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Multiuse vs. Multitasking

Multiuse of Task Representation Fascilitates Learning & Generalization (cf. 5)

Multiused Representations Impose Limit on Multitasking Capacity
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» Neural network learns to map 
stimulus features (shape, texture, sound) 

to responses (key, joystick, verbal) 
using hidden layer representations

» Learning through weight adjustments 
via error backpropagation (4)
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phase 1 - train tasks A & B

phase 2 - train tasks C & D

» Correlate average hidden layer
activations for each task
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1 » Task B & C rely 
on similar task 
representations

» Task C is learned 
faster than D and
generalizes better   
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» Impaired multitasking of
tasks B & D due to

interference from multiuse 
of representation C

» Tradeoff generalizes to 
sequential task execution

Introduction
Capacity for controlled processing is limited (1,2)

Hypothesis: Capacity constraints in cognitive control reflect a fundamental
 tradeoff between efficiency (multiuse) of representation and multitasking performance in network architectures.

Feng et al. (2014)

1) Multiuse of representations 
(pathway overlap) introduces cross-talk

2) Cross-talk limits the optimal number 
of active control-dependent pathways

» So why multiuse?

Effect of cross-talk is highly restrictive 
and largely invariant to network size (N), 
i.e. number of total processing pathways 
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Task Demands Shape Learned Task Representations

Combined Single- & Multitasking Training

Learning Single Tasks vs. Learning to Multitask

learning single tasks

learning multitasking
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» single-task training leads to
multiused task representations

at hidden layer (clustered by
 relevant stimulus dimension)

» representations separate over 
the course of multitasking training

(similar pattern observed by
k-means cross-validation)
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Why not learning to 
multitask from the beginning?
»  Preceding single-task training

 fascilitates the acquisition of 
multitasking

»  Demand for multitasking leads to
separation of task representations,

allowing for parallelization
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Future Directions
» Validation of experimental predictions
» Investigation of optimal balance between parallel and 
sequential task execution based on individual model fits

Summary
» Multiuse enables flexibility but limits capacity for multitasking
» Computational analysis of the trajectory from controlled to automatic (parallel) 
processing and multitask performance over the course of learning
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each task maps
2 input features
to 2 response units
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single task environment
perform only one task

at a time during training

T1

multitasking environment
always perform 4 tasks

simultaneously during training

T1  +  T14   +  T7  +  T12

input tasks

response


