

Conference on the Mathematical Theory of Deep Neural Networks November 4th and 5th, 2021

Contents

About DeepMath						
Important Information						
Timetable Thursday, Nov 4 Friday, Nov 5	5 5 5					
List of Posters List of Poster Presentations	6 6					

About DeepMath

Recent advances in deep neural networks (DNNs), combined with open, easily-accessible implementations, have made DNNs a powerful, versatile method used widely in both machine learning and neuroscience. These advances in practical results, however, have far outpaced a formal understanding of these networks and their training. The dearth of rigorous analysis for these techniques limits their usefulness in addressing scientific questions and, more broadly, hinders systematic design of the next generation of networks. Recently, long-past-due theoretical results have begun to emerge from researchers in a number of fields. The purpose of this conference is to give visibility to these results, and those that will follow in their wake, to shed light on the properties of large, adaptive, distributed learning architectures, and to revolutionize our understanding of these systems.

Important Information

- The conference venue The focal point of the event is our virtual conference hall, which you can access at https://gather.town/app/uzoQ1oQU9VRZr4gR/DeepMath%202021 (log in with the same email you used to register for the conference).
- **Posters**. The poster sessions are at 3pm-5pm (15:00-17:00) EST on Thursday and 12:25pm-1:45pm (12:25-13:45) EST on Friday. Poster presenters are asked to be at their posters for both sessions if possible.
- Best poster voting: We are crowd-sourcing votes for the DeepMath 2021 best poster. Please vote for your favorite poster at https://forms.gle/3wafV8PtF2QxDSJC6.

Questions / Comments / Concerns? Contact one of the organizers in Gather, or email deepmath.conference@gmail.com.

Timetable

Thursday, Nov 4

PT	ET	CET		
07:00 - 07:10	10:00- 10:10	15:00 - 15:10	Opening Remarks	
07:15 - 08:15	10:15 - 11:15	15:15 - 16:15	Stephane Mallat	Deep Network Concentration
08:15 - 08:35	11:15 - 11:35	16:15 - 16:35	Contributed Talk: Shanel SG Gauthier	Parametric Scattering Networks
08:35 - 9:00	11:35 - 12:00	16:35 - 17:00	Open Discussion	
09:00 - 09:20	12:00 -12:20	17:00 - 17:20	Break	
09:20 - 10:20	12:20 - 13:20	17:20 - 18:20	Aarti Singh	Local Signal Adaptivity: Provable Feature Learning in Neural Networks Beyond Kernels
10:20 - 10:40	13:20 - 13:40	18:20 - 18:40	Contributed Talk: Blake Bordelon	SGD on Structured Data: Stability and Optimal Batch Size
10:40 - 11:00	13:40 - 14:00	18:40 - 19:00	Contributed Talk: Zhihui Zhu	A Geometric Analysis of Neural Collapse with Unconstrained Features
11:00 - 12:00	14:00 - 15:00	19:00 - 20:00	Open Discussion	
12:00 - 14:00	15:00 - 17:00	20:00 - 22:00	Poster Session 1 / Lunch	
14:00 - 14:40	17:00 - 17:40	22:00 - 22:40	Tolga Ergen & Mert Pilanci	Best Poster 2020 Update
14:40 - 15:40	17:40 - 18:40	22:40 - 23:40	Rebecca Willet	Auto-differentiable Ensemble Kalman Filters
15:45	18:45	23:40	Socializing / Happy Hour	

Friday, Nov 5

РТ	ET	CET		
06:00 - 07:00	09:00 - 10:00	14:00 - 15:00	Socializing / Breakfast	
07:00 - 08:00	10:00 - 11:00	15:00 - 16:00	Caroline Uhler	Autoencoders and Causality in the Light of Drug Repurposing for COVID-19
08:00 - 09:00	11:00 - 12:00	16:00 - 17:00	Yannis Kevrekidis	Learning emergent PDEs in emergent spaces
08:00 - 08:20	12:00 - 12:20	17:00 - 17:20	Contributed Talk: Bruno Loureiro	Exactly solvable models for learning with realistic data
08:25 - 10:45	12:25 - 13:45	17:25 - 18:45	Poster Session 2 / Lunch	
10:50 - 11:50	13:50 - 14:50	18:50 - 19:50	Raman Arora	Understanding algorithmic regularization in deep learning
11:50 - 12:10	14:50 - 15:10	19:50 - 20:10	Contributed Talk: Xingyu Wang	Eliminating Sharp Minima with Truncated Heavy-tailed Noise
12:10 - 12:25	15:10 - 15:25	20:10 - 20:25	Break	
12:25 - 12:45	15:25 - 15:45	20:25 - 20:45	Contributed Talk: Maria Refinetti	The dynamics of feature learning with shallow, non-linear auto-encoders
12:45 - 13:45	15:45 - 16:45	20:45 - 21:45	Kamalika Chaudhuri	Challenges in Reliable Machine Learning
13:45 - 14:00	16:45 - 17:00	21:45 - 22:00	Closing Remarks	
14:00	17:00	22:00	Socializing / Happy Hour	

List of Posters

List of Poster Presentations

ID 1: Exact marginal prior distributions of finite Bayesian neural networks

Jacob A. Zavatone-Veth; Cengiz Pehlevan Harvard University

ID 2: Stability of DCNNs under deformations

Fabio Nicola; S. Ivan Trapasso Machine Learning Genoa Center; Air Force Office of Scientific Research

ID 3: Detecting Distribution Shift using Neural networks

Xiuyuan Cheng; Alexander Cloninger; Yao Xie Duke University; UC San Diego; Georgia Tech

ID 4: Learning Gaussian Mixtures with Generalised Linear Models : Precise Asymptotics in High-dimension

Bruno Loureiro, Gabriele Sicuro, Cédric Gerbelot, Alessandro Pacco, Florent Krzakala and Lenka Zdeborova

EPFL; King's College; ENS

ID 5: Global optimal beyond two layers: training deep ReLU networks via convex programs

Tolga Ergen; Mert Pilanci Stanford University

ID 6: Revealing the structure of deep neural networks via convex duality

Tolga Ergen; Mert Pilanci Stanford University

ID 7: Shifted GPs capture feature learning effects in finite CNNs

Gadi Naveh; Zohar Ringel The Hebrew University of Jerusalem, Israel

ID 8: Stochastic Gradients on Structured Features: Stability and Optimal Batch Size

Blake Bordelon; Cengiz Pehlevan Harvard University

ID 9: A Greedy Algorithm for Quantizing Neural Networks

Rayan Saab, Jinjie Zhang, Eric Lybrand UC San Diego

ID 10: The Separation Capacity of Random Neural Networks

Sjoerd Dirksen, Martin Genzel, Laurent Jacques, Alexander Stollenwerk Utrecht University; UCLouvain

ID 11: Probing transfer learning with a model of synthetic correlated datasets

Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew Saxe, Lenka Zdeborova EPFL; UCL

ID 12: Learning curves of generic features maps for realistic datasets with a teacher-student model

Bruno Loureiro, Cédric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mézard, Lenka Zdeborová

EPFL; ENS; SISSA

ID 13: Piece-wise Linear Solutions of SGD for Wide ReLU Networks

Alexander Shevchenko; Vyacheslav Kungurtsev; Marco Mondelli IST Austria; CTU Prague

ID 14: Optimal coding level depends on task in cerebellar networks

Marjorie Xie, Samuel P. Muscinelli, Kameron Decker Harris, Ashok Litwin-Kumar Columbia University; Western Washington University

ID 15: Out-of-Distribution Generalization in Kernel Regression

Abdulkadir Canatar; Blake Bordelon; Cengiz Pehlevan Harvard University

ID 16: Deep Networks Provably Classify Data on Curves

Tingran Wang; Sam Buchanan; Dar Gilboa; John Wright Columbia University; Harvard University

ID 17: Parametric Scattering Networks

Shanel Gauthier; Benjamin Thérien; Laurent Alsène-Racicot; Irina Rish; Eugene Belilovsky; Michael Eickenberg; Guy Wolf

Université de Montréal; Concordia University; Mila – Quebec Al Institute; Flatiron Institute: University of Waterloo

ID 18: Representation mitosis in wide neural networks

Diego Doimo; Aldo Glielmo; Sebastian Goldt; Alessandro Laio SISSA

ID 19: Sensitivity of Graph Neural Networks to Graph Topology

Frederik Wenkel^{*}; Yimeng Min^{*}; Matthew Hirn; Michael Perlmutter; Guy Wolf Mila; Université de Montréal; Cornell University; Michigan State University: University of California

ID 20: Mechanisms Underlying Sequence-to-Sequence Working Memory

Ian D. Jordan; Piotr Aleksander Sokół; Il Memming Park Stony Brook University

ID 21: Neural Collapse in Deep Homogeneous Classifiers Trained with the Square Loss

Akshay Rangamani; Andrzej Banburski; Tomaso Poggio MIT

ID 22: Embedding Principle of Loss Landscape of DNNs

Yaoyu Zhang^{*}, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu^{*} Shanghai Jiao Tong University

ID 23: Eliminating Sharp Minima with Truncated Heavy-tailed Noises Xingyu Wang; Sewoong Oh; Chang-Han Rhee

Northwestern University; University of Washington

ID 24: Origami in N dimensions: How feedforward networks manufacture linear separability

Christian Keup; Moritz Helias Jülich Research Centre; RWTH Aachen University

ID 25: On the Existence of Universal Lottery Tickets

Rebekka Burkholz; Nilanjana Laha; Rajarshi Mukherjee; Alkis Gotovos CISPA Helmholtz Center for Information Security; Harvard; MIT