)

The electric dipole moment about the origin is ppp = esss with monopole and dipole
electric flux given by

πππE0 =
σee

r2
r̂̂r̂r (1.39a)

πππE1 =
σe
r3

[3(ppp · r̂̂r̂r) r̂̂r̂r −ppp] (1.39b)
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Re-iterating the well known interpretation, the fields of the charge at coordinates
(ro, φ

′) in the xy-plane are the same as a monopole at the origin along with an asso-
ciated dipole field.

Now suppose this problem is extended to the case where there are a large number
of charges N at radius ro evenly distributed about the origin. The position of each
charge may be a random variable but for the sake of simplicity it will be assumed that
the nth particle is located at angular coordinate φ′ = 2πn/N . A graphic is available
in figure 2. The potentials in (1.38) must now be summed over all coordinates. With

Figure 2: Electrons distributed in a circle of radius ro in the xy-plane.

φn ≡ φ− 2πn

N
(1.40)

The potentials A1 and A1 vanish along with πππE1 since

N∑
n=1

cosφn =
N∑
n=1

sinφn = 0 (1.41)
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Note however that the quadrupole field is non-vanishing. Here one calculates

1

ae

N∑
n=0

A2A0 = −Ne
2r2o

2aer4

[
1

2
(3 cos2 θ − 1) r̂̂r̂r

]
(1.42a)

1

ae

N∑
n=0

A1A1 = +
Ne2r2o
2aer4

[
sin2 θ r̂̂r̂r − sin θ cos θ θ̂̂θ̂θ

]
(1.42b)

1

ae

N∑
n=0

A0A2 = −Ne
2r2o

2aer4

[
2 cos2 θ r̂̂r̂r + 2 sin θ cos θ θ̂̂θ̂θ

]
(1.42c)

Including the monopole field and defining the total charge Q = Ne, the electric flux
vector for the ring of charge can be written

πππE =
e

ae

{
Q

r2
r̂̂r̂r − 3Qr2o

2r4

[
1

2
(3 cos2 θ − 1) r̂̂r̂r + sin θ cos θ θ̂̂θ̂θ

]}
(1.43)

Of course this result is also available by taking the gradient of the scalar potential

V (r, θ) =
Q

r

[
1− r2o

2r2
P2(cos θ)

]
(1.44)

and multiplying by σe.

Magnetic Dipole Field: The previous calculation can be extended further by set-
ting individual electrons in motion around the ring. This is easy to do by introducing
a time dependence in equation (1.35) for each of the N charges:

sssn(t) = ro

[
cos

(
ωt+

2πn

N

)
x̂̂x̂x+ sin

(
ωt+

2πn

N

)
ŷ̂ŷy

]
(1.45)

If φn is re-defined by

φn = φ− ωt− 2πn

N
(1.46)

then values for the position and velocity of the nth electron in the spherical-polar
coordinate system can be written

sssn(t) = ro

[
sin θ cosφn r̂̂r̂r + cos θ cosφn θ̂̂θ̂θ − sinφn φ̂̂φ̂φ

]
(1.47)

βββn(t) =
ωro
c

[
sin θ sinφn r̂̂r̂r + cos θ sinφnθ̂̂θ̂θ + cosφnφ̂̂φ̂φ

]
(1.48)
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It has already been shown that the dipole electric flux vector vanishes for the ring of
charge and this holds true even if the charges are in motion. However, dipole electric
flux from each charge still produces a contribution to a mangetic dipole field which
can be calculated from

πππB1 =
N∑
n=1

βββ × πππE1[n]

=
1

ae

N∑
n=1

[A1βββ ×A0 + A0βββ ×A1] (1.49)

Performing the summations leads to

πππB1 =
1

ae

[
Ne2ωr2o

2r3c

(
2 cos θ r̂̂r̂r + sin θ θ̂̂θ̂θ

)]
(1.50)

Now define the current in the loop by I = Neν and the z-directed magnetic dipole
moment

mmm = Iπr2o ẑ̂ẑz (1.51)

In coordinate free form the dipole magnetic flux field can then be written

πππB1 =
σe
r3c

[3(mmm · r̂̂r̂r) r̂̂r̂r −mmm] (1.52)

It might be suggested that the results of this section qualify as a semi-classical
approach to a determination of electric and magnetic flux fields since the calculations
are performed by populating the ring (a crystal lattice of copper, maybe) with indi-
vidual quanta of the electromagnetic field. A more complete approach might include
statistics and the law of averages over a large value of N which—for a one foot long
copper wire—would be N ∼ 1023. With or without statistics however, it is important
to observe that no integrations or differential operations are required to determine the
fields. Instead, the vacuum gauge potentials take care of everything as they represent
smallest possible division of the classical electromagnetic field.

Vector Potential: As a final calculation it is important to determine an appropri-
ate potential which will render the static dipole field of equation (1.52). This can be
done using the potentials in (1.38) but it will be necessary to make careful evaluations
of the retarded time. The angular coordinate of the nth electron is

φ′ = ωtr +
2πn

N

∼ ω(t− r/c)− ωro
c

sin θ cos(φ− φ′) +
2πn

N
(1.53)
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and it will be necessary to insert this into equation (1.38b). However, if ωro/c is
considered to be a small quantity then it will be prudent to first define the angle

ψn = φ− ω(t− r/c)− 2πn

N
(1.54)

Expansions of the sines and cosines are

cos
[
ψn +

ωro
c

sin θ cos(φ− φ′)
]
∼ cosψn −

ωro
c

sin θ cosψn sinψn (1.55a)

sin
[
ψn +

ωro
c

sin θ cos(φ− φ′)
]
∼ sinψn +

ωro
c

sin θ cos2 ψn (1.55b)

Replacing the components of A1 with these expansions and summing for all n, it be-
comes evident that the only non-zero contribution to A1 will come from the azimuthal
component so that the total field will be

A1 =
N∑
n=1

ero
r2

[
sinψn +

ωro
c

sin θ cos2 ψn

]
φ̂̂φ̂φ

=
Neωr2o
2r2c

[
sin θ

r2

]
φ̂̂φ̂φ (1.56)

The complete potential will also contain contributions from the monopole potential
A0. With definitions of total charge and magnetic dipole moment already given, the
coordinate–free form of the vector potential through first order is

A =
Q

r
r̂̂r̂r +

mmm× r̂̂r̂r
r2c

(1.57)

The dipole term is just the lorentz gauge result characterized by ∇ · A = 0. The
divergence of the entire equation is then just the vacuum gauge condition applied to
the collection of charges.

2 Multipole Acceleration Fields

The proportionality between fields and potentials can be extended to particle accel-
erations beginning with the covariant expression

F µν
a = [Aµ, aν⊥] (2.1)

This gives electric and magnetic field vectors

EEEa = Aao⊥ − Aaaa⊥ (2.2a)

BBBa = aaa⊥ ×A (2.2b)
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It is easy to verify the expression BBBa = n̂̂n̂n×EEEa by operating on the electric field vector.
A general formula for radiated power also follows by making substitutions into the
Poynting vector. With help from the orthogonality relation aν⊥Rν = 0, and including
relevant factors of c, the equivalent formula is

SSS =
1

4πc3
[aaa⊥ · aaa⊥ − ao⊥(n̂̂n̂n · aaa⊥)]AA (2.3)

This is still the Poynting formula which can be integrated over a closed surface to
determine the Liénard generalization of the Larmor power formula. This is a difficult
integration since components of aµ⊥ are complicated functions of the velocity and
acceleration in the relativistic limit. In the low velocity limit however, approximations
through first order in βββ are

ao⊥ = βββ · β̇̇β̇β − (n̂̂n̂n · β̇̇β̇β)n̂̂n̂n ·βββ (2.4a)

aaa⊥ = β̇̇β̇β − (n̂̂n̂n · β̇̇β̇β)n̂̂n̂n+ (βββ · β̇̇β̇β)n̂̂n̂n− 2(n̂̂n̂n ·βββ)(n̂̂n̂n · β̇̇β̇β)n̂̂n̂n+ (n̂̂n̂n · β̇̇β̇β)βββ (2.4b)

In zeroeth order, ao⊥ vanishes and the Larmor power formula can be verified from the
closed integral

Plarmor =
1

4πc3

∮
aaa⊥ · aaa⊥AA · dsss (2.5)

2.1 Electric Dipole Radiation

The simplest application of the new formalism is the determination of acceleration
fields for an electron oscillating about the origin. Let

zzz = zo cosωtrẑ̂ẑz (2.6)

Two time derivatives and ignoring the retardation condition in the cosine produce

aaa = −ω2zo cosω(t− r/c)ẑ̂ẑz (2.7)

The perpendicular acceleration is then determined to be

aaa⊥ = ω2zo cosω(t− r/c) sin θ θ̂̂θ̂θ (2.8)

Now insert this into (2.2) using only the lowest order potentials

Aν =
(e
r
,
e

r
r̂̂r̂r
)

(2.9)

which leads to explicit expressions for the fields

EEE1 = −eω
2zo
rc2

sin θ cosω(t− r/c)θ̂̂θ̂θ (2.10a)

BBB1 = −eω
2zo
rc2

sin θ cosω(t− r/c)φ̂̂φ̂φ (2.10b)
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Defining the dipole moment ppp = ezoẑ̂ẑz and including a complex phase will then allow
the fields to be written

EEE1 = k2(r̂̂r̂r ×ppp× r̂̂r̂r)e
−iω(t−r/c)

r
(2.11a)

BBB1 = k2(r̂̂r̂r ×ppp)
e−iω(t−r/c)

r
(2.11b)

It is important to compare the derivation of the fields in (2.10) with conventional
textbook derivations—for example, Griffiths Introduction to Electrodynamics, third
edition. The vacuum gauge solution is very precise and focuses directly on the motion
of the source instead of relying heavily on the potentials which must be differentiated
in conventional calculations.

To complete the calculation requires a determination of the total power radiated.
For this it is important to include the lowest order inertial energy flux from the
velocity theory giving a total average flux

〈SSS 〉 =
c

8π

[
1

r2e
+ k4z2o sin2 θ

]
AA (2.12)

The total power radiated will then include the inertial power

Ptot = Pin + Pdip (2.13)

2.2 Electric Quadrupole Radiation

Another example of the utility of equation (2.2) is that of two electrons oscillating
in the z-direction near the origin of a coordinate system as shown in figure 3. The
positions of the particles as a function of time are given by

zzzup(t) = +
d

2
[1 + sinωtr] ẑ̂ẑz (2.14a)

zzzdn(t) = −d
2

[1 + sinωtr] ẑ̂ẑz (2.14b)

This configuration of charge has no dipole moment at any time so the leading order
radiation term will be the quadrupole. To solve for the acceleration fields it is useful
to first write down scalar and vector potentials to leading order in the quantity d/r.
Expansions will initially include the sinusoidal time dependence of each particle but
this term can be averaged to zero in the expansions. Vector potentials are

Aup =
e

r

[
(1 +

d

2r
cos θ) r̂̂r̂r +

d

2r
sin θ θ̂̂θ̂θ

]
(2.15a)

Adn =
e

r

[
(1− d

2r
cos θ) r̂̂r̂r − d

2r
sin θ θ̂̂θ̂θ

]
(2.15b)
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Figure 3: Configuration of two oscillating electrons producing quadrupole radiation in
the far field limit.

The scalar potentials can either be derived from a separate expansion or they can be
determined by taking the magnitude of the vector potential leading to

Aup =
e

r

[
1 +

d

2r
cos θ

]
(2.16)

Adn =
e

r

[
1− d

2r
cos θ

]
(2.17)

Accelerations of the particles follow from two time derivatives

aaaup = −dω
2

2
sinω

(
t− 1

c
|rrr − ddd/2|

)
ẑ̂ẑz (2.18)

aaadn = +
dω2

2
sinω

(
t− 1

c
|rrr + ddd/2|

)
ẑ̂ẑz (2.19)

Expanding inside the sine functions and noting that perpendicular accelerations aaa⊥

result by replacing the unit vector ẑ̂ẑz with the quantity − sin θ θ̂̂θ̂θ gives the approxima-
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tions

aaa⊥up = +
dω2

2

[
sinω(t− r/c) +

ωd

2c
cos θ cosω(t− r/c)

]
sin θ θ̂̂θ̂θ (2.20)

aaa⊥dn = −dω
2

2

[
sinω(t− r/c)− ωd

2c
cos θ cosω(t− r/c)

]
sin θ θ̂̂θ̂θ (2.21)

Again, we consider only lowest order in accelerations so that ao⊥ = 0 for both particles
implying a quadrupole electric field vector given by

EEE2 = −Aup aaa⊥up − Adn aaa⊥dn (2.22)

An explicit expression for the resulting electric field vector is then

EEE2 =
edω2

rc2
sin θ cos θ

[
d

r
sinω(t− r/c) +

ωd

c
cosω(t− r/c)

]
θ̂̂θ̂θ (2.23)

In the far field limit use r � c/ω and the quadrupole field reduces to

EEE2 =
eω3d2

rc3
sin θ cos θ cosω(t− r/c) θ̂̂θ̂θ (2.24)

Obviously, this result could have been obtained more simply by considering only
lowest order potentials. The magnetic field vector can be determined directly from
the electric field vector but it may also be determined as

BBB2 = aaa⊥up ×Aup + aaa⊥dn ×Adn (2.25)

Putting together equations (2.15) and (2.20) confirms that

BBB2 = r̂̂r̂r ×EEE2 (2.26)

Quadrupole Tensor: It is important to write quadrupole electric and magnetic
field strengths in terms of a quadrupole tensor This tensor is twice that of equation
(1.31) since both electrons contribute. In terms of the quadrupole tensor and re-
writing in terms of complex exponentials one finds

EEE2 =
2ik3

3

[
r̂̂r̂r × (Q̂̂Q̂Q · r̂̂r̂r)× r̂̂r̂r

] eiω(t−r/c)
r

(2.27a)

BBB2 =
2ik3

3

[
r̂̂r̂r × Q̂̂Q̂Q · r̂̂r̂r

] eiω(t−r/c)
r

(2.27b)

Finally, the time averaged momentum flux can be calculated either from equation
(2.3) or from the complex Poynting vector

SSS =
c

8π
(EEE×BBB∗) (2.28)

Power radiated per unit solid angle including two instances of the inertial power will
then be

dP

dΩ
= σeec+

ce2d4k6

36π
sin2 θ cos2 θ (2.29)
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2.3 Magnetic Dipole Radiation

Acceleration fields produced by an oscillating magnetic dipole can be calculated using
the ring of charge in section 1.3 except that each of the N electrons in the ring must
undergo oscillations about their specificed angle 2πn/N . If α is a small angle in
radians, then the position of each charge can be written

sssn(t) = ro cos (φn + α cosωtr) x̂̂x̂x+ ro sin (φn + α cosωtr) ŷ̂ŷy (2.30)

≈ ro (cosφn − α sinφn cosωtr) x̂̂x̂x+ ro (sinφn + α cosφn cosωtr) ŷ̂ŷy (2.31)

The magnitude of this vector to lowest order in α is just ro while velocity and accel-
eration vectors are

vvvn(t) = αωro sinωtr [sinφnx̂̂x̂x− cosφnŷ̂ŷy] (2.32)

aaan(t) = αω2ro cosωtr [sinφnx̂̂x̂x− cosφnŷ̂ŷy] (2.33)

and in the spherical-polar coordinate system the acceleration vector perpendicular to
r̂̂r̂r reads

aaa⊥n(t) = αω2ro cosωtr

[
cos θ sin(φ− φn) θ̂̂θ̂θ − cos(φ− φn)φ̂̂φ̂φ

]
(2.34)

Since the nth particle is oscillating at the retarded time we expand

cosω[t− |rrr − sssn|/c] ≈ cosω(t− r/c)− ωro
c

sin θ cos(φ− φn) sinω(t− r/c) (2.35)

The value of aaa⊥ summed over all particles is

N∑
n=1

aaa⊥n =
Nαω3r2o

2c
sin θ sinω(t− r/c)φ̂̂φ̂φ (2.36)

An extension of equations (2.2) is then

EEEa = −A
N∑
n=1

aaa⊥n BBBa = −A×
N∑
n=1

aaa⊥n (2.37)

which renders the fields

EEEa = −Neαω
3r2o

2c3

[
sin θ

r

]
sinω(t− r/c) φ̂̂φ̂φ (2.38a)

BBBa = +
Neαω3r2o

2c3

[
sin θ

r

]
sinω(t− r/c) θ̂̂θ̂θ (2.38b)
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To complete the calculation define the current and magnetic dipole moment by

I(tr) = Neαν sinωtr mmm(tr) = I(tr)πr
2
o ẑ̂ẑz (2.39)

allowing the dipole fields to be written more concisely as

EEEa = −mo ω
2

c

[
sin θ

r

]
sinω(t− r/c) φ̂̂φ̂φ (2.40a)

BBBa = +
mo ω

2

c

[
sin θ

r

]
sinω(t− r/c) θ̂̂θ̂θ (2.40b)

The average energy flux from this charge configuration follows from

〈SSS 〉 =
1

4πc3
〈aaa⊥ · aaa⊥〉AA =

m2
oω

4

8πc5

[
sin2 θ

r2

]
r̂̂r̂r (2.41)

Once again, the vacuum gauge reigns supreme in its ability to provide simple, straight-
forward calculations of complex quantities. All logical steps are purely algebraic and
require no knowledge of vector calculus.
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