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“The concepts of simple charged particles and the electromagnetic field are
in some way inconsistent.”

R.P. Feynman, The Feynman Lectures, chapter 28
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Abstract

The charge density of the classical electron can be de-coupled from the
vacuum Lagrangian giving way to an R-space Lagrangian for a set of vacuum
dilatation functions. Dilatation functions are purely geometrical objects de-
scribing a theoretical orifice in the vacuum—they operate in three dimensions
and radiate volume only. Dilatation functions may also be analyzed in terms of
Fourier modes leading to a Fourier mode Lagrangian along with an associated
Fourier mode stres tensor.
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1 Dilatation Functions

The theory of the vacuum gauge electron arises from the necessity to impose the
causality principle on its electromagnetic field. These fields may be written

EEE = EEEM · ϑ (1.1a)

BBB = BBBM · ϑ (1.1b)

where the subscript M indicates the well known Maxwell fields and the causality
sphere—labeled ϑ—is a function of the retarded time and may also include a phase

ϑ = ϑ[γ−1(ctr + re)] (1.2)

Causal fields place the description of an inertial electron into the scientific field of
signal theory—even if no measurement if possible. The mathematics appropriate for
this description is generated by the covariant vacuum gauge condition

∂νA
ν
v ≡
√

E2 − B2 (1.3)

leading to a de-coupled theory of velocity and acceleration potentials which obey the
equations

�2Aνv − ∂ν∂µAµv =
4π

c
J∗νe �2Aνa − ∂ν∂µAµa =

4π

c
Jνa (1.4)

The implications of a de-coupled theory are far reaching since it allows for the devel-
opment of a theory of moving velocity fields completely independent of the presence
of acceleration fields.

The velocity potentials are a covariant null vector with scalar and vector compo-
nents written separately as

Av =
eR

ρ2
· ϑ Av =

eR

ρ2
· ϑ (1.5)

In the Maxwell limit they become continuous functions which may be interpreted in
terms of a surface charge density σe(θ, φ) and a set of functions [u,uuu]

A(rrr, t) = 4π · σe(θ, φ) u(R) A(rrr, t) = 4π · σe(θ, φ)uuu(R) (1.6)

Explicit forms of the fields are

σe(θ, φ) ≡ σe
γ2(1− n̂̂n̂n · βββ)2

uuu(R) ≡ re
2

R
n̂̂n̂n (1.7)

The angular coordinates (θ, φ) are measuered from the retarded position of the charge
and it should be observed that the three coordinates (R, θ, φ) are all implicit func-
tions of the present time coordinates (rrr, t). It is suitable to refer to uuu(R) as a vector
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dilatation and its magnitude u(R) as a scalar dilatation . Together, they char-
acterize a microscopic spherical aperture in what would otherwise be a continuous
vacuum. In what follows, the essential and forthcoming stategy will be the imple-
mentation of the theory of vacuum dilatation to propagate the velocity fields of the
electron in the form of spherical vacuum waves.

De-coupling of the charge density from the dilatation functions is not limited to
vacuum gauge potentials only. With the definition of an R-space gradient operator it
is possible to develop a Lagrangian formulation for the dilatation functions which can
be used to demonstrate particle stability without the presence of the charge density.
The three-space theory can then be linked to the covariant total energy tensor of the
electron using an appropriate set of unit vectors derivable from the theory.

1.1 Mathematics of R-Space

In R-space, the components of the vector R from the retarded position of the electron
to the present time field point are written in terms of a spherical polar coordinate
system

Rx = R sin θ cosφ Ry = R sin θ sinφ Rz = R cos θ (1.8)

The R-space gradient operator in this coordinate system is

∇R ≡ n̂̂n̂n
∂

∂R
+ θ̂̂θ̂θ

1

R

∂

∂θ
+ φ̂̂φ̂φ

1

R sin θ

∂

∂φ
(1.9)

Now consider the gradient of a function DDD which depends on present time coordinates
(ct, rrr) implicitly through R. The bold type suggests that DDD is a vector function but
it may also be a scalar—or perhaps a tensor of higher rank. Present time differential
operators applied to DDD can be written in terms of ∇R using the chain rule

∇DDD(R) =∇R ··· ∇RDDD =

(
111 +

γRβββ

ρ

)
··· ∇RDDD (1.10a)

∂DDD(R)

∂ct
=
∂R

∂ct
· ∇RDDD = −γ

ρ
Rβββ · ∇RDDD (1.10b)

Components of the covariant operator ∂ν are then

∂

∂ct
= −γ

ρ
Rβββ · ∇R ∇ =∇R +

γ

ρ
R(βββ · ∇R) (1.11)

A useful bi-product of equations (1.10) is the first order equation

∇DDD + n̂̂n̂n
∂DDD

∂ct
=∇RDDD (1.12)

Among other things, this relation can be used to generate a set of spacelike unit
four-vectors appropriate for the vacuum theory.

6



Vacuum Dilatation Functions www.vgelectron.net

Application to the Vector Potential: A pair of arbitrary second rank tensors
XXX and YYY can be combined with the R-space dot product, and double dot product
contractions

(XXX · YYY )ij ≡ XikYkj and XXX : YYY ≡ Xij Yji (1.13)

For second rank tensors composed of two vectors, associative properties are

AAABBB ·CCCDDD = AAADDD(BBB ·CCC) AAABBB ·CCC = AAA(BBB ·CCC) (1.14)

Armed with this knowledge equation (1.12) can be applied to the vacuum gauge
vector velocity potential

∇A + n̂̂n̂n
∂A

∂ct
=∇RA (1.15)

This is a relation among second rank tensors but it can be transformed into a scalar
relation by defining the identity operator (idem factor) from the gradient 111 ≡ ∇RR.
Contracting each term through a double dot product with the identity shows that

111 :∇A =∇ ·A (1.16a)

111 :∇RA =∇R ·A (1.16b)

111 : n̂̂n̂n
∂A

∂t
=
∂A

∂t
(1.16c)

Now evaluate
∇R ·A =

e

ρ2
(1.17)

which re-derives the vacuum gauge condition.

Electron Charge Density: Another application of (1.12) is to the electron charge
density:

∇σe + n̂̂n̂n
∂σe
∂ct

=∇Rσe (1.18a)

This derives equations

∇Rσe =
2γ

ρ
σe [βββ − (βββ · n̂̂n̂n)n̂̂n̂n] (1.18b)

1

c

∂σe
∂t

= −2γ2R

ρ2
σe
[
β2 − (βββ · n̂̂n̂n)2

]
(1.18c)

Since the charge density is not a Lorentz scalar then ∂νσe is not expected to be a
four-vector.
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Spacelike Unit Vectors: One more important use of (1.12) is for the three scalar
quantities (ρ, θ, φ) defined by

ρ = γ(R−R ·βββ) θ = arctan

[
(R2

x +R2
y)

1/2

Rz

]
φ = arctan

[
Ry

Rx

]
(1.19)

Gradients and time derivatives for each of these scalars are available in Table 2.2. Of

ρ θ φ

1. ∇Rρ = γ(n̂̂n̂n−βββ) ∇Rθ =
θ̂̂θ̂θ

R
∇Rφ =

φ̂̂φ̂φ

R sin θ

2. ∇ρ =
R

ρ
− γβββ ∇θ =

γ

ρ

(
θ̂̂θ̂θ +βββ × φ̂̂φ̂φ

)
∇φ =

γ

ρ

(
φ̂̂φ̂φ−βββ × θ̂̂θ̂θ

)

3.
∂ρ

∂ct
= γ − R

ρ

∂θ

∂ct
= −γ

ρ
βββ · θ̂̂θ̂θ ∂φ

∂ct
= −γ

ρ
βββ · φ̂̂φ̂φ

4. Uν = −∂νρ θν = −R∂νθ φν = −R sin θ∂νφ

Table 1: Gradients and time derivatives applied to the set of scalar fields (ρ, θ, φ) using
equation (1.12). For all three fields, the time derivatives on line 3 can be determined
by dotting the gradients on line 2 with −βββ.

the three scalars, only ρ is a Lorentz scalar. This means that four-gradients ∂νθ and
∂νφ will not be four-vectors. As the last row in the table shows however, covariance
of the angular coordinates can be restored upon multiplication by R and R sin θ,
respectively. Explicit representations of both four-vectors are

θν =
1

(1−βββ · n̂̂n̂n)

[
βββ · θ̂̂θ̂θ

θ̂̂θ̂θ +βββ × φ̂̂φ̂φ

]
φν =

1

(1−βββ · n̂̂n̂n)

[
βββ · φ̂̂φ̂φ

φ̂̂φ̂φ−βββ × θ̂̂θ̂θ

]
(1.20)

When combined with the vector Uν , they form a viable set of spacelike unit vectors for
the Minkowski spacetime. Moreover, the set can also be combined with the timelike
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vector βν to form the complete set

βνβν = 1 UνUν = −1 θνθν = −1 φνφν = −1 (1.21)

Proof of completeness will require verification of six different orthogonality relations.

1.2 Lagrangian Formulation of the R-space Vacuum

The free field portion of the electron vacuum Lagrangian is constructed from vacuum
gauge potentials and takes the form

L = − 1

8π

[
∂µAν∂µAν − (∂νA

ν)2
]

(1.22)

Excluding the location of the charge, this Lagrangian correctly predicts the Maxwell-
Lorentz equations for the velocity fields. Inserting (1.6) into L and showing that
∂µuν · uν = 0 results in the de-coupled Lagrangian

L = b · L/D4 (1.23)

where

L = −1

2

[
∂µuν∂µu ν − (∂νu

ν)2
]

D = γ(1− n̂̂n̂n ·βββ) (1.24)

The constant term b = 4πσ2
e has a value of 4.65 × 1030 N and may be referred to as

a vacuum bulk modulus, while the dilatation Lagrangian can be expanded as

L = −1

2

[(
∂u

∂t

)2

− ∂uuu

∂t
· ∂uuu

∂t
−∇u · ∇u +∇uuu ∗∇uuu−

(
∂u

∂t
+∇ · uuu

)2
]

(1.25)

Unfortunately, this Lagrangian is still not useful because all derivatives are relative
to present time and present position coordinates (rrr, t). However, a transformation to
R-space differentials can be implemented using the four relations

a. ∇Ru =∇u +
1

c

∂u

∂t
n̂̂n̂n b. ∇Ruuu =∇uuu + n̂̂n̂n

1

c

∂uuu

∂t

c. ∇R · uuu =∇ · uuu +
1

c

∂u

∂t
d.

∂uuu

∂t
· n̂̂n̂n =

∂u

∂t

Inserting these into equation (1.25) will elicit a large set of cancellations among time
derivatives. The resulting Lagrangian will then be given exclusively by R-Space
derivatives

L =
1

2

[
∇Ru · ∇Ru−∇Ruuu :∇Ruuu + (∇R · uuu)2

]
(1.26)
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There are several important features of this Lagrangian. It has a value

L = −r4
e /2R

4 (1.27)

which can be inserted into (1.23) to show that the value of L is unchanged by the
transformation. Next, it will be appropriate to include a point source interaction
term

ε = 4πr2
e δ

3(R) (1.28)

leading to scalar and vector field Lagrangians

L(s) ≡ 1

2
∇Ru · ∇Ru− εu L(v) ≡ −1

2
[∇Ruuu :∇Ruuu− (∇R · uuu)2] (1.29)

Both Lagrangians are unitless and parameterized only by the electron radius re, while
producing equations of motion given by

∇2
R u = −ε ∇R ×∇R × uuu = 0 (1.30)

Properties of ∆∆∆ : The Lagrangian in (1.26) can be crafted into a more elabo-
rate theory beginning with the definition of a strain tensor ∇Ruuu ≡ ηηη with a scalar
contraction

η =∇R · uuu =
r2
e

R2
(1.31)

An associated stress tensor can be defined by

∆∆∆ ≡ 1
2

(−ηηη + 111η) (1.32)

having a determinant of zero and obeying the divergence relation ∇R ·∆∆∆ = 000. The
fact that ∆∆∆ is purely symmetric indicates that the stress it induces on the vacuum is
not to be associated with any local rotations. Principal axes can be determined by
solving the eigenvalue problem with solutions

∆∆∆ · n̂̂n̂n = η n̂̂n̂n ∆∆∆ · θ̂̂θ̂θ = 0 ∆∆∆ · φ̂̂φ̂φ = 0 (1.33)

Viewing the principal values as coefficients of dilatation along the principal axes
establishes that the vacuum can only support a radial stress. This can also be inferred
by dividing ∆∆∆ into distortional and spherical components and performing integrations
over the particle radius. Using Tr∆∆∆ = η, results are:

∆∆∆dis = ∆∆∆− 1
3
111Tr∆∆∆ −→

∫
re

∆∆∆disd
3R = 000 (1.34a)

∆∆∆sph = 1
3
111Tr∆∆∆ −→

∫
re

∆∆∆sphd
3R = 111V (1.34b)
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where the spherical volume is given by V = 4πr3
e /3.

The zero divergence of ∆∆∆ also implies a Gauss integral law. Moreover, the three-
dimensional nature of R-space allows for the inclusion of other three-space vectors
like electromagnetic velocity fluxes πππE and πππB to formulate integrals with ∆∆∆. If dsss is
the R-space surface element of the particle then two important integrals are:∫

re

∆∆∆ ··· dsss = 000

∫
re

(∆∆∆ ·πππE) · dsss = %̇ (1.35)

The second integral is the total scalar momentum radiated by the particle per unit
time. On the other hand, ∆∆∆ ·πππB = 000 eliminates the need for a third integral.

Total Stress Tensor: Now suppose a scalar strain variable is defined by ξξξ ≡∇Ru.
In terms of the new variables the interacting Lagrangian density becomes

L = 1
2
ξξξ · ξξξ + ∆∆∆ : ηηη − εu (1.36)

Each variable in this Lagrangian will contribute to the total stress tensor with inde-
pendent portions given by

TTT(s) =
∂L(s)

∂ξξξ
ξξξ − 111L(s) = ξξξ ξξξ − 1

2
111(ξξξ · ξξξ) = −1

2
η ηηη (1.37a)

TTT(v) =
∂L(v)

∂ηηη
· ηηη − 111L(v) = 2∆∆∆ · ηηη − 111(∆∆∆ : ηηη) = η ηηη (1.37b)

Divergence operations can also be applied yielding a source term for TTT(s):

∇R ·TTT(s) = (∇R · ξξξ)ξξξ + ξξξ · ∇Rξξξ − 1
2
∇R(ξξξ · ξξξ) = −εξξξ (1.38a)

∇R ·TTT(v) = 2(∇R ·∆∆∆) · ηηη + 2∆∆∆ · (∇R · ηηη)−∇R(∆∆∆ : ηηη) = 000 (1.38b)

Both TTT(s) and TTT(v) will need to be added together but first it will be imperative to
impose the causality principle on the dilatation functions so that uν → uν · ϑ. The
immediate consequence will be the propagation of the field which requires the addition
of a linear component to the Lagrangian. This term can be generated in equation
(1.36) from a displacement of ∆∆∆ proportional to the identity:

∆∆∆ −→∆∆∆− 1
2
111 (1.39)

Unfortunately, unlike the four-space theory, the resulting Lagrangian will not vanish
at the radius of the electron. The reason for this is most likely due to the absence of
time-components in the theory but the modified total stress tensor is

TTT = 1
2
η ηηη + ∆∆∆ (1.40)
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This new TTT still exhibits a zero divergence and the stability of the particle can be
addressed by writing

TTT = 1
2

[(η − 1)ηηη + 111η] (1.41)

Evaluating at η = 1 removes the quadratic stress and leaves only the metric

TTT = 1
2
111 (1.42)

It is useful to integrate both the quadratic and linear components of (1.40). It is
also instructive to introduce the casuality function in equation (1.2) for both integrals.
The total volume displaced by the quadratic stress in the limit of large times is

TTT =

∫ ∞
re

∫
Ω

1
2
η ηηη · ϑd3R = 1

2
111V · ϑ(τ) (1.43)

where we assume that t = γτ . In the time interval cτ an amount of volume

SSS =

∫ ct+re

re

∫
Ω

∆∆∆ · ϑd3R = 111V
cτ

re
(1.44)

is also propagated through the dilatation. Of interest here is a measure of the total
volume radiated through the particle radius in time τ given by

111 : SSS = 4πr2
e cτ (1.45)

The volume radiated per unit proper time is then given by

dV

dτ
= 7.48× 10−21 m3/s (1.46)

For some perspective, this result can be multiplied by Avogadro’s number giving a
volume flux of about 4500 m3/s.

Re-construction of the Covariant Theory: While the 3-space theory only in-
cludes spacelike components, it is still possible to re-construct the covariant theory.
First it will be necessary to determine a Hamiltonian h for the volume theory. If a
causality operator is included in equation (1.43) then

h(τ) = 111 : TTT · ϑ(τ)− 1

2
111 : SSS (1.47)

To re-capture the invariant Hamiltonian of the 4-space theory it is only necessary to
multiply this equation by the bulk modulus b = 4πσ2

e leading to

H (τ) = mc2 · ϑ(τ)− 1
2
ρ̇cτ (1.48)

While this is an impressive calculation the entire second rank energy tensor follows
beginning with the 4× 4 construction

Vµν =

[
h 0
0 SSS

]
(1.49)
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Including a set of independent coordinate vectors this tensor may also be written

Vµν = h(τ)τ̂̂τ̂τ τ̂̂τ̂τ + V
cτ

re

[
n̂̂n̂n n̂̂n̂n+ θ̂̂θ̂θ θ̂̂θ̂θ + φ̂̂φ̂φ φ̂̂φ̂φ

]
(1.50)

Covariance is then established by replacing the coordinate vectors with the complete
set introduced in equation (1.21) and multiplying through by the bulk modulus

Eµν =
(
mc2 − 1

2
%̇cτ
)
βµβν + 1

3
%̇cτ (UµUν + θµθν + φµφν) (1.51)

The volume theory may also be used to construct the tensor Eµνrad. Here it is nec-
essary to begin with equation (1.42). The covariant tensor has no energy component
but it will be necessary to add an off-diagonal time-space component given by1

T′T′T′ = 1
2
τ̂̂τ̂τ n̂̂n̂n (1.52)

As before covariance is established by writing

TTT + T′T′T′ =
1

2

[
τ̂̂τ̂τ n̂̂n̂n+ n̂̂n̂n n̂̂n̂n+ θ̂̂θ̂θ θ̂̂θ̂θ + φ̂̂φ̂φ φ̂̂φ̂φ

]
(1.53)

Now multiply by the bulk modulus, and replace coordinate vectors with their covari-
ant counterparts so that

Eµνrad =
e2

8πr4
e

[βµUν + UµUν + θµθν + φµφν ] (1.54)

2 Fourier Analysis of Dilatation Functions

Fourier modes of scalar and vector dilatation functions are derived from the vacuum
gauge velocity potentials. Linear second order differential equations solved by these
functions are also derived from a Fourier analysis of the vacuum Lagrangian. Differ-
ential equations are then solved using the method of Green functions re-producing
initial results.

2.1 Fourier Mode Lagrangian

Dilatation Functions from Vacuum Waves: The theory presented thus far
treats dilatation functions as essentially continuous fields. However, causality requires
a spatial limit to vacuum dilatation governed by the radial step function described in
equation (1.2). This function can be precisely defined by

ϑ(tr + τe) ≡


2

π

∫ ∞
0

sin[ω(t−R/c+ τe)]

ω
dω t+ τe ≥ R/c

0 t+ τe < R/c

(2.1)

1The off-diagonal element is not to be associated with any quadratic stresses and is rightfully
determined only from the vacuum tensor.
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In the causal region the function ϑ propagates travelling waves over all frequencies
from the retarded position. These waves have an amplitude falling off like 1/ω and
give a value of exactly 1 when summed over all frequencies. An important operation
is the four-gradient ∂νϑ. Operating inside the integrand will produce two δ-functions
but only one is kept since the function is defined to be zero in the elsewhere region:

∂νϑ =
Rν

ρ
· δ(tr + τe) (2.2)

One may also use a complex exponential which may be easier to work with

ϑ(ctr) = Im

[
2

π

∫ ∞
0

φ̃ω
eiω(t−R/c)

ω
dω

]
R ≤ ct+ re (2.3)

This seems to be a useful definition since the radius appears as a phase factor
φ̃ω = eiωτe and the time and space variables become separable.

With the inclusion of causality, the vector potential in equation (1.5) can be
written

A(R, t) = 4π · σe(θ, φ) · uuu(R) · ϑ (2.4)

The charge density bears no direct connection to the causality sphere but the di-
latation can be coupled with equation (2.1) leading to the transformation equation

uuu(R, t) = Im

[
2

π

∫ ∞
0

uuuω(R)eiωt dω

]
(2.5a)

uuuω(R) = ãω
e−iωR/c

ωR
n̂̂n̂n where ãω ≡ r2

e e
iωτe (2.5b)

The form of (2.5) shows that uuu(R, t) radiates longitudinal travelling spherical waves
at all frequencies from the instantaneous retarded position of the particle. Such
waves can be referred to as electromagnetic pressure waves or vacuum waves. Two
Fourier components have been plotted in figure 1 for reference—appearing as lowest
order spherical Bessel functions. It is important to evaluate an individual mode at
the electron radius

uuuω(R, t)
∣∣∣
re

=
1

ω
[re sinωt n̂̂n̂n] (2.6)

According to this equation longitudinal modes at frequency ω are generated by oscil-
lations of the electron radius vector. The factor ω−1 is a measure of the mode intensity
at the given frequency. A Fourier component of the vector potential evaluated at the
radius can be constructed as

Aω(R, t)
∣∣∣
re

= 4πσe(θ, φ) · 1

ω
[re sinωt n̂̂n̂n] (2.7)
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Figure 1: Two arbitrary Fourier modes of the vacuum dilatation function at time
ct = 10 propagated from the retarded position.

This indicates the role of the charge density as the directional component of the
signal amplitude. If necessary, the entire Fourier analysis can be extended to the
scalar component of either the dilatation or the vector potential by simply dropping
the polarization vector.

Equations of Motion: In section 1.2 the electron charge density was effectively
removed from the vacuum Lagrangian leading to equation (1.25). Beginning from
this Lagrangian the next logical step will be to write the dilatation as a sum over
Fourier amplitudes. Since all terms in the Lagrangian are quadratic in field quantities
it will be necessary to insert the transformation in equation (2.5) twice using different
integration variables. Instead of frequencies, it will also be convenient to use waves
number k and p resulting in the R-space Fourier mode Lagrangian

Lkp =
1

2
[∇Ruk ·∇Rup −∇Ruuuk :∇Ruuup + (∇R · uuuk)(∇R · uuup)

+ i(k + p)
ukup
R

+ kp ukup] · ei(k+p)ct
(2.8)

having a functional value

Lkp = − 1

2R2
ukup · ei(k+p)ct (2.9)

This can be immediately re-integrated to show consistency with equation (1.27). Now
require p→ −k allowing the Lagrangian to assume a real number while introducing
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complex conjugates
u−k = −u∗k uuu−k = −uuu∗k (2.10)

If complex conjugates are viewed as independent field quantities then it will be nec-
essary to insert delta-function interaction terms for both. Separating into scalar and
vector field components as before gives

L
(s)
k ≡

1

2

[
∇Ruk ·∇Ru∗k − k2uku

∗
k

]
− εku∗k − εkuk (2.11a)

L
(v)
k ≡ −

1

2
[∇Ruuuk :∇Ruuu∗k −∇R · uuuk ·∇R · uuu∗k] (2.11b)

Both Lagrangians are purely real scalars and a minus sign has been intentionally
removed as a result of its initial appearance in (2.10). Functional values now include
factors of k2 so—at least for now—they do not have units of energy.

L
(s)
k =

1

2R2
uku

∗
k L

(v)
k = − 1

R2
uku

∗
k (2.12)

Helmholtz equations resulting from the Euler-Lagrange equations are

(∇2
R + k2) uk = −εk (∇2

R + k2)uuuk = −JJJk (2.13)

with scalar and vector source densities given by

εk(R) =
4πãk
k

δ3(R) JJJk(R) =
2uuuk
R2

(2.14)

Both second order equations are unitless and couple to unitless source currents.

2.2 Fourier Analysis from First Order Equations

Differential equations (2.13) can also be derived without appealing to the Fourier
mode Lagrangian. Instead, sets of coupled first order equations can be determined
from either the four-space vacuum tensor or the field strength tensor. The first
order analysis also has the benefit of generating additional differential equations not
available from the Fourier mode Lagrangian.

First order equations in the continuous limit: The four-space vacuum tensor
will generate sets of coupled first-order equations in the quantities (A, A) by writing

∂µAν − gµν∂αA
α =

2RµAν

ρ2
− 2βµAν

ρ
− Aµβν

ρ
(2.15)

The first column of Table 2.2 shows these equations explicitly. In each equation
the potentials can be written in terms of the charge density and the dilatation as
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4-Space R-Space

1. −∇ ·A =
2RA

ρ2
− 3γA

ρ
∇R · uuu =

u

R

2.
∂A

∂ct
=

2RA

ρ2
− 2γA

ρ
− γAβββ

ρ

∂uuu

∂ct
=

2γuuu

ρ
− 2uuu

R
− γuβββ

ρ

3. −∇A =
2AR

ρ2
− 2γAβββ

ρ
− γA

ρ
∇Ru = −uuu

R

4. −∇A + 111∂νA
ν =

2RA

ρ2
− 2γβββA

ρ
− γAβββ

ρ
∆∆∆ = 1

2
(−∇Ruuu + 111∇R · uuu)

Table 2: First order equations satisfied by the velocity potentials in 4-space compared
with their R-space counterparts

in equation (1.6). Using the product rule, and introducing R-space derivatives, will
then render equations for the dilatation functions shown in the second column of the
table. While the time derivatives of A and u are absent, they can be derived by
dotting either equation on line 2 with the unit vector n̂̂n̂n. Of course all four equations
in the second column can also be derived by simply taking derivatives of the functions
themselves, but it is important to show how they arise naturally from the covariant
theory. First order equations for the charge density can also be generated from the
table by removing the differential operations on the dilatation functions instead. It
is not difficult to extract all of equations (1.18) by considering various combinations
of the 4-space equations.

Fourier modes of First Order equations: The previous analysis becomes more
complicated when considering Fourier modes of the potentials. However the overall
procedure remains the same. In this case a set of equations similar to the second
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column of table 2.2 are

∇R · uuuk =

(
1

R
− ik

)
uk (2.16a)

∂uuuk
∂t

=

(
γR

ρ
− 1

)(
2

R
+ ik

)
uuuk −

γ

ρ
ukβββ (2.16b)

∇Ruk = −
(

1

R
+ ik

)
uuuk (2.16c)

∇Ruuuk =
uk
R
111− uuukn̂̂n̂n

(
2

R
+ ik

)
(2.16d)

The scalar and vector components in (2.16a) and (2.16c) can then be combined to
re-produce the second order equations in (2.13).

Vacuum Gauge Condition: A suitable example for generating first order equa-
tions uses the vacuum gauge condition written

∂νA
ν =

e

ρ2
· ϑ (2.17)

Inserting equation (1.5) along with the Fourier transformations of (2.3) and (2.5)
shows that individual Fourier components are subject to the condition

∂ν
[
σe(θ, φ)uνk(R)eikct

]
=
σe(θ, φ)uk(R)

R
eikct (2.18)

Using ∂νσe uνk = 0 will then generate two first order equations

∇R · uuuk =

(
1

R
− ik

)
uk

1

c

∂σe
∂t

+∇σe · n̂̂n̂n = 0 (2.19)

Field Strength Tensor: The velocity portion of the field strength tensor is another
source of first order equations when written

∂µAν − ∂νAµ =
1

ρ
[Aµ, βν ] (2.20)

Equating individual components implies

−∇A− 1

c

∂A

∂t
=
γ

ρ
(A− Aβββ) ∇×A =

γ

ρ
(βββ ×A) (2.21)
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Analysis of the magnetic equation leads to the results

∇R × uuuk = 0
1

2π
BBBk =∇Rσe × uuuk (2.22)

where BBBk is a Fourier component of the magnetic field vector.
Applying the separation procedure to the electric equation proves to be more

complicated since there are more terms to contend with. Similar to the magnetic
result, two equations emerge—one for the dilatation and one for the charge density

∇Ruk = −
(

1

R
+ ik

)
uuuk ∇σe + n̂̂n̂n

∂σe
∂ct

=∇Rσe (2.23)

and the second equation is just (1.18a).

Velocity Fields from Acceleration Fields: So far, no mention has been made
of particle accelerations which also determine first order equations for the velocity
potentials since Aνa = −χAν and

∂µAνa − ∂νAµa = [Aµ, aν⊥] (2.24)

However, it can be shown that the acceleration fields provide no new information
about the dilation functions. First write

∂µAνa − ∂νAµa = Aµva
ν − Aνvaµ + Aµva

λUλUν − AνvaλUλUµ (2.25)

Now insert velocity potentials on the left side of this equation and apply the chain
rule

∂µAνa − ∂νAµa = χ (∂νAµv − ∂µAνv)− ∂µχAνv + ∂νχAµv (2.26)

The quantity χ is related to the acceleration four-vector by χ = aλRλ and easily
differentiated to produce

∂µχ = aµ + ȧλUλRµ (2.27)

Inserting this equation above and noting that velocity potentials point along Rµ shows
that

χ (∂νAµv − ∂µAνv) = Aµva
λUλUν − AνvaλUλUµ =

χ

ρ
[Aµ,Uν ] (2.28)

In the final step, all references to accelerations can be removed rendering

eF µν
v = [Aµ` , A

ν
e ] (2.29)

This is an impressive calculation showing the intimate relation between the two field
stength tensors even though they have been formally addressed as independent the-
ories. More importantly though is the realization that particle accelerations provide
no new information about vacuum dilatation which has properties solely determined
by the velocity theory.
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3 Theory of Vacuum Radiation

An established theory of scalar and vector dilatation are a complete set of tools
required for the re-formulation of the classical electron theory in terms of a moving
velocity field. The total field may be constructed from a sum over Fourier components
or it can be quantized to scatter vacuum quanta from the particle radius.

3.1 Stress Tensor

The Fourier mode Lagrangian derived in equation (2.8) has units of length-squared
due to the presence of wave numbers k and p appearing in the denominator. It is
useful to write it as

Lkp =
1

2
[ξξξk · ξξξp + ∆∆∆k : ηηηp + ∆∆∆p : ηηηk + uuuk · uuup fkp(R)] · ei(k+p)ct (3.1)

A Fourier mode stress tensor follows by treating field quantities in k and p as inde-
pendent variables leading to

TTTkp = [ξξξk ξξξp + ∆∆∆k · ηηηp + ∆∆∆p · ηηηk − 111Lkp] · ei(k+p)ct (3.2)

Two integrations over wave numbers will then return TTTkp to equation (1.37). Another
interesting possibility is to add equations (2.11):

Lk =
1

2

(
∇Ruk ·∇Ru∗k − k2uku

∗
k

)
+ ∆∆∆k ::: ηηη∗k (3.3)

Individual components of the stress tensors are

TTT
(s)
k =∇Ruk∇Ru∗k − 111L

(s)
k = − 1

2k2
η ηηη + r2

e∆∆∆ (3.4a)

TTT
(v)
k = ∆∆∆∗k · ηηηk + ∆∆∆k · ηηη∗k − 111∆∆∆∗k ::: ηηηk =

1

k2
η ηηη (3.4b)

and automatically include the propagation term ∆∆∆. Restoration of the unitless theory
seems appropriate here by dividing out a factor of r2

e giving a total stress tensor

TTTk =
1

2k2r2
e

η ηηη + ∆∆∆ (3.5)

To recapture the continuous field result let kre → 1, even though there seems to be
no good reason for this to work since wave numbers cover the entire spectrum [0,∞].
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3.2 Propagating Vacuum Fields–Continuum Limit

The unitless vacuum theory will attain a more recognizable status by adding a few
well chosen constants to the dilatation function defined in equation (1.7). Using the
bulk modulus b and a factor of c, two related quantities can be defined by

P(R, t) ≡ b

re
u(R, t) VVV(R, t) ≡ c

re
uuu(R, t)

The function P(R, t) is a scalar compressional field (or pressure wave) while VVV(R, t)
represents a radial velocity field moving away from the source at the speed of light.
Together these functions are adequate to propagate the R-space vacuum. With the in-
clusion of two powers of the Doppler function the energy flux is immediately available
from2

Se =
1

2
|f(θ, φ)|2 PVVV (3.6)

and this can be integrated to reproduce the electron power formula. Of special im-
portance here is the notion that compressional wave motion does not require a back-
ground ether for its propagation. Instead, the medium defines itself by the propaga-
tion of momentum and energy from the source.

Like the dilatation functions themselves, the pressure field and the velocity field
have Fourier components in the form of travelling waves:

Pk(R, t) = bre φ̃k
eik(ct−R)

kR
VVVk(R, t) = cre φ̃k

eik(ct−R)

kR
n̂̂n̂n

These are pressure and velocity fields per unit wave number and they simplify con-
siderably at the vacuum boundary

Pk(t) =
b

k
eikct VVVk(t) =

c

k
eikctn̂̂n̂n

First order coupled equations for both fields can be easily determining from (2.16a)
and (2.16c):

∇RPk = −b
c

[
1

R
+ ik

]
VVVk ∇R ·VVVk =

c

b

[
1

R
− ik

]
Pk (3.7)

These combine to produce second order de-coupled equations similar to (2.13) except
the source term in the scalar equation is now an impulse force density

ρk(R) =
4πb ãk
kre

δ3(R) (3.8)

Total radiated energy follows by integrating the energy flux over the radius of the
particle for each wave number and then summing over all possible wave numbers:

Evac =
1

πc

∫ ∞
0

[∮
re

|f(θ, φ)|2PkVVVk · n̂̂n̂nR2dΩ

]
dk (3.9)

2This equation can also be constructed from the vacuum tensor beginning with ∆∆∆ · n̂̂n̂n.
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Evaluation of this integral follows by considering only imaginary parts of the complex
exponential. One finds

Evac = 4br2
e

∫ ∞
0

sin2 kct

k2
dk = 2πr2

e bct (3.10)

A time derivative either before or after the final integration will then give the correct
power formula. Note that the quantity bc/2 is the scalar energy flux Se through the
radius of the particle.

3.3 Quantum Theories of Vacuum Radiation

While the theory of the classical radiation field is straightforward, quantizing the
longitudinal modes seems to be a more difficult problem to solve. Nevertheless, two
simple quantum theories describing the emission of vacuum radiation are presented
here. Both theories place limitations on the frequencies of emitted radiation and this
destroys the ability to construct the causality step defined in equation (2.1) which
relies on a continuous spectrum. On the other hand, quantizing the radiation field
requires the observer to view the field as streams of particles which is fundamentally
different than the propagation of longitudinal waves. If this is the case it might be
expected that an integral like (2.1) will lose its meaning. However causality can still
be enforced by simply imposing the requirement that all radiated quanta must exist
within the particles finite light cone.

Equal Energy Quanta: The simplest quantum theory of the Coulomb field begins
by writing the mass-energy of the electron in terms of the instantaneous radiation
rate. In the rest frame only the classical formula can be written

mec
2 =

1

2
%̇re (3.11)

where %̇ = 4πσee is the total scalar momentum per second scattered by the particle
radius. If this momentum is in the form of n radiated quanta per second then %̇→ npo
where po is the momentum of each quantum. Next, postulate the quantum mechanical
relation between the momentum of the emission and the electron radius

po =
h

re
(3.12)

The required number of particles emitted per second is then

n =
2mec

2

h
(3.13)

If emitted quanta are unobservable spin-1 bosons, this requires the spin vector of the
electron to change sign at the frequency n described by (3.13). The emission of two
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particles is required for one complete rotation of the spin vector implying a Dirac
frequency ν = n/2. Quantum theory requires rotations be described by complex
exponentials. For an electron at the origin, the time dependent wave function will be

ψ(t) = ψ0 e
−i(mc2/~)t (3.14)

where ψ0 is a two component spinor. This derivation suggests that the vision of a
polarized beam of electrons as a collection of spins pointing in a preferred direction
is fundamentally flawed. For proponents of the vacuum gauge electron, this vision
must be replaced with one of polarized randomness—detected experimentally using
the laws of quantum mechanics. The energy of each particle calculates to about
ε ∼ 440 MeV and the quantum mechanical energy-time uncertainty relation can be
verified using the time required to cross the radius of the particle:

∆ε∆τ = h/2 (3.15)

Theory of Discrete Wave Vectors: A more elaborate quantum theory can be
constructed using discrete wave vectors k = nko where n is a quantum number and
ko is yet to be determined. If

∆k = nko − (n− 1)ko = ko (3.16)

and ζ is some overall unitless constant, then pressure and velocity fields at wave
vector k can be written

Pk =
bre√
ζ

sin k(ct̂−R)

kR
∆k VVVk =

cre√
ζ

sin k(ct̂−R)

kR
∆k n̂̂n̂n

The energy flux follows by summing over the index n and using orthogonality of the
discrete sine functions:

SSSe =
∑
k

PkVVVk =
bcr2

e

ζR2

[
∞∑
n=1

sin2[nko(ct−R + re)]

n2

]
n̂̂n̂n (3.17)

The average energy flux summed over all possible modes is then

〈SSSe〉 =
bcr2

e

2ζR2

[
∞∑
n=1

1

n2

]
n̂̂n̂n (3.18)

If the total power radiated is required to be the inertial power Pin then this will
conveniently identify the constant ζ as the Riemann zeta-function ζ = ζ[2]. The
power radiated by the nth term in the sum is

Pn =

∫
Ω

|Rf(θ, φ)|2〈SSSe〉n · n̂̂n̂n dΩ =
Pin

ζ[2]n2
(3.19)
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Now suppose energy and momentum flux at each wave number is composed of vacuum
qaunta with energy and momentum given by

En =
1

2
n~cko pppn = n~kon̂̂n̂n (3.20)

The total number of quanta scattered per unit time at each index n is then

Nn =
Pn
En

=
2Pin

ζ[2]~cko n3
(3.21)

The only other requirement will be to equate the total quanta radiated per second to
twice the Dirac frequency.

2f =
∞∑
n=1

Nn =
ζ[3]

ζ[2]
· 2Pin

~cko
(3.22)

The ratio of zeta-functions is a constant α ∼ 0.73 and equation (3.22) solves for the
fundamental wave vector

ko =
2πα

re
(3.23)

The quantum mechanical energy and momentum formula’s can then be re-written

En =
1

2

hc

λn
pppn =

h

λn
n̂̂n̂n (3.24)

where the quantized wavelengths are given by

λn =
re
αn

(3.25)

This formula allows for the interpretation of the emission of vacuum particles in
terms of harmonic oscillations of the particle radius. The classical radius is simply
a superposition of longitudinal pulses summed over all wave vectors. Approximately
83 percent of the emissions are at the fundamental frequency having an energy of
E ∼ 321 MeV. For the 500th harmonic (overtone?) the the rate of emission is reduced
by a factor of 108 but there are still 1012 particles emitted each second. The particle
radius associated with each wave vector is proportional to the wavelength and given
by

rn =
re

2παn
(3.26)

If we let rn/c→ ∆τ and En → ∆E then

∆E∆τ =
~
2

(3.27)

which saturates the lower bound of the uncertainty principle.
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A Transformation of the Causality Sphere

A theory of an invariant particle radius follows from an inspection of the vacuum
gauge velocity potentials in equations (1.7) and (2.4). The essential problem is to
develop an appropriate transformation law for the causality step consistent with the
theory.

In the rest frame the causality sphere is

ϑ = ϑ(cτ − ro + re) (A.1)

A graphical depiction of the this function is provided in figure 2 showing a tempo-
ral expansion over a time interval cto + re. Unfortunately, the presence of re in the

Figure 2: Spacetime diagram indicating the expansion of the radial step ϑ(cτ −ro+re)
in the rest frame. The inclusion of the phase re defines two regions inside and outside
the particle radius.

argument leads to difficulties when transforming to a moving frame—completely in-
dependent of any stipulated property of the radius. To understand why, insert the
general homogeneous Lorentz transformation

cτ = γ (ct−βββ · rrr) (A.2a)

rrro = rrr +
γ − 1

β2
(βββ · rrr)βββ − γctβββ (A.2b)

showing that the step transforms as

L[ϑ(cτ − ro + re)] = ϑ(γct− γβββ · rrr − ρ+ re) (A.3)
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The problem is to determine the collection of points which represents the boundary
of the expanding step in the moving frame. Letting ϑ = ϑ(Z), then the vanishing of
Z implies the covariant condition

(xν + reβ
ν) · (xν + reβν) = 0 (A.4)

This is the equation of a sphere with a radius ct+ γre which expands about the point
−γβββre so the moving frame step function is

L[ϑ] = ϑ(ct− ‖rrr − γβββre‖+ γre) (A.5)

In short, the homogeneous transformation does not appear to be a useful theoretical
tool for keeping the mathematics simple while highlighting properties of the expanding
sphere in the moving frame. Based on the previous result it is reasonable to inquire

Figure 3: Spacetime diagram based on equations (A.7). The transformation produces
timelike and spacelike radius vectors (shown in red and blue) which are the same in
both frames.

how the Lorentz transformation might be tailored to shift the origin of coordinates so
that the causal sphere still expands from the spatial origin in the moving frame. This
can be accomplished by defining proper frame and moving frame time coordinates by

cτ̂ ≡ cτ + re ct̂ ≡ ct+ re (A.6)
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Replacing the time coordinates in (A.2) with the hatted coordinates renders inhomo-
geneous equations

cτ = γ (ct−βββ · rrr) + αo (A.7a)

rrro = rrr +
γ − 1

β2
(βββ · rrr)βββ − γβββct+ααα (A.7b)

where the shift in coordinates is given by

αµ ≡ [γ − 1,−γβββ]re (A.8)

Figure 4: World line for a particle with radius re moving at constant velocity.

The two coordinate systems related by (A.7) are illustrated in figure 3. The trans-
formation looks something like a Poincaré transformation except that the coordinate
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shifts are a function of the velocity of the particle. For small non-relativistic transfor-
mations αµ can be approximated by a purely spatial shift, proportional to the velocity
of the particle. For transformations where γ is large one can write αµ ≈ reβµ. Even
for large γ though, the spatial and temporal shifts are still small based on the value
of the classical radius: For example γ ∼ 109 produces a spatial shift on the order of
10−6 meters.

An immediate test of equations (A.7) is to use them to show that

L[ϑ(cτ − ro + re)] = ϑ(ct− r + re) (A.9)

However, it is also important to consider the transformation in terms of the retarded
time ctr and its associated vector R. In the moving frame the position of the electron
as a function of time is given by

w(ctr) = βββ(ctr + re) (A.10)

and the retardation condition is

R ≡ rrr −w(ctr) R ≡ ct− ctr (A.11)

This substitution derives the following relations

cτ + re = ρ+
1

γ
(ctr + re)

rrro = R+
γ − 1

β2
(βββ ·R)βββ − γβββR

Extraneous terms involving the radius drop out of the second equation which is im-
portant because it preserves the definition of the covariant scalar ρ ≡ Rνβν . In terms
of the new coordinates the causality sphere can be written

ϑ = ϑ[γ−1(ct̂r)] (A.12)

This is a sensible result which vanishes for retarded times less then re.
The world line of the moving frame particle is illustrated in figure 4. The particle

position at any retarded time ctr is the center of radiation. This can be compared to
the sphere which defines the particle radius at a later time cδte = re. At this time the
particle position is shifted by an amount βββre from the center of the sphere.
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B Green Function Solutions for Dilatation Func-

tions

Source equations for the scalar and vector dilatation can be solved using the method
of Green functions. The retarded Green function G(R,R′) is the same for both of
equations (2.13) and is a solution to

∇2
RG(R,R′) + k2G(R,R′) = −δ3(R−R′) (B.1)

Generally speaking, a Green function can always be written as a sum over independent
orthogonal solutions to a Sturm-Louiville homogeneous equation. These are plane
waves with a continuous index for (2.13) and requiring the Green function to take the
form

G(R,R′) =
1

(2π)3/2

∫
e−ip·(R−R

′)

p2 − k2
d3p (B.2)

The integral over the primed coordinates is straight forward producing the infinite
space solution

G(R,R′) =
e−ik|R−R

′|

4π|R−R′|
(B.3)

and having a useful spherical wave expansion

G(R,R′) = −ik
∞∑
l=0

l∑
m=−l

jl(kR>
<
)h(2)

l (kR<
>
)Y ∗lm(ψ′, φ′)Ylm(ψ, φ) (B.4)

The forms of G in the two previous equations are actually complex conjugates of
the more conventional Green function but are a convenient alteration for the vacuum
gauge electron since the variable R appears with a minus sign in the causality step.

Scalar Dilation: The scalar equation is easily solved from the observation that
it is—to within a constant—identical to the Green function in equation (B.1) for
R′ → 0. Since both uk and ρk have well defined Fourier transforms it is also possible
to consider a solution based on the Fourier amplitude

uk(p) =

√
2

π

[
ãk

k(p2 − k2)

]
(B.5)

However the problem is confronted, their is little difficulty in deriving

uk(R) = ãk
e−ikR

kR
(B.6)

A theory of scalar dilatation can also be investigated using Green’s theorem which
combines uk(R

′) and G(R,R′) according to∫
v

[uk∇′2R G−G∇′2R uk]dv
′ =

∮
s

[uk∇′RG−G∇′Ruk] · daaa′ (B.7)
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First, suppose that the integration volume is chosen to be infinite space. Substituting
appropriate differential equations on the left side leaves two delta functions which
contribute with opposite signs at R′ = 0 and R′ = R. The left side is therefore zero
and this means the surface integral is also zero. To show this, make the replacements

∇′Ruk · n̂̂n̂n′ = −
(

1

R′
+ ik

)
uk ∇′RG · n̂̂n̂n′ =

∂G

∂R′
(B.8)

and write the surface integral as

Is = lim
R′→∞

∮
s

uk

[
∂G

∂R′
+

(
1

R′
+ ik

)
G

]
R′2dΩ (B.9)

But uk is a purely radial function implying that the Green function can be replaced
by the leading term in the expansion (B.4) without consequence. This term is

G`=0(R,R′) = − ik
4π

{
h(2)

0 (kR) · j0(kR′) R′ < R

j0(kR) · h(2)

0 (kR′) R′ > R
(B.10)

Choosing the case R′ > R easily verifies that Is = 0.
Suppose instead that the volume is chosen to be infinite space less the volume

inside the vacuum boundary. Assume also that the variable R lies somewhere in the
exterior region. In this case Green’s theorem becomes

uk(R) = −
∮
s

[uk∇′RG−G∇′Ruk] · daaa′ (B.11)

However, as already shown, the surface corresponding to R′ → ∞ makes no contri-
bution to (B.11) so that s is to be associated exclusively with the vacuum boundary.
Evaluation of the integral follows as before by replacing the Green function by its
leading ` = 0 term, but this time it is necessary to use the first equation in (B.10).
The result requires the direction of the surface element to point from exterior space
into the void and can be written

uk(R) = r2
e uk(re) ·

e−ikR

R
· e

ikre

re
R′ = re (B.12)

In the language of scalar diffraction theory, it can be suggested here that (B.11)
determines the exterior field based on an integral over an aperture where each element
of the aperture is the source of a Huygens wavelet.

Vector Dilatation: Solution to the vector equation in (2.13) follows by generalizing
Green’s theorem to accomodate a vector field:∫

v

[uuuk∇′2R G−G∇′2R uuuk]dv
′ =

∮
s

[uuuk∇′RG−G∇′Ruuuk] · daaa′ (B.13)
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If the volume consumes all space, then the right side of this equation vanishes while
the left side identifies the solution for uuuk in the form

uuuk(R) =

∫
G(R,R′)JJJk(R

′)d3R′ (B.14)

Unfortunately, the solution for the vector problem is somewhat more complicated
than its scalar counterpart. To perform the integration in (B.14) it will be necessary
to use the spherical wave expansion of G given in equation (B.4). In addition to
this, the current density is not a localized source which implies the full integration of
the primed variables over infinite space. The spherical boundary defined by R = R′

divides the integral into two distinct regions and leads to the solution

uuuk(R) = −ik
∑
l,m

h(2)

l (kR)Ylm(ψ, φ)

∫ R

0

∫
Ω

JJJk(R
′)jl(kR

′)Y ∗lm(ψ′, φ′)R′2 dR′dΩ′

− ik
∑
l,m

jl(kR)Y ∗lm(ψ, φ)

∫ ∞
R

∫
Ω

JJJk(R
′)h(2)

l (kR′)Ylm(ψ′, φ′)R′2 dR′dΩ′

But the integrals can be simplified considerably by performing the angular integration
which eliminates all terms in the sum except for l = 1. For the record

Gl=1(R,R′) =
3

4π
ik cos γ

{
h(2)

1 (kR) · j1(kR′) R′ < R

j1(kR) · h(2)

1 (kR′) R′ > R
(B.15)

where cos γ is determined from the addition theorem of spherical harmonics

cos γ =
1∑

m=−1

Y ∗1m(θ′, φ′)Y1m(θ, φ) (B.16)

The remaining radial integrals determine uuuk(R) as

uuuk(R) = −ik n̂̂n̂n
[
h(2)

1 (kR)

∫ R

0

Jk(R
′)j1(kR′)R′2 dR′ + j1(kR)

∫ ∞
R

Jk(R
′)h(2)

1 (kR′)R′2 dR′
]

Where Jk(R
′) is the magnitude of the vector current density which can be cast in

terms of the l = 0 spherical Hankel function of the second kind

Jk(R) = −2i
ãk
R2

h(2)

0 (kR) (B.17)

Now define the unit free coordinate x ≡ kR, and insert the source current which leads
to the expression

uuuk(x) = −2ãk
[
h(2)

1 (x)I1(x) + j1(x)I2(x)
]
n̂̂n̂n (B.18)
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with integrals given by

I1(x) ≡
∫ x

0

h(2)

0 (x′)j1(x′) dx′ I2(x) ≡
∫ ∞
x

h(2)

0 (x′)h(2)

1 (x′) dx′ (B.19)

While I2(x) can be integrated by parts, I1(x) is somewhat more difficult to evaluate.
One finds the spherical wave solution

uuuk(R) = ãk

[
e−ikR

kR

]
n̂̂n̂n (B.20)

which agrees with (2.5b).
Having verified the solution uuuk it is important to return to equation (B.13) and

apply Green’s theorem over other regions. For example, suppose the selected volume
is infinite space less the volume contained within the particle radius re. On the right
side, if it is further assumed that the surface at R′ → ∞ does not contribute to the
integral, than s represents the vacuum boundary at re. For a value of R exterior to
the boundary, Green’s theorem reads

uuuk(R) =

∫
>re

GJJJk dv
′ −
∮
s

[uuuk∇′RG−G∇′Ruuuk] · daaa′ (B.21)

but according to (B.14), this requires the volume inside the vacuum boundary to
satisfy ∫

<re

GJJJk dv
′ = −

∮
s

[uuuk∇′RG−G∇′Ruuuk] · daaa′ (B.22)

Evaluation of the volume integral is immediate by referring to the Green function
calculation of uuuk. Defining xe = kre implies∫

<re

GJJJk dv
′ = −2ãk h

(2)

1 (x) I1(xe) (B.23)

To arrive at this result through a brute force calculation of the surface integral, first
calculate

∇′Ruuuk · n̂̂n̂n′ = −
[

1

R′
+ ik

]
uuuk ∇′RG · n̂̂n̂n′ =

∂G

∂R′
(B.24)

At R′ = re, the surface integral is therefore linear in the dilatation

III =

∮
s

uuuk

[
∂G

∂R′
R′=re +

(
1

re
+ ik

)
G

]
r2
e dΩ (B.25)

The angular integrals can now be performed with the observation that only the com-
ponent of G corresponding to l = 1 will contribute to the integral. Inserting the
R′ < R term in equation (B.15) will then verify the result of (B.23).
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