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Abstract

A Lagrangian formulation for the vacuum gauge electron is developed by
drawing on analogies with classical theories of acoustic fields in continuous
media. The theory has several notable underlying features including a second
rank vacuum stress tensor representing the deformed state of the vacuum in
the neighborhood of the charge. The vacuum tensor is characterized by a zero
determinant and operates relative to a flat metric so that vacuum deformations
cannot be directly associated with spacetime curvature.

The theory of the vacuum gauge electron is based solely on the requirement
to enforce causality in the electromagnetic field. Like the fields of the particle
itself, the associated Lagrangian is a causal Lagrangian having a naturally built
in symmetry for the propagation of vacuum waves. Among other things, the
motion of the fields define a particle radius and provide stability relative to an
arbitrary frame of reference.

Accelerated motions of the electron are easily accommodated by the vac-
uum Lagrangian with the addition of an acceleration strain tensor. The total
Lagrangian then generates a Noether current identical to the symmetric stress
tensor derived in the conventional electromagnetic theory.
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1 Causality Applied to the Electromagnetic Field

For an electron created at the origin of coordinates, electric and magnetic field vec-
tors must be constrained by a causality sphere. This function is a one propagating
in all directions at light speed and taking an argument which can be shown to be
proportional to the retarded time

ϑ = ϑ(ctr/γ) (1.1)

A function such as this placed alongside the fields of a charged particle is a powerful
device which can create (or destroy) the particle similar to creation and annihilation
operators of quantum electrodynamics. In one interpretation, the Maxwell-Lorentz
field strength tensor F µν

M is an eigenstate of the causality operator

ϑ̂ · F µν
M = λ · F µν

M where λ =

{
1 if ctr > 0

0 if ctr < 0
(1.2)

Figure 1: Spacetime diagram illustrating the causal reach of the fields for an electron
created at the origin of coordinates. World line of the particle is in blue.

While the application of causality to a classical electron might seem like a radical
idea, it is worthwhile to discuss its consequences. First, causality implies that en-
ergy and momentum must be transported into the vacuum by the particles’ velocity

4



The Radius of the Electron www.vgelectron.net

fields at the speed of light. This violates energy conservation but also requires the
existence of a new particle to transmit the field as a new form of radiation. Even
more dramatically however, it should be clear that once the velocity fields are set in
motion, an entirely new classical reality will present itself and generate a cosmology
for a universe inundated with field energy. Detailed properties of this energy are not
yet known but they are only associated with the particles velocity fields and exist
completely independent of the well known transverse radiation fields. Writing both
fields as F µν

v and F µν
a this independence is exemplified by the expression

F µν
v F a

µν = 0 (1.3)

The problem is very similar to the production of wave motion in a continuous medium.
Both transverse and longitudinal waves can exist simultaneously while not interfering
with each other.

It is not difficult to include moving velocity fields into the general scheme of
theoretical physics since their presence amounts to only a slight modification of the
1905 postulates. The postulate of relativity remains the same but the constancy of
light postulate must be changed to read:

–Postulate 2: The speed of the electromagnetic field is indepen-
dent of the motion of the source.

This is mainly just a generalization of the Einstein postulate to include all possible
electromagnetic fields, but is also a unifying statement which renders the descriptive
title, ‘static field ’ as an unsubstantiated figment of the imagination. On a more
philosophical level though moving velocity fields are also an acknowledgement that
every charged particle in the universe had a beginning—a necessary consequence of
Big Bang cosmology1.

1.1 Vacuum Gauge Potentials

Applying a divergence operation to a causal field strength tensor determines

∂µF
µν ≡ 4π

c
J∗νe (1.4)

where

J∗νe ≡ Jνe · ϑ+ JνN JνN ≡
c

4π
F µν

M · ∂µϑ (1.5)

and where JνN may be referred to as the null current—having a four-space norm of
zero. Using the flat spacetime Minkowski metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.6)

1In the words of George Malley, “Everything (in the universe) is on its way to somewhere”.
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a theory of potentials can be constructed from the homogeneous Maxwell-Lorentz
equations just like the conventional theory leading to

�2Aν − ∂ν∂µAµ =
4π

c
J∗νe (1.7)

Unlike the conventional theory though, the presence of the causal light sphere man-
dates the application of the covariant vacuum gauge condition:

∂νA
ν
v ≡
√

E2 − B2 (1.8)

This is an exceptional example of the use of gauge freedom leading to a de-coupled
theory of velocity and acceleration potentials:

�2Aνv − ∂ν∂µAµv =
4π

c
J∗νe (1.9a)

�2Aνa − ∂ν∂µAµa =
4π

c
Jνa (1.9b)

Solutions to these two equations can be combined to form the most general vacuum
gauge solution for arbitrary motions of the charge:

Aν(rrr, t) =
e(1− aλRλ)

ρ2
Rν · ϑ (1.10)

For reference, the fields produced by Aνv and Aνa are

F µν
v =

e

ρ3
[Rµβν −Rνβµ] · ϑ (1.11a)

F µν
a =

e

ρ2
[Rµaν −Rνaµ − ξ(Rµβν −Rνβµ)] · ϑ (1.11b)

where ξ ≡ aλRλ/ρ.
The structure of (1.10) also allows the velocity potentials to be further divided as

Aν = Aνe + Aν` (1.12)

where

Aνe =
e

ρ
βν · ϑ (1.13a)

Aν` =
e

ρ
Uν · ϑ (1.13b)

Each of these potentials can be associated with its own vector current density, and
each current density points in the same direction as its associated potentials. A
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covariant form for J∗νe follows as an integral over proper time2 while the current
density for the spacelike potentials is

Jν` =
ec

2πρ3
Uν · ϑ (1.14)

Source wave equations for the potentials in (1.13) are

�2Aνe =
4π

c
Jνe · ϑ (1.15a)

�2Aν` =
4π

c
Jν` · ϑ (1.15b)

1.2 Electromagnetic Lagrangian and Stress Tensor

The separation of the velocity and acceleration fields generated by the vacuum gauge
condition allows for the possibility of constructing a classical Lagrangian for a charged
particle as a function of independent field quantities. In consideration of notational
simplicity it is useful to make the temporary replacements

Aνv → Vν ∂µAνv → Vµν (1.16a)

Aνa → Aν ∂µAνa → Aµν (1.16b)

so that Hamilton’s principle can be written

δS = δ

∫
Lvg[V

µν ,Aµν ,Vν , Aν , xν ]d4x (1.17)

The functional form of Lvg can be derived beginning with the classical electromagnetic
Lagrangian

Lem = − 1

16π
(∂µAν − ∂µAν)(∂µAν − ∂µAν)−

1

c
JνeAν (1.18)

and making the replacements

Aν → Vν + Aν (1.19)

Jνe → J∗νe + Jνa (1.20)

A new electomagnetic Lagrangian called Lvg is then

Lvg = − 1

8π
[VµνVµν − VνµVµν + 2AµνVµν − 2AνµVµν + AµνAµν −AνµAµν ]

− 1

c
J∗νe Vν −

1

c
J∗νe Aν −

1

c
Jνa Vν −

1

c
Jνa Aν (1.21)

2A covariant formula for the conventional Jνe is available at the end of chapter 12 in Jackson,
Classical Electrodynammics, Second Edition.
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Obviously, this Lagrangian differs from the conventional electromagnetic Lagrangian
based on the requirement to include the acceleration current density, but this is not
an issue since the additional terms containing Jνa have a functional value of zero. In
fact, the functional value of the free field Lagrangian is identical to the conventional
theory since terms containing the field quantity Aµν also add to zero. Euler-Lagrange
equations for the independent field quantities now follow from Hamilton’s principle
leading to equations of motion given by

∂µ
∂Lvg

∂Vµν
− ∂Lvg

∂Vν
= 0 (1.22a)

∂µ
∂Lvg

∂Aµν

− ∂Lvg

∂Aν

= 0 (1.22b)

Not surprisingly, each set of Lagrange equations produces identical equations of mo-
tion

∂µF
µν
v =

4π

c
J∗νe (1.23a)

∂µF
µν
a =

4π

c
Jνa (1.23b)

This is a re-assuring result and it seems appropriate to use Lvg to derive the
canonical stress tensor from

T µνvg =
∂Lvg

∂Vµλ
Vνλ +

∂Lvg

∂Aµλ

Aν
λ − gµνLvg (1.24)

It is convenient to write this equation as

T µνvg = Θµν
vg + T µνD (1.25)

where

Θµν
vg =

∂Lvg

∂Vµλ
(Vνλ − V ν

λ ) +
∂Lvg

∂Aµλ

(Aν
λ −A ν

λ )− gµνLvg (1.26)

T µνD =
∂Lvg

∂Vµλ
V ν
λ +

∂Lvg

∂Aµλ

A ν
λ (1.27)

The tensor Θµν
vg is the most general, symmetric and traceless, gauge invariant tensor.

Using the relations

F µν
v = Vµν − Vνµ (1.28a)

F µν
a = Aµν −Aνµ (1.28b)
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it can be written

Θµν
vg ≡

1

4π

[
F µλF ν

λ +
1

4
gµνFαλF

αλ

]
(1.29)

To determine T µνD simply write

T µνD = − 1

4π

(
Vµλ − Vλµ + Aµλ −Aλµ

)
V ν
λ −

1

4π

(
Aµλ −Aλµ + Vµλ − Vλµ

)
A ν
λ

= − 1

4π
(F µλ
v + F µλ

a ) ∂λA
ν
v −

1

4π
(F µλ
a + F µλ

v ) ∂λA
ν
a

= − 1

4π
F µλ∂λA

ν (1.30)

This term can now be removed3 from (1.25) with the observation that ∂µT
µν
D = 0,

and leading to the source equation:

∂µΘ
µν
vg =

1

c
F λνJ∗e λ (1.31)

It is important to mention here that details of the derivation of (1.31) show no contri-
bution from the acceleration current density which is something of a spectator in the
calculation. The equivalence of the conventional and vacuum gauge electromagnetic
theories for a charged particle in arbitrary motion is therefore

Θµν
vg ≡ Θµν

em = Θµν (1.32)

For later reference, the specific form of Θµν can be written

Θµν = Θµν
1 +Θµν

2 +Θµν
3 (1.33a)

with individual components given by

Θµν
1 =

e2

4πρ4

[
1

ρ
(Rµβν +Rνβµ)− 1

ρ2
RµRν − 1

2
gµν
]
· ϑ (1.33b)

Θµν
2 =

e2

4πρ4

[
aµRν +Rµaν − ξ(Rµβν +Rνβµ) +

2ξ

ρ
RµRν

]
· ϑ (1.33c)

Θµν
3 = − e2

4πρ4
(ξ2 + aλa

λ)RµRν · ϑ (1.33d)

3For details on symmetrizing the canonical stress tensor, see Jackson, Classical Electrodynamics,
section 12.10; Landau and Lifshitz, Classical Theory of Fields, Section 94.
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2 Deformation of the Vacuum by Electromagnetic

Fields

The propagation of momentum and energy through the electrons’ velocity fields relies
heavily on an interpretation of vacuum gauge velocity potentials as a deformation of
the surrounding medium in the neighborhood of the charge. The vacuum gauge
condition is a precise measure of this deformation which can be demonstrated by
drawing on analogies with the classical theory of elastic media.

2.1 Wave Propagation in Elastic Media

In three-dimensional space, the displacement of an elastic continuum from its equilib-
rium configuration is represented by a vector field uuu = uuu(rrr). The displacement results
in stresses and strains on the surrounding medium which are adequately described by
a symmetric stress tensor typically written

Tij = −2µεij − λ δijε (2.1)

where the positive constants µ and λ associated with the medium are measured
experimentally, and where the strain tensor and its trace are given by

εij ≡
1

2

(
∂ui
∂xj

+
∂ui
∂xj

)
ε = ∇ · uuu (2.2)

The amount of stored potential energy V per unit volume associated with the de-
formed configuration can be determined by combining the stress and strain tensors
as

V = −1

2

∑
i,j

Tijεij (2.3)

If necessary, this term may be combined with a kinetic energy term (derived from
∂uuu/∂t) and an interacting source fff to form a Lagrangian density leading to the general
dynamical equation

ρ
∂2uuu

∂t2
= µ∇2uuu + (λ+ µ)∇∇ · uuu + fff (2.4)

If the deformation and the force density are written in terms of transverse and longi-
tudinal components

uuu = uuut + uuul (2.5a)

fff = ffft + fffl (2.5b)
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the dynamical equation de-couples with uuut and uuul independently satisfying identical
equations

ρ
∂2uuut,l
∂t2

= µ∇2uuut,l + (λ+ µ)∇∇ · uuut,l + ffft,l (2.6)

However, a considerable simplication results from the solenoidal character of uuut and
the irrotational character of uuul implying the relations

∇ · uuut = 0 (2.7a)

∇× uuul = 0 (2.7b)

Source wave equations for the separate components are then

�2
tuuut =

1

c2
t

∂2uuut
∂t2
−∇2uuut = f̃̃f̃ft (2.8a)

�2
luuul =

1

c2
l

∂2uuul
∂t2
−∇2uuul = f̃̃f̃fl (2.8b)

where the source terms have been re-defined accordingly, and where the transverse
and longitudinal velocities of propagation are given by

ct =

√
µ

ρ
cl =

√
λ+ 2µ

ρ
(2.9)

2.2 Vacuum as a Deformable Medium

For a charged particle, the four-space analog of the dynamical equation in (2.4) will
be the Maxwell-Lorentz equations for the velocity potentials. In the Maxwell limit
this is

�2Aνv − ∂ν∂µAµv =
4π

c
Jνe (2.10)

It has already been shown that the velocity equation can be divided into two separate
equations with associated four-currents Jνe and Jν` . This allows the vacuum gauge
source equations in (1.15) to follow the source equations in (2.8) according to

�2Aνe =
4π

c
Jνe ←→ �2

tuuut = f̃̃f̃ft (2.11a)

�2Aν` =
4π

c
Jν` ←→ �2

luuul = f̃̃f̃fl (2.11b)

Jνe (J̀ )ν = 0 ←→ f̃̃f̃ft · f̃̃f̃fl = 0 (2.11c)
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The potentials themselves map to the three-space deformation as

Aνv = Aνe + Aν` ←→ u = uuut + uuul (2.12a)

∂νA
ν
e = 0 ←→ ∇ · uuut = 0 (2.12b)

∂µAν` − ∂νAµ` = 0 ←→ ∇× uuul = 0 (2.12c)

Aν` = ∂νϕ ←→ uuul = −∇ϕ (2.12d)

In words, the transverse and longitudinal deformations of the three-space continuum
get replaced by timelike and spacelike potentials in the four-space theory of a charged
particle; and these potentials are determined from associated timelike and spacelike
current densities. For an accelerating charge it could be argued that the analogy
would fall apart because the total potential will acquire an acceleration term

Aν = Aνe + Aν` + Aνa (2.13)

This issue is resolved by asserting that the analogy only applies to the velocity portion
of the total potential. This is reasonable because Aµa satisfies its own independent
differential equation.

Another important correspondence is

∂νA
ν
v ←→ ∇ · uuu (2.14)

But since the transverse components do not contribute to the total divergence, then

∂νA
ν
v = ∂νA

ν
` = �2ϕ ←→ ∇ · uuu = ∇ · uuul = −∇2ϕ (2.15)

According to the theory of elastic media, the three-space divergence on the right
measures the net distortion, or volumetric dilatation, of the medium. This suggests
that the vacuum gauge condition

∂νA
ν
v =

e

ρ2
(2.16)

is really a vacuum dilatation gauge condition—a measure of the amount by which
the surrounding vacuum is deformed by the presence of the particle. Unlike the three-
space theory however, this is a radial dilatation which vanishes at large distances from
the retarded position of the particle. We interpret this to mean that the dilatation is
creating a spherical orifice (void) in the vacuum having a classical radius re. This is a
very desirable feature of any classical theory of the electron to address—among other
things—the well known problem of the divergent self-energy. Moreover, a particle
radius in the context of an appropriately chosen gauge condition necessarily avoids
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the introduction of form factors and other senseless constructs based on macroscopic
classical notions. The Doppler charge density associated with this radius is easily
demonstrated by evaluating (2.16) at R = re:

σe(θ, φ) =
1

4π
∂νA

ν
v

∣∣∣∣∣
R=re

=
σe

γ2(1− n̂̂n̂n ·βββ)2
(2.17)

The angles are measured with respect to the retarded position and the charge density
can easily be integrated over the radius. Lastly, the theory of vacuum dilatation
can be compared with the Liénard-Wiechert potentials where the application of the
Lorentz gauge condition ∂µA

µ
e = 0 generates a dilatation of zero and is unmistakably

associated with a point-particle theory.

2.3 Propagation of Vacuum Waves

To initiate the transition to a theory of a particle radius, it is first necessary to
give a precise definition to the causality step function in terms of Fourier oscillations.
Individual modes of the step can then be used to re-interpret vacuum gauge potentials
as outgoing spherical waves in timelike and spacelike directions. Momentum in the
fields can be inserted by re-writing the velocity electric and magnetic fields exclusively
in terms of vacuum gauge potentials.

Fourier Modes of the Causality Sphere: While the causality sphere in equation
(1.1) is a function of the retarded time, it may also be written in terms of invariant
scalars through the relation

ctr/γ = cτ − ρ (2.18)

A phase τe may be added to this so that

ϑ(τ, ρ) = ϑ(τ − ρ/c+ τe) (2.19)

A typical Fourier decomposition from signal theory is the Heaviside function but this
is not suitable for our purposes since the argument given in (2.19) can never be less
than zero. A better definition, tailored specifically for the causal theory is

ϑ(τ − ρ/c+ τe) ≡


2

π

∫ ∞
0

sinω(τ − ρ/c+ τe)

ω
dω τ + τe > ρ/c

0 τ + τe ≤ ρ/c

(2.20)

In the causal region the function ϑ propagates travelling waves over all frequencies.
These waves have an amplitude falling off like 1/ω and give a value of exactly 1 when
summed over all frequencies. A schematic exhibiting two of these modes is available
in figure 2. An important operation on the definition (2.20), is the four-gradient
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Figure 2: Schematic showing two Fourier modes at the proper time cτ = 10 transmit-
ted by the radial step at the retarded position.

which can be calculated as

∂νϑ =
2

π

Rν

ρ

∫ ∞
0

cosω(τ − ρ/c+ τe) dω (2.21)

Using τ̂ = τ + τe the integrand may be expanded yielding

∂νϑ =
Rν

ρ

[
2

π

∫ ∞
0

cosωτ̂ cosωρ/c dω +
2

π

∫ ∞
0

sinωτ̂ sinωρ/c dω

]
(2.22)

Each term in the brackets is a delta function. Both would be needed if the function
ϑ were extended to the acausal region where its value would become −1. However,
the mathematics is not aware that ϑ has been defined to have a value of zero in
this region. This means that only one delta function is required and the appropriate
gradient operation is

∂νϑ =
Rν

ρ
· δ (2.23)

Fourier Modes of Potentials: By themselves, Fourier modes of the step don’t
have much personality, but they can be given real physical meaning when applied to
the vacuum gauge potentials. The potentials are

Aν · ϑ = Aνe · ϑ+ Aν` · ϑ (2.24)
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which also have integral representations

Aνe(ρ, τ) =

√
2

π

∫ ∞
0

Aνe:ωdω (2.25a)

Aν` (ρ, τ) =

√
2

π

∫ ∞
0

Aν`:ωdω (2.25b)

where the individual Fourier amplitudes are given by

Aνe:ω =

√
2

π
· e βν · sinω(τ − ρ/c+ τe)

ωρ
(2.26a)

Aν`:ω =

√
2

π
· eUν · sinω(τ − ρ/c+ τe)

ωρ
(2.26b)

This is a set of mutually orthogonal spherical travelling waves having polarization
vectors βν and Uν .

Canonical Momentum in the Electromagnetic Field: To associate momen-
tum flux with the electrons’ velocity fields is as easy as multiplying the fields by a
constant. In fact, since the vacuum gauge has already produced a charge density σe,
both momentum and energy flux fields can be postulated to be

πππE = σeEEE SE = 1
2
πππEc (2.27a)

πππB = σeBBB SB = 1
2
πππBc (2.27b)

While electric flux points radially outward from the present position of the source,
the direction with which magnetic flux circles the particle will depend on the frame
of reference. Now record the force density Jνπ ≡ σeJ

ν
e which re-defines the Maxwell-

Lorentz source equations for the velocity fields:

∇ ·πππE = 4πρπ ∇×πππB =
4π

c
JJJπ +

1

c

∂πππE

∂t
(2.28a)

∇×πππE = −1

c

∂πππB

∂t
∇ ·πππB = 0 (2.28b)

To re-iterate, these are nothing more than the Maxwell equations for the velocity
fields multiplied by σe. The bottom line here is that with almost no effort, an entirely
new interpretation of the electrons’ velocity fields has been established.
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Calculation of Inertial Vacuum Power: It is well known that energy associated
with wave motion is determined by squaring the amplitude of a wave. First define
the anti-symmetric momentum flux tensor

πµν = σeF
µν
v (2.29)

But this may also be written as an anti-symmetric combination among timelike and
spacelike components of vacuum gauge potentials. Using ae = 4πr2

e this is

πµν =
1

ae
[Aµ` , A

ν
e ] (2.30)

Now replace the potentials here with their Fourier amplitudes given in equation (2.26)
yielding a Fourier component of the momentum flux tensor in terms of easily recog-
nizable quantities

πµνω =
2eσe
π

[Uµ, βν ] · sin2 ω(τ − ρ/c+ τe)

ρ2ω2
(2.31)

A calculation of radiated energy will require an integration of the energy flux over
the surface defining the electron radius. This surface uses the retarded distance
R = R(ρ, θ, φ) and the timelike 3-surface given by

dστν = UνR2dΩ dcτ (2.32)

where angles (θ, φ) are measured with respect to the retarded position of the charge.
If the final integration over proper time is witheld, a scalar energy formula will result
from the integral4

dχ

dτ
=

∫ ∞
0

[∮
ρ=re

βµ
[

1
2
πµνω c

]
UνR2dΩ

]
dω (2.35a)

=
ec

π

∫
Ω

σe(θ, φ)dΩ ·
∫ ∞

0

sin2 ωτ

ω2
dω (2.35b)

=
mc2

τe
τ (2.35c)

4Compare the energy flux formulation here with a similar formulation associated with sound
waves in fluids. In the rest frame, constants multiplying the vacuum gauge potentials can be re-
arranged so the potentials appear as pressure and velocity waves per unit frequency

Pω(rrr, t) ∼ bre
sinω(cτ − r/c+ τe)

ωr
VVVω(rrr, t) ∼ cre

sinω(cτ − r/c+ τe)

ωr
r̂̂r̂r (2.33)

The pressure constant is given by b = 4πσ2
e and the differential energy flux per unit frequency may

be written
dSSSω = 1

2PωVVVωdω (2.34)
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This result includes an integration over the Doppler charge density. It can be im-
mediately differentiated giving the invariant power output Pin. To achieve a more
intriguing result suppose the operator d/dτ is applied to the integrand in equation
(2.35b). This determines the invariant power output per unit frequency:

dPvac

dω
= Pin

[
2

π
· sin 2ωτ

ω

]
(2.36)

According to this equation power output can be both positive and negative for a given
frequency and a given time. Nevertheless, a final integration over frequencies shows
that

Pvac = Pin · ϑ(τ) (2.37)

indicating that no power radiated until it went thru the particle radius.
The value of the power output is positive at 1.74×1010 Watts but it will be shown

in the context of the Lagrangian formulation that this value requires a minus sign.
Regardless, the absolute power is enormous and it may therefore be more reasonable
to consider the total energy present in a one meter radius about the particle, which
calculates to about 116 Joules. If potentials are ‘meaningless constructs’ then this
form of energy, determined exclusively by the potentials, must be considered as not
capable of being detected or harnessed—at least not locally. Its presence is ratio-
nalized only by faith that causality rules the universe. The question of canonical
momentum in the electromagnetic field might therefore be placed in some category
of philosophy, or metaphysics.

3 Lagrangian Formulation of the Vacuum Gauge

Electron

The correspondence between vacuum gauge velocity potentials and the theory of
elastic continua can be used as a guide for the development of a highly specialized
Lagrangian formulation for the classical electron. A strictly inflexible requirement for
a successful Lagrangian must be the re-production of all the usual gauge invariant
results of the conventional Maxwell-Lorentz electron theory. In addition—and based
on the work of the previous section—an appropriate formulation must also provide a
framework to incorporate the proliferation of vacuum waves. All of these requirements
can be met beginning with the derivation of a four-space analog to the symmetric
stress tensor Tij given in (2.1).

3.1 Vacuum Tensor

Derivation of the Vacuum Tensor: A firm theoretical foundation for the vacuum
tensor can be established by working in the Maxwell limit and defining the third
rank tensor Ψαµν composed of the four components of the vacuum gauge velocity
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potentials5 along with two occurrences of the fourth rank, totally anti-symmetric,
Levi-Civita symbol:

Ψαµν ≡ 1
2
εαµστεστνκA

κ (3.1)

The field strength tensor follows from a divergence operation on the last index

∂νΨαµν = 1
2
εαµστεστνκ ∂

νAκ = 1
2
εαµστFD

στ = Fαµ (3.2)

where FD

στ is the dual to the field strength tensor. Contractions on the third index
with either βν or Uν also produces the field strength tensor

Fαµ = −1

ρ
Ψαµνβ

ν =
1

ρ
Ψαµν Uν =

1

ρ
[Aα, βµ] (3.3)

This derivation has the added benefit of showing the linear relationship between the
field strength tensor and the components of the potentials themselves. Now consider
a divergence operation on either of the two remaining indices. The inclusion of the
metric is appropriate here to raise the last index with the result

∂αΨ
αµν = ∂α

[
gνλΨαµλ

]
= ∂νAµ − gµν∂αA

α (3.4)

The first term on the far right is the covariant derivative of the velocity potentials—
exhibiting a single symmetric term dependent on accelerations of the particle which
can be isolated from the velocity terms as

∂νAµ = ηνµ + Jµνa (3.5)

The symbol ηνµ = η
†µν defines the components of a vacuum strain tensor whose

scalar contraction is exactly the vacuum gauge condition η = gµνη
µν . Coupled with

the last term on the far right of (3.4) a concise representation of the vacuum tensor
can be written

∆
†µν ≡ ηνµ − gµνη (3.6)

The peculiar inversion of the indices on the right side of this equation justifies the
inclusion of the superscript (†) transpose operator in the definition, however this and
the un-transposed version ∆µν will both be useful for the causal theory.

An explicit form of ∆µν can be determined by separating out the gauge field from
the velocity potentials. Since Aν` is determined from the gradient of the scalar ϕ, then
∆µν

` will be symmetric:
∆µν

` = ∂µ∂νϕ− gµν�2ϕ (3.7)

5The subscript v on the velocity potentials and the velocity field strength tensor is sometimes
left out. We hope no ambiguity with counterpart acceleration potentials and fields will arise.
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In terms of the null vector and the four-velocity, both tensors are

∆µν
` =

e

ρ2

[
2

ρ2
RµRν − 2

ρ
(Rµβν +Rνβµ) + βµβν

]
(3.8a)

∆µν
e =

e

ρ2

[
1

ρ
Rµβν − βµβν

]
(3.8b)

Adding the two portions back together yields the final result

∆µν =
e

ρ2

[
2RµRν

ρ2
− 2βµRν

ρ
− Rµβν

ρ

]
(3.9)

with the observation that a term proportional to the metric is conspicuously absent
from the equation. Like the velocity field strength tensor, the vacuum tensor also has
a representation exclusively in terms of timelike and spacelike potentials

∆µν =
1

e
[2Aµ`A

ν
` − AµeAνe + Aµ`A

ν
e ] (3.10)

The velocity field strength tensor follows from the anti-symmetric combination

F µν
v = ∆µν −∆†µν (3.11)

and determines (2.30) when multiplying both sides by σe. It is also possible to replace
the potentials in (3.10) with individual Fourier modes and re-derive equation (2.35).
Instead, consider the scalar Evac given by

Evac =
1

2
σe

∫ [∮
ρ=re

Uµ∆µν
ω βνR

2dΩ

]
dω = Pinτ (3.12)

Divergence of the Vacuum Tensor: An important contraction of the vacuum
tensor is the divergence operation applied to the second index

∂ν∆
µν = 0 (3.13)

This can be easily proved from the definition in equation (3.6) but it can also be proved
by applying ∂ν directly to (3.9) where the divergence of each individual term can be
shown to vanish. The divergence operator applied to the first index is a different
matter. It is strictly only legitimate when applied to (3.5) yielding an additional
acceleration term

∂µ∆
µν =

4π

c
[J∗νe − Jνa ] (3.14)

The acceleration current density Jνa is identical to the current density determined
by the electromagnetic theory in section 1 except now it should be linked to an
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independent vacuum theory of acceleration strain. Keeping accelerations in the closet
for now, the velocity theory is then determined by

∂µ∆
µν =

4π

c
J∗νe (3.15)

As already indicated, this equation may be considered as the four-space analog of
(2.4). It also represents a legitimate potential formulation for the velocity fields of
the Maxwell-Lorentz electron derived from a completely different premise. Ultimately,
the goal will be to show that the classical fields of the electron are indistinguishable
from a theory of a deformed vacuum defined by vacuum gauge potentials. Whereas the
field strength tensor is the fundamental field quantity of the electromagnetic theory,
the counterpart quantity of the vacuum theory will be the vacuum strain tensor ηµν

with the two theories linked by the anti-symmetric combination in (3.11).

3.2 Properties of the Vacuum Lagrangian

Assume that Hamilton’s principle can be applied to the Lagrangian Lvac producing a
stationary value relative to potentials which differ only slightly from vacuum gauge
velocity potentials.

δS = δ

∫
Lvac(∂

µAν , Aν , xν)d4x = 0 (3.16)

A specific form for Lvac could be postulated based on definitions of the vacuum tensor,
the associated strain tensor, and knowledge of continuum mechanics; but a more
revealing approach is to begin with the classical free term electromagnetic Lagrangian

Lem = − 1

16π
F µνFµν (3.17)

Inserting strain and stress tensors allows for

Lem = − 1

16π
(∆µν −∆νµ)(ηµν − η νµ)

= − 1

8π
∆µνηµν +

1

8π

(
ηµνη νµ − η2

)
(3.18)

It is easy to show that the term in parentheses on the second line produces no equa-
tions of motion. The first term along with the point-particle interaction term may
now be written together as a vacuum Lagrangian

Lvac ≡ −
1

8π
∆µνηµν −

1

c
J∗νe Aν (3.19)

The functional value of the free term is available by insertion of the velocity potentials.
Its value is negative6 and proportional to the square of the vacuum dilatation. It can

6The sign of the vacuum Lagrangian is opposite to the sign of the conventional electromagnetic
free field Lagrangian. The sign difference is not simply a matter of taste either since it will be
required for the inclusion of particle accelerations. Although the sign change represents a large rift
with the conventional theory, it also exemplifies the antithetical nature of the vacuum gauge solution.
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then be solved for the dilatation as

|η| ≡
√
−8πLvac (3.20)

This equation may be coined as the genuine vacuum gauge condition, defining a
relativistic theory of potentials intimately linked to their own Lagrangian, and well
suited for the description of a classical charged particle. The legitimacy of Lvac can
be immediately verified by applying the Euler-Lagrange equations resulting in the
Maxwell-Lorentz theory of (3.15):

∂µ∆
µν =

4π

c
J∗νe (3.21)

It seems reasonable to consider the vacuum Lagrangian and its equation of motion as
a symmetry property of classical electron theory—resulting in a re-interpretation of
both fields and potentials. The essential difference is that the potentials are physically
meaningful quantities of the vacuum theory along with the fields themselves. This
is in sharp contradistinction to the conventional theory which begins with the fields
and determines ‘unphysical’ potentials from an arbitrary gauge condition.

Timelike and Spacelike Components of the Vacuum Lagrangian: To gain
some additional perspective, it will be convenient to make use of equations (3.8) and
separate the individual components of the vacuum Lagrangian as:

Lvac = − 1

8π
[ ∆µν

` +∆µν
e ] · [(η`)µν + (ηe)µν ] (3.22)

= − 1

8π
∆µν

` (η`)µν −
1

8π
∆µν
e (ηe)µν (3.23)

Assume the first term on the right can be viewed as a spacelike dilatation stress
density in contrast to the second term which represents a timelike distortional stress.
Determination of functional values for each term shows that the dilatation portion is
negative and takes out twice what the distortional portion puts in. Interaction terms
can be added by considering the null current and the point source separately:

Lint =
1

c
Jνe · ϑ(Ae)ν +

1

c
JνN(A`)ν (3.24)

Both interaction terms are delta functions and independent Lagrangians follow as

Ldistortion = − 1

8π
∆µν
e (ηe)µν −

1

c
Jνe · ϑ(Ae)ν (3.25a)

Ldilatation = − 1

8π
∆µν

` (η`)µν −
1

c
JνN(A`)ν (3.25b)
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Figure 3: Plot of Lvac versus the scalar dilatation η.

Applying Euler-Lagrange equations produces the separate equations

∂µ∆
µν
e =

4π

c
Jνe · ϑ ∂µ∆

µν
` =

4π

c
JνN (3.26)

These results are exactly equations (1.15).

Lagrangian for a Moving Vacuum: The tensor defined by equation (3.6) is a
four-space stress tensor. The term containing the metric has three positive definite
space-space diagonal components. These terms represent the admissibility property
of the stress tensor allowing the vacuum continuum to self-generate. The Lagrangian
in equation (3.19) can only accommodate this feature with an additional term. It
must be linear in field quantities and can have no effect on the equations of motion.
The simplest possibility is to write

Lvac −→ −
1

8π
[η − 2πσe]

2 (3.27)

Expanding the right side and applying the vacuum gauge condition allows Lvac to be
written

Lvac −→ −
1

8π
∆µνηµν +

1

2
σe η (3.28)

A more meaningful approach begins with the observation that the vacuum Lagrangian
posesses an internal symmetry under the variation

∆µν −→ ∆µν − 4πσe gµν (3.29)

which also results in (3.28). An appropriate interacting velocity Lagrangian specifi-
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cally designed to accommodate the causality principle applied to the fields is then

Lvac ≡ −
1

8π
∆µνηµν +

1

2
σe η −

1

c
J∗µe Aµ (3.30)

The linear term should be properly referred to as a vacuum dilatation producing
dilatation stresses which—as already indicated—function to propagate the vacuum
away from the source. Its presence is reminiscent of a term added to a Lagrangian
in point particle mechanics to represent forces of constraint. The analogy has some
grey area but σe assumes the role of a Lagrange multiplier. A good understanding of
the linear term is best demonstrated by first calculating the associated stress tensor.

3.3 Symmetric and Total Stress Tensors

The Noether current generated from invariance under the infinitesimal translation
group xµ → xµ + εµ is the canonical stress tensor

T µνvac =
∂Lvac

∂ηµλ
ηνλ − gµνLvac (3.31)

To facilitate the construction of an appropriate stress tensor based on (3.30) it is
beneficial to begin by considering only terms quadratic in field quantites for which

T µνvac =
1

4π

[
1
2
gµν∆αληαλ −∆µληνλ

]
(3.32)

The velocity portion of a symmetric stress tensor can be extracted from this expression
by writing

T µνvac = Θµν
vac + T µνD (3.33)

where the two individual tensors are given by

Θµν
vac =

1

4π

[
1
2
gµνη2 − ηµληνλ

]
T µνD =

1

4π
ηηνµ (3.34)

As with the conventional theory the extra term T µνD can be eliminated by showing
that ∂µT

µν
D = 0 which leaves only the symmmetric tensor.

Applying equation (3.31) to the propagation term of the Lagrangian is rather
trivial here, providing an additional stress

Λµν ≡ σe
2
∆

†µν (3.35)

which stands on its own without need of any symmetrization. The Total Vacuum
Stress Tensor then follows as

Tµν ≡ 1

4π

[
1
2
gµνη2 − ηµληνλ

]
+ Λµν (3.36)
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In the space surrounding the charge the conservation law implied by Noether’s the-
orem is ∂µT

µν
vac = 0. It can be verified explicitly for the vacuum theory by considering

only the second term on the right in (3.32) and differentiating:

∂µ(∆µληνλ) = ∆µλ · ∂µηνλ = ∆µλ · ∂νηµλ = 1
2
∂ν(∆µληµλ) (3.37)

If the point source interaction term is to be inserted into the theory it is only required
to re-visit the previous calculation and include the current density from the divergence
of ∆µλ. Since ∂µΛµν = 0, the differential law for the total vacuum stress tensor
becomes

∂µT
µν = −1

c
J∗λe η

ν
λ (3.38)

The source term here is exactly the Lorentz force density associated with a point
electron interacting with its own fields. This implies an equivalence relation linking
the electromagnetic and vacuum gauge theories

Θµν
vac ≡ Θµν

1 em (3.39)

This equivalence will be extended to include particle accelerations in section 5.

3.4 Stress Tensor from Canonical Energy Flux

The central disparity between the electromagnetic and vacuum gauge theories is il-
lustrated in figure 4 showing the four extra ‘diagonal’ field quantities utilized by the
vacuum theory. These terms serve to bolster its computational power and are crit-
ically necessary to propagate the velocity fields. In fact, the diagonal terms can be

Figure 4: Field quantites used by electromagnetic and vacuum Lagrangians. Extra
diagonal terms on the right are the vacuum gauge condition when added together.

directly linked to source canonical momentum in the electric field by writing

LΛ = 1
2
σe η = 1

2
πππE · n̂̂n̂n (3.40)
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Without the diagonal terms, clearly the electromagnetic theory has no ability to
propagate its field. However it still seems to have at least some understanding of a
moving field arising from the traditional definition of canonical momentum

∂Lem

∂(∂0A)
=

1

4π
EEE −→ πππE (3.41)

Unfortunately, if Lem is the conventional electromagnetic Lagrangian, this definition
is fundamentally flawed because the vector EEE in the conventional theory includes both
velocity and acceleration fields. For a causality based electromagnetic theory a more
reasonable choice for a Lagrangian is therefore equation (1.21) which yields (3.41)
for a velocity field only. There is still a problem though because momentum in the
velocity fields must include the magnetic field also which is not indicated by (3.41).
This suggests that canonical momentum should include all the derivatives of Lem and
be written

∂Lem

∂(∂µAν)
= − 1

4π
F µν −→ πµν (3.42)

Now suppose the same reasoning is applied to the vacuum Lagrangian of equation
(3.19):

∂Lvac

∂(∂µAν)
= − 1

4π
∆µν (3.43)

This tensor contains all field quantities given on the right side of figure 4 and can still
be used to produce πµν from the anti-symmetric combination in equation (3.11). On
the other hand, it is more useful to transpose (3.43) and multiply through by −2πσe
re-producing Λµν . Components of this tensor can be grouped as7

UΛ ≡ −
1

2
σe∇ ·A

1

c
SSSV ≡ −

1

2
σe∇A

(3.44)

1

c
SSSA ≡

σe
2

∂A

∂t
Tij

Λ ≡
σe
2

[
−∂Ai
∂xj

+ δij∂αA
α

]
allowing Λµν to be written

Λµν =

 UΛ
1
c
SSSV

1
c
SSSA T̂̂T̂TΛ

 (3.45)

Individual elements are the canonical work-energy density UΛ, the six “components”
of the canonical energy flux vectors SSSV and SSSA, and the canonical stress-strain tensor

7The subscript V appended to SSSV has been borrowed from the conventional theory and only
serves as a means of distinction from the momentum SSSA.
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T̂̂T̂TΛ. To this tensor we may add a well known representation of the symmetric stress
tensor (determined from the vacuum theory):

Θµν
vac =

 U 1
c
SSS

1
c
SSS −T̂̂T̂T

 (3.46)

The elements of this tensor are the energy density U , the energy flux vector (or

Poynting vector) SSS, and the Maxwell stress tensor T̂TT. The total stress tensor in
equation (3.36) can then be written

Tµν =

 U 1
c
SSS

1
c
SSS −T̂̂T̂T

+

 UΛ
1
c
SSSV

1
c
SSSA T̂̂T̂TΛ

 (3.47)

4 Stability of a Causal Electron: Vacuum Energy

The most straight forward application of the new formalism is in the rest frame
where the tensor Tµν provides a simple solution for a stable particle of radius re. This
solution is easily extended to a moving frame, but equally important is the natural
emergence of a theory of inertia.

4.1 Rest Frame Solution

In the rest frame most of the energy flux components are zero and one has

Tµν =

U 0

0 −T̂̂T̂T

+

UΛ
1
c
SSSV

0 T̂̂T̂TΛ

 (4.1)

For reference, the expanded form of the symmetric stress tensor is

Θµν =
1

8π



E2 0 0 0

0 −E2
x + E2

y + E2
z −2ExEy −2ExEz

0 −2ExEy −E2
y + E2

x + E2
z −2EyEz

0 −2ExEz −2EyEz −E2
z + E2

x + E2
y


· ϑ (4.2)

For the vacuum tensor, the strain portion of T̂ΛT̂ΛT̂Λ can be symmetrized since

∂Ai
∂xj
− ∂Aj
∂xi

= 0 β = 0 (4.3)
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The time dependence of the scalar potential also vanishes and it is then appropriate
to write

Tij
Λ =

σe
2

[
−1

2

(
∂Ai
∂xj

+
∂Aj
∂xi

)
+ δij∇ ·A

]
β = 0 (4.4)

The strain portion of T̂Λ has a restoring character as is evidenced by the minus sign,
while the diagonal term has an admissibility character already alluded to.

Spacelike Integration of Components: Using (cτ, rrr) as rest frame coordinates,
the integrated total stress-energy Eµν(τ) at some time τ is

Eµν(τ) =

∫
Tµν · ϑ(cτ − r + re)d

3r =

∫
Θµν · ϑ d3r +

∫
Λµν · ϑ d3r (4.5)

In the first integral on the right, the coordinate r must have a lower limit to prevent
the integral from diverging. The implication is a lower bound on proper time which
is assumed to be cτ ≥ 0. If this condition is not met then the first integrand vanishes.
No such requirement is needed for the second integral where the time coordinate
can (and must) be extended to cτ = −re allowing the field to propagate from r = 0.
Figure 5 is included for reference and shows an upper limit of spatial integration
cτ + re for both integrals.

Figure 5: Spacetime diagram indicating the expansion of the radial step ϑ(cτ − r+ re)
in the rest frame. The radius re defines two regions on the inside and outside of the
electron.

Integrated components are as follows:
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T ττ :
***************************************************************

T ττ = Θττ + Λττ

=
1

8π
E2 − 1

2
σe∇ ·A =

e2

8π

[
1

r4
− 1

r2
e r

2

]
Integrating as required by (4.5) produces

E ττ (τ) =

∫
T ττ · ϑ r2 drdΩ =

e2

2

[
1

re
− 1

cτ + re

]
− 2πeσe(cτ + re)→ −

1

2
%̇cτ

where %̇ = 4πσe e > 0 is the total momentum per unit time radiated.

T τx,T τy,T τz:
***************************************************************
There is no contribution from Θτi here and it is appropriate to use the vector

1

c
SSSV = Λtjeeej = −1

2
σe∇A

The integral is
1

c

∫
SSSV · ϑ d3r = 000

which means that E τi = 0, for i = x, y, z. These terms must be zero since the flow of
canonical energy is symmetric about the source.

T xx, T yy, T zz:
***************************************************************

T xx = Θxx + Λxx

=
1

8π
(−E2

x + E2
y + E2

z) +
1

2
σe

[
∂αA

α − ∂Ax
∂x

]

=
e2

8π

[
(−x2 + y2 + z2)

r6
+

1

r2r2
e

+
(x2 − y2 − z2)

r4r2
e

]

The electromagnetic stress on the third line is removed by the vacuum strain at r = re.
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Integrating produces

E xx(τ) =

∫
Txx · ϑ d3r =

1

3

e2

2

[
1

re
− 1

cτ + re

]
+

1

3
4πeσe(cτ + re)

→ mc2 +
1

3
%̇cτ

where use has been made of e2/2re = mc2. Similarly E yy = E zz = E xx.

T xy, T xz, T yz:
***************************************************************

T xy = Θxy + Λxy = − 1

4π
ExEy −

1

4
σe

[
∂Ax
∂y

+
∂Ay
∂x

]
=
e2

4π

[
−xy
r6

+
xy

r2
e r

4

]
Here again the (symmetrized) vacuum strain removes the electromagnetic stress at
r = re. It is easy to see that

E xy =

∫
T xy · ϑ d3r = 0

and from similar calculations E xz = E yz = 0.

T xτ ,T yτ ,T zτ :
***************************************************************
For the last three components, use the vector

1

c
SSSA = Λjteeej =

1

2
σe
∂A

∂cτ
= 000

These terms represent canonical energy flux based on explicit changes of the vacuum
deformation with time and they vanish for the stationary electron.
***************************************************************

In a matrix format the previously integrated terms are

Eµν(τ) =



−1
2
%̇cτ 0 0 0

0 mc2 + 1
3
%̇cτ 0 0

0 0 mc2 + 1
3
%̇cτ 0

0 0 0 mc2 + 1
3
%̇cτ


(4.6)

The energy component should have yielded a term mc2 from an integral of the elec-
tromagnetic energy density but this term was obliterated by the presence of vacuum
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stresses inside the particle radius. In addition to this, mc2 terms in the remaining
diagonal components are an admixture of electromagnetic and vacuum stresses. But
the dilemma created by the integration can be easily disentangled with the inclusion
of an integration constant added to the total energy tensor

Eµν −→ Eµν + gµνmc2 ≡ Eµν
part + Eµν

vac (4.7)

where

Eµν
part =


mc2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 Eµν
vac =


−1

2
%̇cτ 0 0 0
0 1

3
%̇cτ 0 0

0 0 1
3
%̇cτ 0

0 0 0 1
3
%̇cτ

 (4.8)

On the left, Eµν
part is determined by a structureless constant—completely free of all

electromagnetic stresses. On the right, the tensor Eµν
vac represents an unstable con-

tinuum, with properties defined by the particle radius. Of particular interest is the
negative sign appearing in the energy component. In the language of deformable me-
dia it represents the total canonical stress imparted to the vacuum in a time cτ by the
canonical momentum. Equivalently, it represents the total work done on the vacuum
by an admissibility force constant λ ∼ σ2

e . Nevertheless, this should be interpreted
as positive energy density surrounding the particle which is necessarily one-half the
momentum density times a factor of c—and requiring a quantum of the theory to
satisfy

u = 1
2
|ppp|c (4.9)

It is assumed that the factor of 1/2 reflects that the associated longitudinal wave
has only one polarization state—as opposed to two polarization states for transverse
waves. The inertial power Pin has already been determined at the end of section
2.3 and follows by differentiating the energy component Eµν

vac with respect to time.
An accurate physical interpretation of Eµν

vac is complicated. As a first guess it
may be supposed that this energy has no mass equivalent and bears no functional
relationship to any other established law of physics. This doesn’t seem unreasonable
since the overt violation of energy conservation is determined by the presence of the
gauge field Aν` .

Cast in a different light, the local deformation of the vacuum, the radius of the
particle, and the generation of canonical field energy are all intimately connected
properties in the abstract space provided by the vacuum gauge potentials. Since
potentials are of no tangible substance, it can only be concluded that all of these
properties lie beyond the possibility of any experimental verification. If this discussion
is correct then the classical vacuum gauge electron bears a strong similarity with its
quantum mechanical counterpart in the sense that there exists well defined limitations
on measurable information which can be obtained about the particle.
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Timelike Integration: Integrating over causal space is not the only way to arrive
at the tensors Eµν

part and Eµν
vac in the rest frame. The three-volume element

dVs = r2
e dΩcdτ (4.10)

represents a differential surface element of the spacetime cylinder in figure 5. Re-
stricting the proper time interval to [0, τe], the integral over components of Tµν is

Eµν =

∫
τe

TµνdVs (4.11)

This is a flux integral equivalent to an evaluation of the total vacuum energy contained
within the particle radius. The resulting tensor reads

Eµν =


0 0 0 0
0 mc2 0 0
0 0 mc2 0
0 0 0 mc2

 (4.12)

and re-produces Eµν
part with the inclusion of the integration constant. The quantity

Eµν
vac results from replacing the integrand in equation (4.11) with Λµν and extending

to an arbirtrary time τ .

4.2 Moving Frame Solution

A covariant solution to the stability problem can be established by first generalizing
the total stress tensor in equation (3.36) to include acceleration components

Tµν = Θµν
1 +Θµν

2 +Θµν
3 + Λµν (4.13)

While this equation has not been adequately justified yet it is easy to show that
magnitudes of the components of Θµν

1 and Λµν are the same in the neighborhood
ρ ∼ re. On the other hand, the ratios of individual terms of the symmetric tensor are∣∣∣Θµν

2

Θµν
1

∣∣∣ ∼ aνRν

c2

∣∣∣Θµν
3

Θµν
1

∣∣∣ ∼ [aνRν

c2

]2

(4.14)

Near the radius of the particle, these terms are utterly neglible unless accelerations
are on the order of 1031m/s2. This means that the stability of the particle will be
determined exclusively by the velocity tensors only.

Covariant Theory of Stability: To address the stability problem first define the
unitless quantities

Gµν
1 ≡ 2βµβν − 2UµUν − gµν (4.15a)

Gµν
2 ≡ βµβν + βµUν − gµν = −∂νRµ (4.15b)

31



The Radius of the Electron www.vgelectron.net

The symmetric stress tensor and the vacuum tensor are then

Θµν
1 =

1

8π
η2Gµν

1 Λµν = −1

2
σeη [Gµν

1 − Gµν
2 ] (4.16)

and the total stress may be written

Tµν = −(Lo + LΛ)Gµν
1 + LΛGµν

2 (4.17)

Stability is determined by the first term which vanishes at ρ = re. What remains is
the last term representing radiated stress in the form of canonical energy flux. This
tensor only has real meaning at the electron radius and is just a portion of the vacuum
tensor at any other radius. It is still an energy density though and deserves its own
name

Eµνrad ≡ LΛGµν
2

∣∣∣∣
ρ=re

= − e2

8πr4
e

∂νRµ (4.18)

It may be readily integrated over the particle radius to determine the four-vector
vacuum radiation rate. The integral could be constructed as a sum over Fourier
modes similar to previous integrals. Instead, a simplified variation is:

P µ = −c
∫
ρ=re

Eµνrad UνR2dΩ = −Pinβ
µ (4.19)

Energy-Momentum Four-Vector: A rigorous calculation of the electron energy-
momentum four-vector begins by writing the total stress tensor as

Tµν = [Θµν
1 + Λµν ] · ϑ(τ − ρ/c+ re) (4.20)

An appropriate spacelike surface element is dσsν = βνR
2dρ dΩ and the integration of

the total stress tensor may be written

Eµ
total =

∫
Tµνdσsν

= −βµ
∫ cτ+re

re

∫
Ω

Lvac · ϑρ2dρ dΩ′ = Eµ
part + Eµ

vac (4.21)

In this formula the limits of radial integration are the same for each term of Lvac

which preempts the need for an integration constant. Now define the variable

z ≡ τ − ρ/c+ τe (4.22)

and integrate both terms over solid angle so that individual radial integrals may be
written

Eµ
part =

e2

2c
βµ
∫ τ

0

ϑ(z)

(τ − z + τe)2
dz (4.23a)

Eµ
vac = −Pinβµ

∫ τ

0

ϑ(z)dz (4.23b)
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While the second integral is almost trivial, the integrand may also be written in terms
of Fourier modes ultimately leading to a final integration over a delta function δ(ω).
The first is somewhat more complicated. An integration by parts seems to work but
a more complete evaluation of (4.23a) is available in the appendix. The complete
energy four-vector of the particle is

Eµ
total(τ) = mc2βµ · ϑ(τ)− 1

2
%̇cτβµ (4.24)

This formula indicates that a particle was created at proper time τ = 0 and then
radiated vacuum energy for a time τ after it was created. Contracting with the four
velocity then yields the invariant Hamiltonian

H (τ) = mc2 · ϑ(τ)− 1
2
%̇cτ (4.25)

Of course the rigorous formalism applied here could also be applied to the rest frame
determination of Eµν in equation (4.7). The calculation is somewhat awkward however
and not as tidy as the four-vector calculation above.

Total Energy Tensor in a Moving Frame: A Lorentz transformation of Eµν
vac

in equation (4.8) can be implemented by considering the timelike energy term and
spacelike pressure terms separately:

Eµν
vac = −1

2
%̇cτ


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 P µν
vac = 1

3
%̇τ


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.26)

The general Lorentz transformation is X ′µν = Lµα X αβ L ν
β which leads to the trans-

formed quantities

E
′µν
vac = −1

2
%̇cτβµβν (4.27a)

P
′µν
vac = 1

3
%̇τ · (βµβν − gµν) (4.27b)

One can also arrive at these results by integrating Fourier modes of the vacuum tensor
over the invariant particle radius. Begin with the integral

E
′µν
vac + P

′µν
vac c =

∫ [∮
ρ=re

cΛµν
ω R

2dΩ

]
dω (4.28)

The vacuum tensor can be expanded similar to equations (3.8) and (3.10),

Λµν = Λµν` + Λµνe (4.29)
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but the integration over Λµνe is zero while the remaining symmetric timelike and
spacelike terms can be separated as

E
′µν
vac = − c

2ae

∫ [∮
ρ=re

Aµe:ωA
ν
e:ωR

2dΩ

]
dω = −1

2
%̇cτβµβν (4.30a)

P
′µν
vac =

1

ae

∫ [∮
ρ=re

Aµ`:ωA
ν
`:ωR

2dΩ

]
dω = 1

3
%̇τ(βµβν − gµν) (4.30b)

Contracting both terms with the metric tensor (while removing primes and subscripts)
then derives the general scalar relation

E = 1
2

Pc (4.31)

where both E and P are seen to be scalar invariants. It is important to understand
that Λµνe plays no role in the integration implying that both tensors in equation (4.30)
are determined exclusively from the gauge field Aν` . The gauge field is the propagator
of vacuum energy in the causal theory.

With Lorentz transformed vacuum terms, the Lorentz transformation of Eµν
part in

equation (4.8) may now be included to determine the general total energy tensor. It
is also appropriate to include the causality operator so that

E
′µν
total = mc2βµβν · ϑ(τ)− 1

2
%̇cτβµβν + 1

3
%̇cτ (βµβν − gµν) (4.32)

A single contraction with the four-velocity then re-derives equation (4.24), while a
second contraction re-produces the invariant Hamiltonian.

4.3 Dirac Electron

In terms of timelike and spacelike four-vectors, radiated stress in (4.18) can be written

Eµνrad =
mc2

4πr3
e

[
Uνβµ + βµβν − βλ(βλ + Uλ)gµν

]
(4.33)

The terms multiplying the metric might be considered superfluous but they are nec-
essary to enforce the overall form of the tensor as a quantity Xµν −Xgµν . The scalar
contraction is an easily recognizable quantity

Erad = −mc
2

Ve

(4.34)

where Ve is the volume inside the electron radius.
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To provide a link with Dirac electron theory replace the four-velocity in equation
(4.33) with the four-momentum using pν = mcβν and make the quantum mechanical
substitution

Uν −→ ±γν (4.35)

where γν are the Dirac matrices. Choosing the minus sign, the result is a new tensor

EµνDirac =
c

4πr3
e

[
−γνpµ +

1

mc
pµpν −mc gµν + γλpλg

µν

]
(4.36)

The term inside the brackets of (4.36) already contains the Dirac energy-momentum
tensor which becomes apparent by operating on the left and right with Dirac spinor
fields rendering

1

mc
pµpνψ̄ψ − T†µνDirac = 0 (4.37)

where

TµνDirac = ψ̄[γµpν − gµν(γλpλ −mc)]ψ (4.38)

One can also derive the Dirac Lagrangian directly from the contraction

LDirac = ψ̄

[
1

c
EDirac · Ve

]
ψ (4.39)

The simplicity by which Dirac electron theory has emerged from the vacuum gauge
electron is impressive. Of importance is the fact that EµνDirac vanishes when operated
on by a set of Dirac spinors. We interpret this to mean that stress associated with
the flow of the vacuum field cannot be known to the quantum mechanical particle.
It is also important to mention that the connection in equation (4.35) is determined
exclusively by the gauge field Aν` as was the case in the previous section. This fact
supports all other calculations in vacuum gauge electrodynamics which requires the
gauge field alone to be the vehicle for propagation of the vacuum. According to
calculations presented here the gauge field also provides the link to the quantum
mechanical electron—re-interpreted as a manifestation of the relentless proliferation
of vacuum energy.

5 Accelerated Motions of the Electron

It is well known that an accelerating charge emits transverse electromagnetic waves
over a range of frequencies. For the vacuum gauge particle, such waves can be inter-
preted as resulting from induced variations of the surface charge density, in addition
to the velocity configuration σe(θ, φ). A description of these variations will naturally
require the inclusion of an acceleration strain tensor εµν . One essential property of
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εµν is immediately available by requiring that it may not be a source of additional
vacuum dilatation so that ε = 0 only. This requirement is consistent with classical
radiation theory which utilizes only transverse potentials for the description of propa-
gating photons. In other words, classical radiation theory de-couples from the vacuum
theory of the electron.8

Naturally, εµν is expected to be functionally dependent on the four-acceleration of
the particle, and as a preliminary calculation it will be useful to define the quantity
aν⊥ orthogonal to the spacelike vector Uν and given by

aν⊥ ≡ aν + (aλUλ)Uν (5.1)

A link between aν⊥ and the velocity theory can be immediately established from the
contractions

∆µνa⊥
ν = ∆µνa⊥

µ = 0 (5.2)

which are the same as the two eigenvalue equations:

ηµνa⊥
ν = ηaµ⊥ ηµνa⊥

µ = ηaν⊥ (5.3)

It is also important to observe that aν⊥ is orthogonal to the four-vectors Rν and βν in
addition to its defined orthogonality with Uν .

5.1 Theory of Acceleration Strain

The vacuum gauge condition allows the velocity and acceleration fields of the electron
to be addressed as independent theories. An initial conjecture for the form of an
acceleration strain tensor might therefore be to simply follow the velocity theory and
differentiate the acceleration potentials. Employing equation (3.5) allows this tensor
to be written

εµν ≡ ∂µAνa = −χ(ηµν + Jµνa )− ∂µχ · Aν (5.4)

A problem already presents itself though because the covariant derivative in this equa-
tion contains a term proportional to the velocity strain. Nevertheless, an acceleration
Lagrangian can still be written as

La =
1

8π

[
εµνεµν − ε2

]
+

1

c
JνaA

a
ν (5.5)

for which correct equations of motion are easily verified. However, it is evident that
both ε and La both have the non-zero values

ε = −2χη La = χ2ηµνηµν (5.6)

and this violates the premise that acceleration strain may not dilate the vacuum.

8This section relies heavily on various contractions of the tensors ηµν and εµν . These contractions
have been evaluated explicitly in separate tables in Appendix B serving as a useful calculational tool.

36



The Radius of the Electron www.vgelectron.net

A clue to resolving the problem can be found from a review of equation (3.14)
which makes no specification as to what theory of acceleration strain is used to pro-
duce the current density Jνa . This important observation is suggestive of a strategy to
‘cleanse’ εµν of unwanted terms leaving an appropriate tensor εµν with the required
property ε = 0. As an initial guess, suppose all symmetric terms are separated from
εµν by

εµν = sµν − ενµ (5.7)

This relation can be inserted into La producing the quadratic form

La =
1

8π

[
sµνsµν − 2εµνsνµ + εµνεµν − s2 + 2sε− ε2

]
+

1

c
JνaA

a
ν (5.8)

Viewing this equation in terms independent field quantities sµν and εµν , and associ-
ating the current Jνa with εµν , a legimate set of Euler-Lagrange equations is:

∂µε
µν − ∂µ(sνµ − gµνs) =

4π

c
Jνa

∂µ(sµν − gµνs)− ∂µενµ = 0 (5.9)

The tensor sµν is now easily eliminated resulting in the equation

∂µ[εµν − ενµ] =
4π

c
Jνa (5.10)

The task of removing the symmetric terms is tricky business and depends critically
on the expansion of the acceleration four-vector in terms of aν⊥. The suprisingly simple
result is

εµν ≡ Aµaν⊥ (5.11)

There are many interesting properties of this bi-linear quantity including ε = 0 and
vanishing determinants of all individual two-by-two minors which implies det εµν = 0.
Divergences on each index of εµν are

∂µε
νµ =

4π

c
(jνa − Jνa ) ∂µε

µν =
4π

c
jνa (5.12)

and the second equation is the acceleration analog of equation (3.15) producing the
current density jνa given by

jνa ≡
1

4πc
η aν⊥ (5.13)

Properties of the Acceleration Current: A Comparison with equation (5.3)
shows that jνa results from an interaction of aν⊥ with the vacuum strain. Although jνa
is not a conserved current it is not associated with any additional charge density either
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as can be seen in the instantaneous rest frame where its time component vanishes.
On the other hand, it can be evaluated at the electron radius taking the form

jνa

∣∣∣∣
ρ=re

= σeβ̇
ν
⊥ (5.14)

This may be interpreted as a modulation of the charge density during accelerated
motions and functioning to generate acceleration strain waves. An important integral
of the strain current using the hyper-surface element in (2.32) is∫

jνa UνR2dΩ dτ = 0 (5.15)

indicating that jνa is not radiated.

5.2 Generalized Vacuum Lagrangian

While the acceleration potentials have no direct connection with an acceleration strain
tensor, they are still useful—and necessary—for the development of a generalized
vacuum Lagrangian which accommodates accelerations of the particle. Hamilton’s
principle for the velocity fields is

δS = δ

∫
Lvac(∂

µAν , Aν , xν)d4x = 0 (5.16)

and the correct potentials Aν which satisfy this condition follow by considering vari-
ations of the form

Aν −→ Aν + αξν (5.17)

where ξν is an arbitrary function of the coordinates and α is a scalar. However,
comparison of (5.17) with the general form of the vacuum gauge potentials in equation
(1.10) suggests that the acceleration potentials are to be used as variable functions
with the replacements

α −→ e ξν −→ −a
λRλ

ρ2
Rν (5.18)

In other words, the velocity theory is a stationary value relative to all possible accel-
erations of the particle and the Lagrange equations (with a slight change of notation)
are then derivable from the condition

dS

de
=

∫ [
∂Lvac

∂Aλ

∂Aλ
∂e

+
∂Lvac

∂Aλ, µ

∂Aλ, µ
∂e

]
d4x = 0 (5.19)

There is no injustice here in choosing e as a vanishing scalar parameter since previous
calculations require the charge to be associated with velocity fields only. Performing
an integration by parts gives

dS

de
=

∫ [
∂Lvac

∂Aλ
− d

dxµ

∂Lvac

∂Aλ, µ

]
∂Aλ
∂e

d4x+

∫
d

dxµ

[
∂Lvac

∂Aλ, µ

∂Aλ
∂e

]
d4x = 0 (5.20)
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The second integral might be shown to be zero for acceleration potentials which
vanish at endpoints xν1 and xν2; however no such requirement is necessary based on
the divergence calculation

∂µ
[
∆µλξλ

]
= 0 = 1

2
∂µJ

µ
a (5.21)

This is not the whole story though because both terms in (5.20) allow for the inclu-
sion of additional terms in the integrand without changing the stationary condition.
Specifically, any vector field which is orthogonal to the null vector Rλ is fair game
leading to possible current densities

J λ = h1 · aλ⊥ + h2 ·Rλ (5.22)

Both current densities in equation (5.12) are exactly of this form.
Suppose therefore that the explicit form of the velocity Lagrangian9 is written

Lvac = − 1

8π

[
∂µAν∂µAν − (∂νA

ν)2
]
− 1

c
j∗νe Aν (5.23)

and assume that accelerated motions of the electron follow from a first order correction
to the strain tensor accompanied by the causal appearance of an acceleration four-
current:

∂µAν −→ ∂µAν − Aµaν⊥ j∗νe −→ j∗νe − jνa (5.24)

Inserting these variations and keeping only terms first order in accelerations results
in

Lvac = − 1

8π

[
∂µAν∂µAν − 2∂µAνAµa

⊥
ν − (∂νA

ν)2 + 2∂νA
νAµa⊥

µ

]
− 1

c
(j∗νe − jνa)Aν

(5.25)
The form of this Lagrangian motivates (briefly) a definition for an acceleration stress
tensor

∆µν
a ≡ Aµaν⊥ − gµνAλa

λ
⊥ (5.26)

The Lagrange equations will then be determined from

∂Lvac

∂(∂µAν)
= − 1

4π
[∆µν −∆µν

a ]
∂Lvac

∂Aν
=

1

4π
∆µνa⊥

µ −
1

c
(j∗νe − jνa) (5.27)

Making the connection ∆µν
a → εµν , equations of motion are now easily identified with

the help of (5.2) rendering

∂µ∆
µν =

4π

c
j∗νe ∂µε

µν =
4π

c
jνa (5.28)

One can argue that a proper generalized Lagrangian should lead to both strain equa-
tions in (5.12). The inclusion of the conjugate tensor is not difficult and properly
accounted for in Appendix C.

9Use lowercase j∗νe now for the point current density.
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5.3 Symmetric and Total Stress Tensors

The most general symmetric stress tensor for accelerated motions of the electron is
derivable from two different approaches.

Stress Tensor from the Velocity Theory: The velocity portion of the symmetric
stress tensor has already been derived in section 3.3:

Θµν
vac =

1

4π

[
1
2
gµνη2 − ηµληνλ

]
(5.29)

The generalization of this tensor follows immediately by inserting the variation

ηµν −→ ηµν − εµν (5.30)

The resulting stress tensor is then

Θµν
vac =

1

4π

[
1
2
gµνη2 − ηµληνλ + ηµλενλ − εµλενλ + εµληνλ

]
(5.31)

which is exactly equation (1.33a).

Stress Tensor Using the Total Strain: The generalized stress tensor can also be
determined by using the quantity ζµν as the field quantity and jν as an appropriately
chosen total current density, which casts the Lagrangian into the compact form

Lvac =
1

8π
[ζ2 − ζµνζµν ]−

1

c
jνAν (5.32)

This Lagrangian produces both acceleration strain equations of motion in addition to
the velocity equation. Invoking translational invariance as usual leads to the Noether
current

T µνvac =
∂Lvac

∂ζµλ
ζνλ − gµνLvac =

1

4π

[
1
2
gµνζ2 − ζµλζνλ + ζζνµ

]
(5.33)

To extract the symmetric stress tensor one can simply write

T µνvac = Θµν
vac + ζζνµ (5.34)

where

Θµν
vac =

1

4π

[
1
2
gµνζ2 − ζµλζνλ

]
(5.35)

After crossing off superfluous null terms this tensor re-produces (5.31). If the tensor
Rµν is defined by

Rµν ≡ 1

4π
ζµλζνλ (5.36)
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then a concise representation of the total stress tensor, inclusive of the requirement
to propagate the velocity field, is

Tµν = 1
4
gµνR − Rµν + Λµν (5.37)

Unfortunately, this derivation neglects the offending term which can be written

ζζνµ =
1

4π
ηηνµ −Θµν

2 (5.38)

The problem of removing the velocity term has already been addressed. The presence
of Θµν

2 is assumed to be a consequence of neglecting acceleration terms to formulate
the velocity theory. More specifically, a divergence operation on equation (5.29) is
prohibited from carrying acceleration terms which rightfully belong to the acceleration
theory. Relaxing this requirement gives rise to a small but significant modification to
the velocity theory

∂µΘ
µν
1 −→ ∂µΘ

µν
1 +

1

c
ηJνa (5.39)

Enforcement of a zero divergence for all regions of space excluding the location of the
particle will then require the appearance of an interaction term satisfying

∂µΘ
µν
int = −1

c
ηJνa (5.40)

To solve this equation for Θµν
int write

4π · ∂µΘµν
int = −η∂µ(εµν − ενµ)

= ∂µ(ηεµν + ηενµ) = 4π · ∂µΘµν
2 (5.41)

For a final calculation it will be necessary to adequately address the problem
of the divergence of the symmetric stress tensor in vacuum gauge electrodynamics.
Since quadratic stresses are not defined inside the vacuum boundary, the point source
interaction term on the right side of (3.38) will not be necessary. However, if velocity
and acceleration theories are truely independent then the acceleration current must
be included so that divergences on both indices are

∂µT
µν = −1

c
ηJνa (5.42a)

∂νT
µν = −1

c
ηJµa +

1

c
2πσe j

µ
e (5.42b)
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A Derivatives of the Null Vector

The covariant derivative of Rν is

∂µRν = gµν − Rµβν

ρ
(A.1)

The trace of the resulting matrix gives the 4-divergence ∂νR
ν = 3. In terms of

individual components–and with the inclusion of a sign–a useful construction is:

− ∂µRν =

−
∂R

∂t
−∂R

∂t

∇R ∇R

 (A.2)

where individual components are given by

∂R

∂t
= 1− γR

ρ

∂R

∂t
=
−γRβββ
ρ

(A.3)

∇R =
γR

ρ
∇R = 111 +

γRβββ

ρ
(A.4)

The determinant of (A.2) can be written det[∂µRν ] = 0. The divergence of R follows
from Tr[∇R] and has a value

∇ ·R = 3 +
γR ·βββ
ρ

(A.5)

Let www(ctr) be the retarded position of a charged particle at time ctr. The light
cone condition is defined by

R ≡ rrr −www(ctr) R ≡ ct− ctr (A.6)

Suppose that retarded coordinates are viewed collectively as xµr = (ctr,R). A trans-
formation to present time coordinates xµ = (ct, rrr) is then xνr = xνr(x

µ) and it follows
that

dxνr =
∂xνr
∂xµ

dxµ (A.7)

The matrix generated by this transformation can be written

∂xνr
∂xµ

=


∂ctr
∂t

∂R

∂t

−∇ctr −∇R


Derivatives of R and R have already been evaluated while derivatives of the retarded
time are

∂tr
∂t

=
γR

ρ
∇ctr =

−γR

ρ
(A.8)
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B Integration of Equation 4.23a

The causality integral is

Ic =

∫ τ

0

ϑ(z) dz

(τ + τe − z)2
(B.1)

Using the definition of the causality sphere in terms of Fourier modes, an associated
double integral is

Ic =
2

π

∫ ∞
0

dω

ω

∫ τ

0

sinωz dz

(τ + τe − z)2
(B.2)

From integral tables the indefinite integral over the variable z may be written as the
sum of three terms I1 + I2 + I3 where each terms is given by

I1 =
sinωz

τ + τe − z
(B.3)

I2 = ω sinω(τ + τe) · Si[ω(τ + τe − z)] (B.4)

I3 = ω cosω(τ + τe) · Ci[ω(z − τ − τe)] (B.5)

However, from the requirement that ρ < cτ only in the definition of the causality
sphere, the term I3 is not relevant. The remaining two terms are

I1

∣∣∣∣τ
0

=
sinωτ

τe
(B.6)

I2

∣∣∣∣τ
0

= −ω sinω(τ + τe)

∫ τ+τe

τe

sinωt

t
dt (B.7)

Both functions may now be integrated over all frequencies. Noting that the integration
of I2 produces a delta function, the final result for large times τ is

Ic =
ϑ(τ)

τe
(B.8)
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C Lagrange Equations for Particle Accelerations

Beginning with Aν , the interacting charged particle velocity Lagrangian is:

Lvac = − 1

8π

[
∂µAν∂µAν − (∂νA

ν)2
]
− 1

c
j∗νe Aν (C.1)

Under conditions where accelerated motions occur assume that ∂µAν receives a small
anti-symmetric perturbation first order in the quantity aν⊥ with the appearance of an
acceleration four-current:

∂µAν −→ ∂µAν − Aµaν⊥ + Aνaµ⊥ j∗νe −→ j∗νe − Jνa (C.2)

Still keeping only first order corrections in aν⊥ the modified velocity theory can be
written

Lvac = − 1

8π

[
∂µAν∂µAν − (∂νA

ν)2
]
− 1

c
j∗νe Aν

+
1

4π

[
∂µAνAµa

⊥
ν − ∂µAνAνa⊥

µ

]
+

1

c
JνaAν (C.3)

Derivatives with respect to the field quantity and its derivative are

∂Lvac

∂(∂µAλ)
= − 1

4π

[
∂µAλ − gµλ∂νA

ν − Aµaλ⊥ + Aλaµ⊥
]

(C.4)

∂Lvac

∂Aλ
=

1

4π

[
∂λAµ − ∂µAλ

]
a⊥
µ −

1

c

[
j∗λe − Jλa

]
(C.5)

Appealing to equation (5.3), the second equation produces all the correct current
densities necessary to write

∂µ
[
∂µAλ − gµλ∂νA

ν
]

=
4π

c
j∗λe = ∂µ∆

µλ (C.6a)

∂µ
[
Aµaλ⊥

]
=

4π

c
jλa = ∂µε

µλ (C.6b)

∂µ
[
Aλaµ⊥

]
=

4π

c

[
jλa − Jλa

]
= ∂µε

λµ (C.6c)

These results may also be obtained beginning with the symmetric variation

∂µAν −→ ∂µAν − Aµaν⊥ − Aνaµ⊥ (C.7)

In this case however it is necessary to use acceleration current densities derived in
equations (C.6) for interaction terms instead of Jνa .
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D Contractions of Vacuum Strain Tensors

ηµν =
e

ρ2
gµν − eRµβν

ρ3
− 2eRνβµ

ρ3
+

2eRµRν

ρ4
(D.1)

εµν =
e

ρ2
Rµaν − e

ρ3
χRµβν +

e

ρ4
χRµRν (D.2)

ηµλη ν
λ =

e2

ρ4
gµν − e2

ρ5
Rµβν ηµληνλ =

e2

ρ4
gµν − e2

ρ5
(Rµβν +Rνβµ) +

e2

ρ6
RµRν

ηλµηνλ =
e2

ρ4
gµν − e2

ρ5
βµRν ηλµη ν

λ =
e2

ρ4
gµν − e

ρ3
(Rµβν + βµRν)

Table 1: Contractions of ηµν .

ηµλεν λ = ηενµ εµλην λ = ηεµν εµλεν λ = −Θµν
3

ηµλε ν
λ = 0 εµλη ν

λ = ηεµν εµλε ν
λ = 0

ηλµεν λ = ηενµ ελµηνλ = 0 ελµενλ = 0

ηλµε ν
λ = −ηεµν ελµη ν

λ = −ηενµ ελµε ν
λ = 0

Table 2: Contractions of ηµν and εµν .
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