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Abstract

The success of vacuum gauge electrodynamics hinges on the ability to
demonstrate that the flow of the vacuum field away from the source electron
bears a direct equivalence to Dirac electron theory. This can be shown by eval-
uating the total stress tensor at the electron radius, or by finding the zero of
the vacuum Lagrangian. In addition to this, the quantized Dirac field Hamilto-
nian and other operators can be derived from the classical electron total energy
tensor.
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1 Theory of a Classical Electron

A successful theory of a stable classical electron follows from an application of the
causality principle to its electromagnetic field which leads directly to the vacuum
gauge condition

|η| =
√

E2 − B2 (1.1)

Aside from the de-coupling of velocity and acceleration fields into independent theo-
ries, the velocity fields also become momentum flux fields related to the traditional
velocity electric and magnetic fields thru the simple relations

πππE = σeEEE (1.2a)

πππB = σeBBB (1.2b)

and satisfying the set of Maxwell-Lorentz equations given by

∇ ·πππE = 4πρπ ∇×πππB =
4π

c
JJJπ +

1

c

∂πππE

∂t
(1.3a)

∇×πππE = −1

c

∂πππB

∂t
∇ ·πππB = 0 (1.3b)

No such momentum flux is associated with the acceleration fields which keep their
identity but are now linked to a divergence free acceleration current density Jνa pro-
portional to the four-acceleration of the particle.

Velocity potentials determined by the vacuum gauge condition are null potentials

Aν =
eRν

ρ2
(1.4)

In the neighborhood of the charged particle they appear as displacements of the
vacuum producing stresses and strains on the surrounding medium. Specifically, the
quantity ηµν = ∂µAν defines a vacuum strain tensor whose scalar contraction is
exactly the vacuum gauge condition while the quantity ∆µν defines the associated
vacuum tensor :

∆µν = ηµν − gµνη (1.5)

Together, vacuum strain and stress tensors determine the velocity Lagrangian

Lvac = − 1

8π
∆µνηµν +

1

2
σe η −

1

c
j∗µe Aµ (1.6)

specifically designed to propagate the vacuum while having equations of motion which
are precisely the Maxwell-Lorentz equations of the classical electron. This Lagrangian
admits a total stress tensor which can be shown to be

Tµν = 1
4
gµνR − Rµν + Λµν (1.7)

The quadratic portion has an exact equivalence to the electromagnetic theory and is
gauge invariant

Θµν = 1
4
gµνR − Rµν (1.8)

In contrast, the propagation term Λµν must be constructed from vacuum gauge po-
tentials only.
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Stability and Radiated Stress: For motion relative to an arbitrary inertial frame
covariant representations of the symmetric stress tensor and the vacuum tensor can
be written

Θµν =
1

4π
η2
[
βµβν − UµUν − 1

2
gµν
]

(1.9a)

Λµν = 1
2
σeη [2UµUν − βµβν + βµUν ] (1.9b)

A covariant theory of stability can be established by defining the unitless quantities

Gµν
1 ≡ 2βµβν − 2UµUν − gµν (1.10a)

Gµν
2 ≡ Uνβµ + βµβν − gµν = −∂νRµ (1.10b)

This allows the symmetric stress tensor and the vacuum tensor to be written

Θµν
1 =

1

8π
η2Gµν

1 Λµν = −1

2
σeη [Gµν

1 − Gµν
2 ] (1.11)

and the total stress is
Tµν = −(Lo + LΛ)Gµν

1 + LΛGµν
2 (1.12)

Stability is determined by the condition ρ = re for which the first term on the right
vanishes. What remains is radiated vacuum stress having the value

Eµνrad ≡ LΛGµν
2

∣∣∣∣
ρ=re

=
e2

8πr4
e

[Uνβµ + βµβν − gµν ] (1.13)

This tensor has no energy component in the rest frame.

Properties of Eµνrad: The divergence of Tµν applied to the first index over all space
is

∂µT
µν = −1

c
j∗λe η

ν
λ (1.14)

But if we decide—by dilating the vacuum—that quadratic stresses cannot exist inside
the sphere of radius ρ = re, then this divergence will be zero. This means that the
integral over the four-volume of the hyper-cylinder in figure 1 is also zero and Gauss’
law can then be written∫

∂µT
µνR2dρdΩ cdτ =

∮
cyl

TµνdSµ = 0 (1.15)

In the spherically-based coordinate system the three appropriate surface integrals are∫
S1

Λµνdσsµ +

∫
S2

Λµνdσsµ +

∫
S3

Eµνraddσ
τ
µ = 0 (1.16)

5



Vacuum Energy and the Quantized Electron www.vgelectron.net

Figure 1: Divergence theorem applied to the total stress tensor. Red line is the world
line of the particle.

The first two integrals give the energy-momentum four-vector of the particle with
different signs so that the sum over the hyper-surfaces S1 and S2 is zero. This requires
the integral of Eµνrad to be zero which can easily be verified by integrating over solid
angle.

Gauss’ law applied to the second index is more interesting. The four-volume
integral is not zero anymore since the divergence of the vacuum tensor includes a
δ-function:

∂νΛ
µν = 2πσej

∗ν
e /c (1.17)

In this case the divergence theorem is∫
∂νΛ

µνd4v =

∮
cyl

TµνdSν = mc2βµ∆τ/τe (1.18)

Here again the integrals over the spacelike planes cancel but this time the flux integral
over S3 is

−
∫

S3

Eµνraddσ
τ
ν = mc2βµ∆τ/τe (1.19)

This is the total flux of vacuum power radiated from the particle radius over a proper
time ∆τ .
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2 Quantization of the Vacuum Gauge Electron

To establish the link between the vacuum gauge electron and the Dirac theory it is
useful to determine how the vacuum tensor responds to the γ-matrices. Applying
γµγν to the vacuum strain produces

γµγν∂µAν = I · gµν∂µAν − iσµν∂µAν ≡ ηD (2.1)

This equation also determines an operator version of the vacuum tensor

∆D ≡ −iσµν∂µAν (2.2)

which is solely a function of the classical velocity fields of the particle:

∆D =

[
iσσσ ·BBB σσσ ·EEE
σσσ ·EEE iσσσ ·BBB

]
(2.3)

Applying Dirac spinor fields to ∆D then shows that

ψ̄∆Dψ = 0 (2.4)

and this result can be extended to the case where the left and right spinor fields are
different. One might also re-formulate the vacuum Lagrangian as a Dirac operator:

LD = − 1

8π
∆D · ηD = − 1

8π

[
η∆D −∆2

D

]
(2.5)

When applying Dirac spinors to both sides of LD off-diagonal elements are elim-
inated since the classical velocity fields of the electron satisfy EEE ·BBB = 0. The end
result is a re-production of four copies of the original vacuum Lagrangian

ψ̄LDψ = I · Lvacψ̄ψ (2.6)

The propagation term may also be included in Lvac and the previous equation is
still valid. It seems that any attempt to include fundamental quantities of vacuum
gauge electrodynamics into Dirac electron theory is bound for failure. This may be a
welcome result however since any new predictions resulting from the vacuum gauge
run the risk of destroying its credibility.

2.1 QED Lagrangian

A simple (but somewhat superficial) algorithm for deriving the QED Lagrangian is
to combine the Dirac gamma matrices with the total stress tensor and integrate over
the timelike surface element in (1.16) producing the operator integral

Ô = −1

c

∫
ρ=re

γµ Tµν dσ
ν
τ (2.7)
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Comparison with equation (1.12) shows that the only contribution to this integral
comes from Eµνrad. The previous integral can therefore be reduced to

Ô = −1

c

∫
ρ=re

γµ E rad

µν UνR2dΩ cdτ (2.8)

Carrying out integrals over solid angle leaves only contributions in the direction of the
four-velocity. Integrating the proper time to the electron radius [0, τe] and including an
integration constant with an appropriate sign then allows the operator to be written

Ô = γµpµ ±mc (2.9)

The Dirac Lagrangian follows from the usual substitution

pµ −→ i~∂µ (2.10)

along with the introduction of a pair of conjugate spinor fields. An interaction term
can be generated by replacing the four-gradient with the covariant derivative

∂µ −→ ∂µ − i
e

~c
A′µ (2.11)

where A′µ is an external potential. If this potential is associated with its own external
free field then the complete QED Lagrangian (for the particle only) follows as

LQED = i~c ψ̄ ∂νγνψ −mc2ψ̄ψ − eψ̄γνψA′ν − F
′µνF ′µν/16π (2.12)

This calculation exemplifies the notion that the physics of the vacuum gauge electron
is of no consequence to the theory of quantum electrodynamics.

2.2 Dirac Electron from Radiated Stress

A more sophisticated approach linking Eµνrad to Dirac electron theory begins with the
four-volume integral

Sµν =

∫
Tµνρ2dρdΩ′cdτ (2.13)

Witholding integration over ρ and integrating proper time to the electron radius leads
to

dSµν

dρ

∣∣∣∣
ρ=re

=

∫
Eµνrad r

2
e dΩ′ cdτ = mc2[βµβν − gµν ] (2.14)

This determines the particles’ classical energy-momentum tensor Eµν
part with the inclu-

sion of the integration constant.
Unfortunately, the functional form of Eµνrad in equation (1.13)—although technically

correct—is inadequate as a tensor representing radiated stress. To understand why,
it is important to realize that it must be constrained by the causality sphere. The
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implication is that radiated stress must be determined from binary combinations of
timelike and spacelike Fourier modes of potentials of the form

Aνe:ω(ρ) =

√
2

π
· eφ̃ω

e−iωρ/c

ωρ
βν (2.15a)

Aν`:ω(ρ) =

√
2

π
· eφ̃ω

e−iωρ/c

ωρ
Uν (2.15b)

A Fourier mode [Eµνrad]ω follows from a general equation

[Eµνrad]ω =
1

ae

[
Aν`A

µ
e + AµeA

ν
e − (AλeA

e
λ + Aλ`A

e
λ)g

µν
]
ω

ρ = re (2.16)

where terms multiplying the metric are inserted to enforce

[Eµνrad]ω −→ [Zµν − Zgµν ]ω ρ = re (2.17)

This gives the appropriate form of Eµνrad in equation (2.14) which can be expanded as

dSµν

dρ

∣∣∣∣
ρ=re

=
mc2

4πr3
e

∫
[Uνβµ + βµβν − βλ(βλ + Uλ)gµν ]r2

e dΩ′cdτ (2.18)

To obtain Dirac electron theory it will be necessary to require that stress radiated by
the classical particle cannot be known to the quantum mechanical theory. This must
be true for each Fourier mode of the classical field so that the integrand above must
be zero. One practical possibility for a vanishing integrand is to make the quantum
mechanical substitution

Uν −→ ±γν (2.19)

while replacing the four-velocity using pν = mcβν . The integral now reads

dSµν

dρ

∣∣∣∣
ρ=re

=
c

4π

∫
[±γνpµ +

1

mc
pµpν −mc gµν ∓ γλpλgµν ]dΩ′ (2.20)

Taking the trace of the integrand introduces factors of 3 indicative of radiated vacuum
energy in each of three spatial directions. The resulting scalar equaton acting on ψ
is either the particle or anti-particle Dirac equation

(γνpν ±mc)ψ = 0 (2.21)

and becomes the Dirac Lagrangian when operated on the left by the conjugate wave
function. More precisely, when (2.20) is operated on the left and right by Dirac
spinors the integrand can be written in terms of the Dirac energy-momentum tensor

1

mc
pµpνψ̄ψ ± T†µνDirac = 0 (2.22)

where
TµνDirac = ψ̄[γµpν − gµν(γλpλ ±mc)]ψ (2.23)
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2.3 Dirac Electron from the Vacuum Lagrangian

Another approach toward a derivation of the Dirac Lagrangian is to begin with the
free term vacuum Lagrangian in equation (1.6) which vanishes at ρ = re—equivalent
to the condition

η − 4πσe = 0 (2.24)

This is just the vacuum gauge condition evaluated at the classical radius but it already
looks like the Dirac Lagrangian. Suppose we write

L[re] = ∂νA
ν
` − 4πσe (2.25)

which generates the stress tensor

T µν[re] = ∂νAµ` − gµν(∂νA
ν
` − 4πσe) (2.26)

Quantization follows by associating Aν` with unobservable rotations of the particles’
spin magnetic moment. This is possible by trading out the gauge field in either of
equations (2.25) or (2.26) for Dirac matrices via

eτeA
ν
` −→ ±2i~ γν (2.27)

and then operating on the left and right with Dirac spinors. Roughly speaking,
equation (2.27) says that the action of the gauge field for the classical time τe has a
quantum mechanical counterpart associated with the production of two fundamental
units of angular momentum. Instead of inserting it into (2.25) one can also apply ∂ν
directly to both sides of (2.27) and evaluate at ρ = re. This will become the e+ e−

Dirac equation when operated on by ψ.
One more possibility is to begin by integrating equation (2.24) over solid angle∫

Ω

[η − 4πσe] dΩ = 0 (2.28)

This approach requires the velocity potentials to be written in terms of dilatation
functions

Aν = 4πσe(θ, φ)uν(R) (2.29)

and will lead to ∂νu
ν − 1 = 0. The solution here is the condition R = re but quanti-

zation follows by making the correspondence

mcuν −→ ±i~γν (2.30)

Applying Dirac spinor fields once again yields

LDirac = i~c ψ̄ ∂λγλψ ±mc2ψ̄ψ = 0 (2.31)
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Since the value of this Lagrangian is zero, the energy-momentum tensor in (2.23)
simplifies to

TµνDirac = i~c ψ̄ ∂µγνψ (2.32)

Now suppose a normalized wave function is chosen to be

ψ =
1√

2mc2
u(E,p)e−i(Et−ppp·rrr)/~ (2.33)

Inserting this into (2.32) shows that the energy-momentum tensor is

TµνDirac = mc2βµβν (2.34)

To conclude this section it is important to discuss details of both quantization formu-
las (2.27) and (2.30). Both sides of these equations have units of angular momentum,
but it is easy to show that the left side of the equation—evaluated at the electron
radius—is smaller by the factor 1

2
αf where αf is the fine structure constant. The

physical interpretation of this ratio in the context of a radiating field is not well
understood.

2.4 Second Quantized Dirac Field

Having derived the stress tensor for Dirac particles and anti-particles, it becomes
essential to use vacuum gauge electrodynamics to derive the quantized Dirac field
Hamiltonian. To accomplish this it is first necessary to write vacuum gauge potentials
for the e+ e− pair shown in figure 2. For this system, the position vector of each
particle is

w+ = w+(τ) (2.35a)

w− = w−(τ) (2.35b)

Since the pair created and annihilated itself, their positions must be identical at time
τ = 0 and τ = τo:

w+(0) = w−(0) (2.36a)

w+(τo) = w−(τo) (2.36b)

Add to these constraints the retardation condition, which is generally different for
each particle

Rν
+ = xν − wν+(tr) (2.37a)

Rν
− = xν − wν−(tr) (2.37b)

Relative to the moving frame S, the vacuum gauge potentials Aνtotal(ct, rrr) are the
sum of vacuum gauge potentials associated with each particle. In addition, since
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Figure 2: Classical system of an e+ e− pair which annihilates after time τo. The blue
line marks the limits of the causal fields as viewed in the frame S.

both particles share the same causality requirements at both ends of their life span,
the form of the potentials is

Aνtotal(ct, rrr) =
[
Aνv+ + Aνa+ + Aνv− + Aνa+

]
· ϑ(z) · ϑ(τo − z) (2.38)

where z contains the particle radius and is defined by

z ≡ τ − ρ/c+ τe (2.39)

Derivatives then determine the appropriate form of the causal field stength tensor

F µν
total(ct, rrr) = [F µν

+ + F µν
− ] · ϑ(z) · ϑ(τo − z) (2.40)

A causal stress tensor for the pair is

Tµνtotal = [Θµν
+ +Θµν

− + Λµν+ + Λµν− ] · ϑ(z) · ϑ(τo − z) (2.41)

Dropping the ± subscripts for now and concentrating on a single particle, its total
energy four-vector and radiated field follows from the flux integral

Eµ
total =

∫
Tµνdσsν

= −βµ
∫
Lvac · ϑ(z) · ϑ(τo − z)ρ2dρdΩ′ = Eµ

part + Eµ
vac (2.42)
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After simple integrals over solid angle, the particle term is

Eµ
part =

e2

2
βµ
∫ re+cτ

re

1

ρ2
· ϑ(z) · ϑ(τo − z)dρ (2.43)

Now let u be the combination of causality functions and integrate by parts. The
particle term is now

Eµ
part = mc2βµ · ϑ(τ) · ϑ(τo − τ) +

e2

2
βµ · χ(τ) (2.44)

where χ(τ) is

χ(τ) =

∫ 0

τ

δ(z) · ϑ(τo − z)− ϑ(z) · δ(τo − z)

τ + τe − z
dz (2.45)

This integral marks the causal appearance and disappearance of the dilatated vacuum
in the near neighborhood of the particle during creation and annihilation. As the
integral shows however both terms will dissipate like 1/τ so that χ(τ) → 0 for large
enough times.

The vacuum term extends limits of ρ to the origin and reads

Eµ
vac = −1

2
σeeβ

µ

∫ cτ+re

0

ϑ(z) · ϑ(τo − z)dρdΩ′ (2.46)

One possibility for a rigorous calculation is to write ϑ(z) in terms of Fourier modes
and then integrate by parts. On the other hand, an easy way to perform the integral
is to note that the limits of integration cover the region where the integrand is one.
The result is simply

Eµ
vac = −[1

2
γρ̇c τ +mc2]βµ (2.47)

Now include the necessary integration constant mc2βµ and combine equations (2.47)
and (2.43) to determine the four-energy of the particle at time τ :

Eµ
total(τ) = [mc2 · ϑ† · ϑ− 1

2
γρ̇c τ ]βµ (2.48)

In this equation the time dependence of the causality functions has been suppressed
and they have been re-labeled in a way to characterize their true function as creation
and annihilation operators. The invariant Hamiltonian follows from a contraction
with βµ but of interest here will be the time component of Eµ

total = (E , cPPP ) given by

E(τ) = γmc2 · ϑ† · ϑ− 1
2
γρ̇c τ (2.49)

and it is worth mentioning that the value of τ can be any value in the range [0, τo].
To derive the quantized Dirac field Hamiltonian it will be necessary to first write

energy terms for both the electron and the positron. It will also be necessary evaluate
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each energy term for the minimal classical time ∆τ = τe. In this case both energy
terms have a functional value of zero

e− : E− = γmc2 · ϑ† · ϑ− γmc2 (2.50a)

e+ : E+ = γmc2 · ϑ† · ϑ− γmc2 (2.50b)

One can argue here that the factors of γ for each particle in the two-particle system
should be different but this is not an issue since the quantized field operator sums
over all possible values of momentum. Now replace the last term in each equation
with

γmc2 −→ 〈0|Ekkk|0〉 (2.51)

where the quantum mechanical energy is given by Ekkk = ~ωkkk. Also replace the clas-
sical creation and annihilation operators with the well known quantum mechanical
counterparts

e− :
√
γmc2 · ϑ† −→ 〈kkk, s| ≡ 〈0|

√
2Ekkk · bs†kkk (2.52a)

e− :
√
γmc2 · ϑ −→ |kkk, s〉 ≡

√
2Ekkk · bskkk|0〉 (2.52b)

e+ :
√
γmc2 · ϑ† −→ 〈kkk, s| ≡ 〈0|

√
2Ekkk · ds†kkk (2.52c)

e+ :
√
γmc2 · ϑ −→ |kkk, s〉 ≡

√
2Ekkk · dskkk|0〉 (2.52d)

Adding the two quantized Hamiltonians together, dividing by a factor of 2, and
summing over all possible momenta and spins then derives 〈0|HQFT |0〉 where the
quantized Dirac Field Hamiltonian operator is given by

HQFT =
∑
k

[∑
s=1,2

Ekkk(b
s†
kkk b

s
kkk + ds†kkk d

s
kkk − 1)

]
(2.53)

A similar calculation using the space components of equation (2.49) will derive the
momentum operator

PPPQFT =
∑
k

[∑
s=1,2

PPP (bs†kkk b
s
kkk + ds†kkk d

s
kkk)

]
(2.54)

where PPP = ~kkk.
The factor of two which connects the classical and quantum theories can be ex-

plained by the schematic in figure 3. In the classical picture the emission of vacuum
energy is described by the gauge field Aν` —a radial function which does not change
the classical path of the particle. The classical limit is something like simultaneous
back-to-back emissions of particles. This is not required by the quantum theory where
the directional change of the spin vector emits a single quantum of energy.
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Figure 3: Comparison of classical and quantum theories of the electron.

2.5 Quantum Theory of the Vacuum Field

The classical theory only knows how to radiate classical waves over all frequencies as
dictated by its causality function. Moreover, the energy radiated between frequencies
ω and ω + δω must be vanishingly small. It may be possible to re-interpret Fourier
modes of the step as probabilities for the emission of quanta, but we do not see how
this can be done. Another possibility is to limit the values of the emitted frequencies
to a discrete set. Unfortunately, this destroys the ability to construct the causality
step which relies on a continuous spectrum. On the other hand, quantizing the
radiation field requires the observer to view the field as streams of particles which
is fundamentally different than the propagation of longitudinal waves. If this is the
case it might be expected that the classical causality step might lose its meaning.
However causality can still be enforced by simply imposing the requirement that all
radiated quanta must exist within the particles finite light cone.

In a theory of a discrete set of emissions, first suppose that the number of vacuum
quanta radiated per unit time is twice the Dirac frequency, or 2νD. If we require
this theory to re-produce the inertial power formula of the classical theory then the
average energy of the emitted quanta must be given by

〈Evac〉 =
Pin

2νD

=
1

2

hc

re
(2.55)

In other words, longitudinal oscillations of the particle radius can be associated with
the emission of a vacuum particle having a wavelength λ ∼ re. If indeed, all particles
have this same energy then the ratio of the mass-energy of the particle to the energy
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of the emitted quanta is given by1

mc2

〈Evac〉
=
αf
2π

(2.57)

where αf is the fine structure constant. In this scenario, the energy of emitted particles
is therefore several orders of magnitude larger than the mass-energy of the particle
itself.

Now impose the requirement that the electron may only radiate at a discrete set of
frequencies given by ω = nωo where n is a quantum number and ωo is a fundamental
frequency which has yet to be determined. The value of ∆ω is

∆ω = nωo − (n− 1)ωo = ωo (2.58)

Fourier modes of the vacuum gauge potentials still have the same overall form as the
continuum theory, but it will be useful to introduce an overall unitless constant ζ so
that potential fields at index n can be written

Aνe:n = e

√
2

ζ
· sinω(τ − ρ/c+ τe)

ωρ
· βν∆ω (2.59a)

Aν`:n = e

√
2

ζ
· sinω(τ − ρ/c+ τe)

ωρ
· Uν∆ω (2.59b)

The associated energy flux tensor is

Sµνn =
1

2
πµνn c (2.60)

with the momentum flux given by

πµνn =
1

ae
[Aµ`:n, A

ν
e:n] (2.61)

Electric and magnetic components of Sµνn may be written

(SESESE)n =
e2c

aeζ

[
n̂̂n̂n−βββ

1−βββ · n̂̂n̂n

]
· sin2 nωo(τ − ρ/c+ τe)

n2ρ2
(2.62a)

(SBSBSB)n =
e2c

aeζ

[
βββ × n̂̂n̂n

1−βββ · n̂̂n̂n

]
· sin2 nωo(τ − ρ/c+ τe)

n2ρ2
(2.62b)

1The right of side of this equation is etched in Schwingers’ tombstone and allows the electron
g-factor and its first order anomaly to be written in terms of the flow of the vacuum field

g = 2

[
1 +

mc2

〈Evac〉

]
(2.56)

It is conceivable that 〈Evac〉might be adjusted to cover all orders of the anomalous magnetic moment.
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The total power radiated comes only from the electric component and may be deter-
mined by first averaging over a single oscillation of the nth mode

〈SESESE〉n =
e2c

2aen2ρ2ζ

[
n̂̂n̂n−βββ

1−βββ · n̂̂n̂n

]
(2.63)

The total power radiated is then

P =
∞∑
n=1

∮
(SESESE)n · n̂̂n̂nρ2dΩ′ =

mc2

τeζ

∞∑
n=1

1

n2
(2.64)

and if this power is required to be the inertial power Pin of the continuum theory, this
will conveniently identify ζ as the Riemann zeta-function ζ[2] = π2/6.

A schematic showing the general 1/ρ2 dependence of the energy flux in (2.62) is
available in figure 4 and is determined by performing the sum

χ =
∞∑
n=1

sin2 nωoz

n2
(2.65)

over any interval between two successive zeros of the function. Choosing and arbitrary
interval, the sum is

χ =
π2

2
· ωoz
π

[
1− ωoz

π

]
(2.66)

For a given τ this is an inverted parabola of which several are shown in the figure.
The width of each bump is the same but cannot be determined yet since ωo is still
unknown.

To this point nothing has been quantized—the continuum classical theory has only
been replaced by a countably infinite set of modes. Suppose however that energy at
each wave number is composed of vacuum qaunta with energy given by

En =
1

2
n~ωo (2.67)

The total number of quanta scattered per unit time at each index n is then

Nn =
Pn
En

=
2Pin

ζ[2]~ωo n3
(2.68)

The only other requirement will be to equate the total quanta radiated per second to
twice the Dirac frequency.

2νD =
∞∑
n=1

Nn =
ζ[3]

ζ[2]
· 2Pin

~ωo
(2.69)

The ratio of zeta-functions is a constant αo ∼ 0.73 and equation (2.69) solves for the
fundamental frequency

ωo =
2παo
τe

(2.70)
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Figure 4: Plot showing the granularity of the energy flux in the discrete wavelength
theory. The distance between adjacent zeros is on the order of the electron radius re.

The quantum mechanical energy formula can then be re-written

En =
nαo

2

hc

re
(2.71)

where the quantized wavelengths are given by

λn =
re
αon

(2.72)

This formula allows for the interpretation of the emission of vacuum particles in
terms of harmonic oscillations of the particle radius. The classical radius is simply
a superposition of longitudinal pulses summed over all wave vectors. Approximately
83 percent of the emissions are at the fundamental frequency having an energy of
E ∼ 321 MeV. For the 500th harmonic (overtone?) the the rate of emission is reduced
by a factor of 108 but there are still 1012 particles emitted each second. The particle
radius associated with each wave vector is proportional to the wavelength and given
by

rn =
re

2παon
(2.73)

If we let rn/c→ ∆τ and En → ∆E then

∆E∆τ =
~
2

(2.74)

which saturates the lower bound of the uncertainty principle.
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A final calculation is the average energy of vacuum radiation determined from

〈Evac〉 =

∑∞
n=1 NnEn∑∞
n=1Nn

=
1

2

hc

re
(2.75)

which agrees with (2.55).

3 Model for a De Sitter Universe

Suppose an electrically neutral universe explodes at time cτ = 0 producing a collection
of N/2 electrons and N/2 positrons with individual charges qi = ±e. It may also
be assumed that the number density of particles created in any given direction is
approximately constant. Each particle can be described by a position vector

wi(cτ) where wi(0) = 0 i = 1, ..., N (3.1)

and a retarded position coordinate

Ri = rrr −wi(ctr) i = 1, ..., N (3.2)

3.1 Propagation of Vacuum Gauge Potentials

According to vacuum gauge theory each particle will be described by a scalar field

ϕi = −qi ln ρi · ϑ(Λ) (3.3)

Where Λ = Λ(R, cτ) is a currently unknown spherically symmetric causality function
which can allow the initial universe to expand faster than light. Summing over all
electrons and positrons in the universe and observing that they are all constrained
by the same causality sphere produces the resultant field

ϕunv(rrr, t) =
N∑
i=1

ϕi = ln
N∏
i=1

ρ−qii · ϑ(Λ) (3.4)

A first derivative for general accelerated motions picks up delta functions for each
particle

∂νϕunv =
N∑
i=1

{(Aνv)i + (Aνa)i − (Aνe)i} · ϑ−
N∑
i=1

qi ln ρ · ∂νϑi (3.5)

but the second derivative can be written

∂µ∂νϕunv =
N∑
i=1

{(∂µAνv)i + (∂µAνa)i − (∂µAνe)i} · ϑi + Sµν (3.6)
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where Sµν is the collection of remaining terms symmetric in the two indicies. Now
form the derivative

∂µ [∂µ∂νϕunv − ∂ν∂µϕunv] = 0 (3.7)

This set of operations can be written in terms of the potentials as

N∑
i=1

{�2Aνv + �2Aνa −�2Aνe − ∂ν∂µAµv − ∂ν∂µAµa}i · ϑi = 0 (3.8)

The point charge four current (J∗νe )i replaces the wave operator acting the Liénard-
Wiechert potentials and if the total vacuum gauge potential is defined by

Aµunv =
N∑
i=1

{(Aνv)i + (Aνa)i} · ϑi (3.9)

then a simple set of equations describing initial universe can be written

�2Aνunv − ∂ν∂µAµunv =
4π

c
J∗νe unv (3.10)

where J∗νe is a sum of point charge current densities at various locations within the
causal spacetime. Both fields ϕunv(rrr, t) and Aνunv(rrr, t) also permeate all points of
the causal spacetime and diverge at the source infinity located at the position of
each particle. The velocity and acceleration terms can be also be separated with the
introduction of the acceleration current. Each potential field is still neatly nested
within the causality sphere and independent equations of motion can be written

�2Aνv unv − ∂ν∂µAµv unv −
4π

c
J∗νe unv = 0 (3.11a)

�2Aνa unv − ∂ν∂µAµa unv −
4π

c
Jνa unv = 0 (3.11b)

Completely independent of the calculation in equation (3.10), now require the N
particle universe to be associated with a large input vacuum power Pin. Since radiated
vacuum energy from each particle is an invariant, the total energy initially available
at time τ is simply

E = −1
2
Nρ̇cτ (3.12)

Unfortunately, the initial vacuum power will not be able to sustain itself since indi-
vidual e+ e− pairs will quickly begin to annihilate. If complete annihilation occurs at
some later time τo this will mark the end of a phase transition producing an amount
of vacuum energy

Eo =

∫ τo

0

Pin(τ)dτ (3.13)

Both velocity and acceleration current densities in equations (3.11) will vanish at τo
along with the total vacuum gauge potentials Aνunv leaving a universe composed of a
swarm of vacuons, photons, and neutrinos.
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3.2 Dark Energy and Dark Matter

With the exception of light mass neutrinos, the presence of vacuouns and photons
constitutes a universe everywhere moving at the speed of light. A de Sitter Vacuum
arises by recalling that whatever amount of vacuum has been initially produced, it will
be characterized by one positive and one negative vacuum constant making it a porous
medium with the ability to briefly tear and then repair itself. A particle physicist
might refer to this as the creation and annihilation of e+ e− virtual pairs. From the
point of view of the classical theory, a spatial volume (cube of side l) anywhere in the
universe will still be randomly radiating a small amount of additional vacuum energy
in all directions. This means the volume will be associated with a small amount of

Figure 5: Graphic illustrating paths (in blue) of short-lived pairs of electrons and
positrons. In accordance with the classical theory short lived particle/anti-particle
pairs must be associated with the emission of a small amount of vacuum energy.
Not shown is ambient sea of zero inertia vacuum energy which innundates the entire
volume.

observable inertia and dark energy content E. A graphic showing general features of
this volume is illustrated in 5.

An equation describing the dark energy available in the universe at time τ can be
established under the assumption that the dark energy density is proportional to the
vacuum energy density so that for some constant α

dE

dτ
= αE E(τo) = Eo (3.14)
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with solution
E(τ) = Eoe

ατ (3.15)

In other words, the vacuum continues to self-generate even in the absence of vacuum
power.

The field equations for a universe dominated by a cosmological constant are

Rµν − 1
2
gµνR = gµνΛ (3.16)

Including an initial radius ao determined by the initial vacuum input, solutions to

Figure 6: Proliferation of vacuum energy in the N-particle universe.

the field equations require a scale parameter a(τ) to evolve according to

a(τ) = aoe
√

Λ/3 cτ (3.17)

A formula for the cosmological constant at large times follows by making the connec-
tion α2 = 3Λc2 and writing the constant observable dark energy density as

%DE =
3E(τ)

4πa(τ)3
=

Λc4

8πG
(3.18)

Equations for both Λ and the Hubble parameter are then

Λ =
6EoG

a3
oc

4
H =

√
2EoG

a3
oc

3
(3.19)

In this calculation there is no need to assume the proliferation of the spacetime for
no apparent reason at all. Empty space does not expand without the proliferation
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of vacuum energy. Also, the cosmological theory of the vacuum has been deduced
completely independent of the field equations. This parallels the vacuum gauge theory
of the electron where the propagation term is simply added to the theory without any
measurable consequence.

A qualitative plot of the vacuum energy present in the N-particle universe is
illustrated in figure 6 where the production of vacuum energy goes thru a phase
transition at the point of particle-anti-particle annihilation. This might occur when
the initial expanding universe cools to a critical temperature associated with the
de-coupling of photon radiation

Dark Energy and Dark Matter: It may be possible to interpret dark matter in
the neighborhood of a galaxy of stars as an effect of radiating vacuum energy. Clearly
the density of radiated energy will fall off roughly like r−2, and continue far beyond
the visible outer reaches of the galaxy.

As before, suppose that the ability of the vacuum to create virtual particle-
antiparticle pairs is proportional to the vacuum energy density. This implies ob-
servable vacuum inertia, equivalent to dark energy also falling off like r−2. In this
picture, dark matter and dark energy are therefore a result of the same unobservable
process of the spontaneous and unobservable emission of vacuum energy. An illus-
tration on the title page has been included showing the dark energy density in black
reaching local maxmima in each of several galactic neighborhoods as the universe
expands.
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