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Abstract

Beginning with the Maxwell-Lorentz equations for a charged point particle,
an application of the principle of causality will lead naturally to the vacuum
gauge condition. The presence of the gauge field allows the velocity and accel-
eration fields of the classical particle to be formulated as independent theories
determined from associated vacuum gauge potentials.
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1 Causal Theory of a Charged Particle

Define a flat spacetime using the Minkowski metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.1)

where the general homogeneous Lorentz transformation relating two sets of coordi-
nates (cτ,ρρρ) −→ (ct, rrr) is given by

cτ = γ (ct−βββ · rrr) (1.2a)

ρρρ = rrr +
γ − 1

β2
(βββ · rrr)βββ − γctβββ (1.2b)

A point electron moving through the spacetime is characterized by a four-current
density Jνe and the associated fields satisfy the Maxwell-Lorentz equations

∂µF
µν =

4π

c
Jνe (1.3)

The name is appropriate since the original Maxwell theory of the electromagnetic
field was a macroscopic theory, which Lorentz first applied to a charged particle.

Unfortunately, although equation (1.3) generates a workable theory of the electron,
it cannot be the correct theory for the simple reason that the particle can neither be
created nor destroyed. This is inconsistent with the modern philosophy of quantum
field theory which allows for the creation and annihilation of electrons and positrons
out of the vacuum. As a primary example, it is a violation of the causality principle
to assign a Coulomb field to any charged particle which was created at a finite time
∆τ in the past. This field extends to spatial infinity and requires the particle to have
an eternal lifespan.

1.1 Theory of Electric Charge

To eliminate this problem suppose classical electron theory is re-formulated based on
a field strength tensor given by

F µν = F µν
M · ϑ(ctr/γ) (1.4)

In this equation F µν
M is the conventional Maxwell-Lorentz field stength tensor, ctr is

the retarded time, and ϑ(ctr/γ) is a light sphere which expands in all directions at
the speed of light (see figure 1). The argument of ϑ may also be written in terms of
proper frame variables cτ and ρ so that a useful definition is

ϑ(cτ − ρ) ≡

{
1 cτ > ρ

0 cτ ≤ ρ
(1.5)
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Figure 1: The fields of a causal electron as it moves to the right. The light sphere
expands about the origin of coordinates where the electron was created. The observer
at O is not yet aware of the existence of the particle.

and having a four-gradient

∂νϑ(cτ − ρ) = δ(cτ − ρ) · ∂ν(cτ − ρ) = δ(cτ − ρ) · R
ν

ρ
(1.6)

Naturally, the inclusion of the causality step brings about an added complex-
ity to the conventional notion of the particles’ charge and current density since the
divergence operation on the field strength tensor is

∂µF
µν ≡ 4π

c
J∗νe (1.7)

where

J∗νe ≡ Jνe · ϑ+ JνN JνN ≡
c

4π
F µν

M · ∂µϑ (1.8)

and where JνN may be referred to as the null current—having a four-space norm of
zero. The properties of J∗νe can be understood through a divergence calculation. This
is a continuity equation for electric charge which might not be expected to hold for
a single particle since the charge has been created from nothing. Curiously enough,
this is a false assumption:

∂νJ
∗ν
e = ∂νJ

ν
e · ϑ+ Jνe · ∂νϑ+

c

4π
∂νF

µν
M · ∂µϑ+

c

4π
F µν

M · ∂ν∂µϑ (1.9)
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The first term and the last term on the right are both zero. The two terms in the
middle cancel out so that ∂νJ

∗ν
e = 0.

Integral of the Four-Current Density: The physics of this calculation can be
understood beginning with the integral of the four-current density

Qν =

∫
J∗νe d

4x (1.10)

Using dΩ as a solid angle element from the particles retarded position and ρ = Rνβν
this is actually a very simple calculation since Gauss’ law can be used to write

dQν =

∫
∂µF

µνR2dρ dΩ cdτ = −
∮
F µνUµR2dΩ cdτ (1.11)

Then
dQν

dτ
= ecβν · ϑ(cτ − ρ) (1.12)

Now suppose this result is to be obtained by explicitly evaluating the integral in
(1.10). In this case the differential dQν

e for the first part of J∗νe is

dQν
e

dτ
=

∫
Jνe · ϑR2dρ dΩ = ecβν · ϑ(cτ) (1.13)

For the null current

dQν
N =

∫
JνNR

2dΩdρ cdτ

= − ec
4π

∫
Rν

ρ3
δ(cτ − ρ)R2dΩdρ cdτ (1.14)

Inserting appropriate limits of integration this is

dQν
N

dτ
= − ec

4π

∫
Ω

Uν + βν

γ2(1− n̂̂n̂n ·βββ)2
dΩ ·

∫ ρ

0

δ(cτ − ρ′)dρ′ (1.15)

The solid angle integral1 eliminates the spacelike direction Uν while the radial integral
is ∫ ρ

0

δ(cτ − ρ′)dρ′ = ϑ(ρ− cτ) (1.17)

1An important variation of the solid angle integral is to write

− ec

4π

∫
Ω

[1, n̂̂n̂n]

γ3(1− n̂̂n̂n ·βββ)3
dΩ = −ecβν (1.16)

The four-velocity can then be pointed in the z-direction to give simple time and space component
integrals yielding the result −ec(γ, 0, 0, γβ).
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This leaves
dQν

N

dτ
= −ecβν · ϑ(ρ− cτ) (1.18)

Couple this with four-current associated with the moving point charge and write
the total current

dQν

dτ
=
dQν

e

dτ
+
dQν

N

dτ

= ecβν · [ϑ(cτ)− ϑ(ρ− cτ)] = ecβν · ϑ(cτ − ρ) (1.19)

The total causal charge density therefore consists of a charge with a finite lifetime
moving at velocity βν , and an oppositely charged radial delta-current which prop-
agates into the cosmos at the speed of light. Since the net charge is always zero,
continuity of the four-current is preserved. The essential function of the null current
is therefore a mask to hide the charge from any observer separated from the origin
by a spacelike interval.

As a means of comparison between the causal and conventional theories, now
define the Maxwell limit by

lim
ct→∞

J∗νe = Jνe (1.20)

As this ‘irrational’ limit is approached, all possible observers in the universe find
themselves within the causal reach of the particle. The null current evaporates and
what remains is the conventional Maxwell-Lorentz theory.

2 Vacuum Gauge Velocity Potentials

An immediate objective is the development of a potential theory for the electron
based on a causal field strength tensor. For the purpose of implicit differentiation, it
will be useful to replace the definition for the causality step in equation (1.5) with

ϑ(ctr/γ) ≡

{
1 ctr ≥ 0

0 ctr < 0
(2.1)

Its four-gradient is

∂νϑ(ctr/γ) =
∂ϑ(ctr/γ)

∂ctr
· ∂νctr/γ = δ(ctr/γ) · R

ν

ρ
(2.2)

and it should be emphasized here that ∂νϑ is not functionally tied to the instantaneous
acceleration of the particle—either when it was created, or at any other time.
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2.1 Differential Equations for Velocity Potentials

In the conventional theory, a potential formulation is initially arrived at by appealing
to the homogeneous Maxwell-Lorentz equations. To proceed in this manner for the
causal theory, it will be useful to verify that the velocity fields

EEE = EEEM · ϑ and BBB = BBBM · ϑ (2.3)

are still solutions to homogeneous equations. This is easy to do with assistance from
the relation

1

c

∂ϑ

∂t
n̂̂n̂n = −∇ϑ (2.4)

where n̂̂n̂n as the unit vector from the initial (retarded) position of the charge. Now
suppose causal fields can be derived from causal potentials Aν = AνM ·ϑ by the familiar
covariant relation

F µν
M · ϑ = ∂µAν − ∂νAµ (2.5)

Inserting into (1.7) will then produce causal source equations

�2Aν − ∂ν∂µAµ =
4π

c
J∗νe (2.6)

Unfortunately, the notion of gauge freedom to solve this set of equations loses
its appeal here since the four-current density is a more complicated object than the
traditional point charge density. In other words, solutions Aν cannot be obtained by
choosing an arbitrary gauge condition. This is also evident in equation (2.5) where
the causality principle places constraints on the functional form of the potentials. As
a specific example, suppose the Liénard–Wiechert potentials are amended to include
the causality principle:

Aνe −→ Aνe · ϑ (2.7)

Not only do these potentials fail to produce the correct field strength tensor, they
also fall short of satisfying the Lorentz gauge condition—instead, yielding spurious
delta functions in both cases.

A more sensible gauge condition for the causal theory is the covariant formula

∂νA
ν
v =

e

ρ2
· ϑ (2.8)

where the subscript v appended to the potentials indicates that accelerations of the
particle are not being considered. Inserting into (2.6) gives

�2Aνv − ∂ν
[
e

ρ2
· ϑ
]

=
4π

c
J∗νe (2.9)

The value of the gauge condition is immediately recognized since the term

e

ρ2
∂νϑ = −JνN (2.10)
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forces an elimination of the null current from the theory. What remains is a source
equation for Aνv which can be written

�2Aνv =
4π

c
[Jνe + Jν` ] · ϑ (2.11)

and where Jν` is the velocity current defined by writing the spacelike vector

Uν =
Rν

ρ
− βν (2.12)

so that

Jν` ≡
ec

2π

Uν

ρ3
(2.13)

The solution to (2.11) is facilitated by inserting Aνv = Aνe + Aν` to produce the de-
coupled pair

�2Aνe =
4π

c
Jνe · ϑ (2.14a)

�2Aν` =
4π

c
Jν` · ϑ (2.14b)

2.2 Vacuum Gauge Condition

Before solutions to equations (2.14) are determined, it is convenient to work in the
Maxwell limit and proceed with a short discussion of the gauge condition in (2.8)
which may be written as

|∂νAνv | ≡
√

E2 − B2 (2.15)

The gauge introduced by this formula may be referred to as the vacuum gauge.
While its primary purpose is to facilitate enforcement of causality, its definition
demonstrates an intimate link between ∂νA

ν—more specifically Aν itself—and the
classical theory of the electromagnetic field.

The covariant nature of the vacuum gauge gives it similar properties to the Lorentz
gauge. For example, the restricted gauge transformation defined by

Aν → Aν − ∂νΛ where �2Λ = 0 (2.16)

will preserve the vacuum gauge condition. This means that, like the Lorentz gauge,
the vacuum gauge represents an entire class of potentials. For the special case of
electromagnetic waves, the left side of (2.15) is zero and the vacuum gauge is identical
to the Lorentz gauge.
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When the gauges are not identical, it is possible to implement a specific gauge
transformation which connects them. If Aνe are the Lorentz gauge potentials satisfying
∂νA

ν
e = 0 then the vacuum gauge potentials follow from

Aν = Aνe + ∂νϕ (2.17)

Applying the divergence operator to both sides of this equation and using fields for a
point charge shows that the gauge field ϕ must satisfy

�2ϕ =
e

ρ2
(2.18)

One approach to solving this equation is by implicit differentiation. Applying the
operator ∂ν to

∂νϕ =
∂ϕ

∂ρ
∂νρ (2.19)

and remembering that accelerations are not being considered results in a source equa-
tion which may be written

L[ϕ ] = − ∂

∂ρ

[
ρ2 ∂

∂ρ

]
ϕ = e (2.20)

The operator on the left is self-adjoint and admits a general solution which includes
two linearly independent solutions to the homogeneous equation:

ϕ = C1ϕ1 + C2ϕ2 + ϕp (2.21)

For the record ϕ1 = C and ϕ2 = e/ρ but neither of these contributions are necessary
for the design of the causal theory. Instead, the particular solution

ϕ(rrr, t) = −e ln ρ (2.22)

is sufficient to determine the causal potentials. A solution is also available by consid-
ering a first order equation in the scalar field ψ defined through the relation

ϕ(ρ) =

∫ ρ

ψ(ρ′) dρ′ (2.23)

The associated Green function for the first order problem is determined from

− ∂

∂ρ

[
ρ2G(ρ, s)

]
= δ(ρ− s) (2.24)

and seems to provide a neater solution.
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2.3 Velocity Potentials and Velocity Fields

One way to solve equations (2.14) is in the rest frame followed by a Lorentz trans-
formation to moving frame coordinates. However, it is a simple matter to recognize
(2.14a) as the differential equation solved by the Liénard-Wiechert potentials inside
the causality sphere. Moreover, equation (2.14b) can be solved by applying the oper-
ator ∂ν to the scalar field ϕ in equation (2.22). Results for the causal potentials are

Aνe =
e

ρ
βν · ϑ (2.25a)

Aν` =
e

ρ
Uν · ϑ (2.25b)

These are complimentary timelike and spacelike potentials (un-identical twins) which
may be added together immediately using (2.12) to determine the vacuum gauge
velocity potentials given by

Aνv =
eRν

ρ2
· ϑ (2.26)

A graphical depiction of the potentials is shown in figure 2. For constant velocity

Figure 2: Vacuum gauge velocity potentials at a point P . The light cone traces the
potentials back to the world line of the charge at the retarded time.

motion the effect of the vacuum gauge condition is to generate the gauge field Aν`
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which rotates the Lorentz gauge (Liénard-Wiechert) potentials onto the surface of
the light cone. In Minkowski space both Aνe and Aν` have equal lengths except for an
overall sign. They are mutually orthogonal timelike and spacelike components of the
vacuum gauge velocity potentials.

Equation (2.26) can now be used to verify the causal field strength tensor in
(1.4). To facilitate the calculation write the four-potentials as Aνv → Aνv · ϑ so that
Aνv becomes the associated Maxwell potentials. Then it must be shown that

F µν
v = ∂µ(Aνv · ϑ)− ∂ν(Aµv · ϑ) = (∂µAνv − ∂νAµv ) · ϑ (2.27)

The validity of this result relies on the fact that ∂νϑ is a null vector which has
already been determined in equation (1.6). To complete the calculation only requires
differentiating the vacuum gauge potentials inside the causality sphere. Technically,
this is not necessary since we know that velocity potentials differ from the Liénard-
Wiechert potentials by a gauge transformation. However, this is not the whole story
and it is worthwhile to perform the calculation:

F µν
v =

e

ρ2
(∂µRν − ∂νRµ)− 2e

ρ3
(Rν∂µρ−Rµ∂νρ) (2.28)

But implicit derivatives are

∂µRν = gµν − 1

ρ
Rµβν (2.29a)

∂µρ = βµ − Rµ

ρ
+
aλRλ

ρ
Rµ (2.29b)

and these can be inserted above to yield the causal tensor

F µν
v =

e

ρ3
(Rµβν −Rνβµ) · ϑ (2.30)

Of particular importance is how the calculation of the field strength tensor completely
rejects all terms associated with the acceleration of the particle. This property is also
visible in the calculation of the vacuum gauge condition where (2.29b) will be required
along with ∂νR

ν = 3 to determine

∂νA
ν
v =

e

ρ2
· ϑ (2.31)

The implication here is that the application of causality to the Maxwell-Lorentz field
of the classical electron will require independent theories of the particles’ velocity and
acceleration fields.

Covariant Integral: An important application of Gauss’ law begins with the in-
tegral of the vacuum gauge condition

I =

∫
V
∂νA

ν
v d

4x (2.32)
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where V represents the four-volume of the causal light cone accessible to the particle.
Since the integrand and the volume element are both Lorentz scalars, this means that
I is a scalar invariant. It is most easily evaluated in the proper frame where

I =

∫ ct

0

[∫ ct′

0

e

r2
r2dr dΩ

]
cdt′ = 2πec2τ 2 (2.33)

Since this result is proportional to the interval, in a frame moving with velocity βββ it
generalizes to

xµxµ =
1

2πe

∫
V
∂νA

ν
vd

4x (2.34)

where xµ = (ct,βββct) is the coordinate vector of the particle.

Figure 3: The gauge field Aν` can be integrated over the hyper-surfaces enclosing the
four-volume of the light cone. There is no contribution from the integral over the
hyper-ellipse.

Another approach to evaluate I is to apply Gauss’ law and integrate over the
surface of the light cone shown in figure 3. First note that the volume integral can
be written

I =

∫
V
∂νA

ν
ed

4x+

∫
V
∂νA

ν
`d

4x (2.35)
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The first integral is zero and this implies that the surface integrals of the Liénard-
Wiechert potentials enclosing the volume S add to zero:∫

S
Aνedνs = 0 (2.36)

More specifically, non-zero integrals over each of two hypersurfaces are∫
S1
Aνeβν d

3σ +

∫
S2
AνeRν d

2ω = 0 (2.37)

As always, these integrals are most easily evaluated in the rest frame having values
±2πec2τ 2.

All that remains is to apply Gauss’ law to the second integral in equation (2.35),
but as indicating by figure 3, the gauge field only contributes along the light cone
producing the result

I =

∫
S2
Aν`Rν d

2ω (2.38)

2.4 Lorentz Transformation of Potentials and Fields

The transformation equations for the velocity potentials mirror those of the coordinate
transformation:

A′v = γ(Av +βββ ·Av) (2.39a)

A′v = Av +
γ − 1

β2
(βββ ·Av)βββ + γAvβββ (2.39b)

However, velocity potentials are composed of timelike and spacelike components—
each of which may be transformed by itself. Component transformations from the
rest frame are particularly simple.

A′e = γAe A′e = γβββAe (2.40a)

A′` = γβββ ·A` A′` = A` +
γ − 1

β2
(βββ ·A`)βββ (2.40b)

The norms of both four-vectors are easily shown to be Lorentz scalars. Moreover,
their norms are the same to within sign which will enforce a zero norm for the velocity
potential

A
′ν
v = A

′ν
e + A

′ν
` (2.41)

The importance of the spacelike potentials emerge when the velocity field strength
tensor is written

eF µν
v = [A

′µ
` , A

′ν
e ] (2.42)

The anti-symmetric tensor loses its traditional identity as a fundamental object—
being replaced by an interaction among four-potentials. The second order transfor-
mation law for F µν

v is then a combination of first order transformations

[A
′µ
` , A

′ν
e ] =

∂x′µ

∂xα
∂x′ν

∂xβ
[
Aα` , A

β
e

]
(2.43)
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Transformation Law for Velocity Fields: As an example of the use of the gauge
field, velocity electric and magnetic field vectors in a moving frame are

EEE′v =
γ

ρ
(A′` − A′`βββ) BBB′v =

γ

ρ
(βββ ×A′`) (2.44)

Now suppose the transformation of the gauge field in equation (2.40b) is inserted into
(2.44). In terms of rest frame potentials one finds

EEE′v =
γ

ρ

[
A` −

γ

γ + 1
(βββ ·A`)βββ

]
(2.45a)

BBB′v =
γ

ρ
(βββ ×A`) (2.45b)

In the rest frame, A`/ρ = EEEv which derives the transformation law for the electric
and magnetic field vectors of the particle

EEE′v = γEEEv −
γ2

γ + 1
(βββ ·EEEv)βββ (2.46a)

BBB′v = γβββ ×EEEv (2.46b)

3 Vacuum Gauge Acceleration Potentials

As already discussed, the rejection of particle accelerations by the velocity potentials
imply that the acceleration potentials will satisfy their own independent differential
equation. Once derived, its solution and subsequent calculation of the field strength
tensor F µν

a are straight-forward.

3.1 Differential Equation for Acceleration Potentials

Working in the Maxwell limit, the form of the vacuum gauge source equation—
inclusive of accelerated motions—will be

�2Aν − ∂ν∂µAµ =
4π

c
Jνe (3.1)

As a trial solution, Aνv can be inserted into the left side of this equation. Excluding
the location of the charge, the calculation shows that

�2Aνv =
2e

ρ3
Uν (3.2a)

∂ν∂µA
µ
v =

2e

ρ3
Uν − 2e

ρ4
(aλRλ)R

ν (3.2b)
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The trial solution therefore differs from the actual solution by a single term involving
the acceleration of the particle. It is convenient to write (3.2b) as

∂ν∂µA
µ
v =

4π

c
[Jν` + Jνa ] (3.3)

which defines the acceleration current

Jνa ≡ −
ec

2πρ4
(aλRλ)R

ν (3.4)

Now assume that the potentials during accelerated motions can be written as

Aν = Aνv + Aνa (3.5)

Inserting this into (3.1) along with the simultaneous appearance of Jνa shows that

�2Aνv + �2Aνa − ∂ν∂µAµv − ∂ν∂µAµa =
4π

c
Jνe +

4π

c
Jνa (3.6)

Velocity and acceleration terms can now be de-coupled resulting in two independent
equations which obey

�2Aνv − ∂ν∂µAµv =
4π

c
Jνe (3.7a)

�2Aνa − ∂ν∂µAµa =
4π

c
Jνa (3.7b)

While the first equation has already been investigated, the mathematical form of the
acceleration equation implies that the acceleration fields will satisfy their own set of
Maxwell-like equations

∂µF
µν
a =

4π

c
Jνa (3.8)

Moreover, Jνa is a null vector and will satisfy the continuity equation ∂νJ
ν
a = 0 as it

must since F µν
a is anti-symmetric. This is easily proved by noting that

∂ν(a
λRλ)R

ν = aλRλ (3.9)

The fact that Jνa points in the direction of Rν gives it a physical interpretation
as a massless 1/r2 electrical current which radiates from the instantaneous retarded
position of the charge. This means that every point in space containing non-zero
fields EEEa and BBBa can be associated with a local vacuum current density at that same
point. Except for an overall constant, Jνa is nothing more than the projection of the
particle four-acceleration along the direction of the velocity potentials.
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3.2 Acceleration Potentials and Acceleration Fields

It may be possible to solve the differential equation in (3.7b) by a brute force cal-
culation, but it is easier to determine its solution by referring directly to the gauge
transformation in equation (2.17). Including particle accelerations this is

Aν = Aνe + ∂νϕ (3.10a)

= Aνe −
e

ρ

[
βν − Rν

ρ
(1− aλRλ)

]
(3.10b)

The gauge transformation eliminates the Liénard-Wiechert potentials altogether and
replaces them with null potentials. In addition, both the velocity and acceleration
potentials are easily recognizeable in the brackets. Including the requirement to
enforce causality, the acceleration potentials and the acceleration current are

Aνa = − e

ρ2
(aλRλ)R

ν · ϑ Jνa ≡ −
ec

2πρ4
(aλRλ)R

ν · ϑ (3.11)

As with the velocity theory, the vacuum gauge is requiring radial null potentials such
that AaνA

ν
a = 0. Note also that Aνa does not diminish for large R.

The ability of the causal potentials in (3.11) to render causal acceleration fields
is determined by their direction along the light cone. Writing Aνa → Aνa · ϑ, then the
simple calculation verifies

F µν
a = ∂µ(Aνa · ϑ)− ∂ν(Aµa · ϑ) = (∂µAνa − ∂νAµa) · ϑ (3.12)

Inside the causal region the acceleration potentials may be written

Aνa = −(aλRλ)A
ν
v (3.13)

which can be differentiated to produce

F µν
a = −∂µ(aλRλ)A

ν
v + ∂ν(aλRλ)A

µ
v − (aλRλ)F

µν
v (3.14)

A rigorous calculation of ∂µ(aλRλ) requires some computational stamina but leads to
the simple result

∂ν(aλRλ) = aν +
ȧλRλ

ρ
Rν (3.15)

where ȧλ = ∂aλ/∂τ and where τ is the proper time. Now define the scalar field2

ξ ≡ aλRλ/ρ and easily determine the final form of the field strength tensor:

F µν
a =

e

ρ2
[Rµaν −Rνaµ − ξ(Rµβν −Rνβµ)] · ϑ (3.16)

2This definition of ξ is similar to Rohrlich’s definition au ≡ aνUν . The new definition was chosen
to avoid confusion with the covariant four-acceleration.
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3.3 Total Potentials

Combining the velocity potentials in (2.26) with the acceleration potentials in (3.11),
the general vacuum gauge solution for arbitrary motions of a charged particle can be
written

Aν(rrr, t) =
e(1− aλRλ)

ρ2
Rν · ϑ (3.17)

Based on previous discussion, the mathematical structure of this formula also allows
the potentials to be divided as

Aν = Aνe + Aν` + Aνa (3.18)

where
Aνe =

e

ρ
βν · ϑ Aν` =

e

ρ
Uν · ϑ Aνa = −e

ρ
ξRν · ϑ (3.19)

Each of these potentials can be associated with its own vector current density, and
each current density points in the same direction as its associated potentials. Two of
the currents are conserved but one is not:

∂νJ
ν
e = 0 ∂νJ

ν
` = − ec

2πρ4
∂νJ

ν
a = 0 (3.20)

Finally, it is important to compare the magnitudes of the velocity and acceleration
potentials which become equal when aλRλ ∼ c2. Unless accelerations are extremely
large, it can be assumed that acceleration potentials represent only a small correction.

Causality and the Scalar Field: The development of vacuum gauge theory begins
from the assertion that the velocity field of a charged particle is a causal field. How-
ever, causality can (and probably should) be introduced by constraining the scalar
field ϕ as

ϕ = −e ln ρ · ϑ (3.21)

A first derivative for general accelerated motions picks up a delta function

∂νϕ = [Aνv + Aνa − Aνe ] · ϑ− e ln ρ · ∂νϑ (3.22)

but the second derivative can be written

∂µ∂νϕ = [∂µAνv + ∂µAνa − ∂µAνe ] · ϑ+ Sµν (3.23)

where Sµν is the collection of remaining terms symmetric in the two indicies. Now
form the object

∂µ [∂µ∂νϕ− ∂ν∂µϕ] = 0 (3.24)

This set of operations can be written in terms of the potentials as

[�2Aνv + �2Aνa −�2Aνe − ∂ν∂µAµv − ∂ν∂µAµa ] · ϑ+ ∂µϑ(F µν − F µν) = 0 (3.25)
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But the velocity and acceleration terms in the brackets can be separated with the
introduction of the acceleration current. Moreover, the point charge four-current Jνe
replaces the wave operator acting on the Liénard-Wiechert potentials. What remains
is independent equations of motion given by

[�2Aνv − ∂ν∂µAµv −
4π

c
Jνe ] · ϑ = 0 (3.26a)

[�2Aνa − ∂ν∂µAµa −
4π

c
Jνa ] · ϑ = 0 (3.26b)

Both are automatically constrained by casuality without the presence of the null
current. This calculation effectively summarizes the entire theory of vacuum gauge
potentials previously introduced.

Pair Production/Annihilation: An excellent example of the use of total vacuum
gauge potentials is for the description of the creation and annihilation of an e+ e− pair.
The spacetime diagram in figure 4 shows the pair created at the origin of coordinates
and annihilated at a later time cτo. First, write the position vector of each particle
as

w+ = w+(τ) (3.27a)

w− = w−(τ) (3.27b)

Since the pair created and annihilated itself, their positions should be identical at
time τ = 0 and τ = τo:

w+(0) = w−(0) (3.28a)

w+(τo) = w−(τo) (3.28b)

Add to these constraints the retardation condition, which is generally different for
each particle

Rν
+ = xν − wν+(tr) (3.29a)

Rν
− = xν − wν−(tr) (3.29b)

In the frame S the vacuum gauge potentials Aνtot(ct, rrr) are the sum of vacuum gauge
potentials associated with each particle. In addition, since both particles share the
same causality requirements at both ends of their life span, the form of the potentials
is

Aνtot(ct, rrr) =
[
Aνv+ + Aνa+ + Aνv− + Aνa+

]
· ϑ(ctr) · ϑ(γcτo − ctr) (3.30)

Derivatives then determine the appropriate form of the causal field stength tensor

F µν
tot (ct, rrr) = [F µν

+ + F µν
− ] · ϑ(ctr) · ϑ(γcτo − ctr) (3.31)
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Figure 4: Spacetime diagram exhibiting a two particle e+ e− system in the vacuum
gauge. The blue line marks the limit of the causal fields as viewed in the frame S.

The four-current density associated with this system is determined by the two point
charges and also by two causality induced delta-currents. It would be delightful if the
delta-currents canceled for the two equal and opposite charges, but this is not quite
the case since each particle has a different velocity during creation and annihilation.
For example, using e = −|e| the first delta current may be written

JνN1 = − ec
4π

(1, r̂̂r̂r)

r2

[
1

γ3
−(1− r̂̂r̂r ·βββ−)3

− 1

γ3
+(1− r̂̂r̂r ·βββ+)3

]
· δ(ct− r) (3.32)

where all velocities are evaluated at ctr = 0.
Certainly the time cτo can be anything, but there exists a real possibility that a

model such as this can be linked to the brief appearance of e+ e− pairs described by
quantum field theory. In support of this idea the two particle system already has
two causality functions serving as classical creation and annihilation operators. If
an appropriate classical Hamiltonian can be constructed, it would be a tremendous
accomplishment to develop a simple quantization procedure leading directly to the
quantized Dirac field Hamiltonian operator.
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A Derivatives of the Null Vector

The covariant derivative of Rν is

∂µRν = gµν − Rµβν

ρ
(A.1)

The trace of the resulting matrix gives the 4-divergence ∂νR
ν = 3. In terms of

individual components–and with the inclusion of a sign–a useful construction is:

− ∂µRν =

−
∂R

∂t
−∂R
∂t

∇R ∇R

 (A.2)

where individual components are given by

∂R

∂t
= 1− γR

ρ

∂R

∂t
=
−γRβββ
ρ

(A.3)

∇R =
γR

ρ
∇R = 111 +

γRβββ

ρ
(A.4)

The determinant of (A.2) can be written det[∂µRν ] = 0. The divergence of R follows
from Tr[∇R] and has a value

∇ ·R = 3 +
γR · βββ
ρ

(A.5)

Let www(ctr) be the retarded position of a charged particle at time ctr. The light
cone condition is defined by

R ≡ rrr −www(ctr) R ≡ ct− ctr (A.6)

Suppose that retarded coordinates are viewed collectively as xµr = (ctr,R). A trans-
formation to present time coordinates xµ = (ct, rrr) is then xνr = xνr(x

µ) and it follows
that

dxνr =
∂xνr
∂xµ

dxµ (A.7)

The matrix generated by this transformation can be written

∂xνr
∂xµ

=


∂ctr
∂t

∂R

∂t

−∇ctr −∇R


Derivatives of R and R have already been evaluated while derivatives of the retarded
time are

∂tr
∂t

=
γR

ρ
∇ctr =

−γR
ρ

(A.8)
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