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Abstract. In this paper we study the compatibility of rigidity with various

notions of weak mixing in infinite ergodic theory. We prove that there exists
an infinite measure-preserving transformation that is spectrally weakly mixing

and rigid, but not doubly ergodic. We also construct an example to show

that rigidity is compatible with rational ergodicity. At the end of the paper
we explore the structure of rigidity sequences for infinite measure-preserving

transformations that have ergodic Cartesian square, as well as the structure

of rigidity sequences for infinite measure-preserving transformations that are
rationally ergodic. All of our constructions are via the method of cutting and

stacking.
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1. Introduction

The generic transformation in the set of all invertible transformations that pre-
serve a finite measure is both rigid and weakly mixing [20]. There have been
many recent developments toward characterizing the possible rigidity sequences for
weakly mixing maps (see [4], [10], [16], [17]). In this paper, we are interested in
what happens when you move from finite ergodic theory to infinite ergodic theory
(for more information see [2]). It is well-known that there are many equivalent
definitions of weak mixing for transformations that preserve a finite measure. In
infinite ergodic theory, however, these notions are no longer equivalent. Thus, the
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question becomes, which notions of weak mixing are compatible with rigidity in
infinite ergodic theory? If they are compatible, what do the constructions look like
and can we analyze their rigidity times?

For the remainder of this paper, we will be working with invertible transforma-
tions that preserve an infinite measure. We will be concerned with three types of
weak mixing: spectral weak mixing, double ergodicity, and ergodicity of the Carte-
sian square. In [11] it was shown that ergodicity of the Cartesian square implies
double ergodicity, which in turn implies spectral weak mixing. However, the reverse
implications do not hold (see [6] and [11]).

Even though there are many nonequivalent notions of weak mixing, many generic
results still remain valid. Consider the set of all automorphisms preserving an infi-
nite measure equipped with the weak topology. In 2000 Choksi and Nadkarni proved
that the generic transformation in this space has infinite ergodic index [13]. Since
transformations with infinite ergodic index also have ergodic Cartesian square, all
of the types of weak mixing mentioned above are also generic. In 2001 Ageev and
Silva proved that rigidity is a generic property within the same set of automor-
phisms [9]. Finally, in the recent work of Bozgan et al. they show that rank-one
transformations are generic [12]. Thus, the typical infinite measure-preserving au-
tomorphism is rank-one, rigid, and has ergodic Cartesian square. We will construct
explicit examples of transformations with these properties and use the construc-
tions to take the first step toward characterizing rigidity times for weakly mixing
transformations that preserve an infinite measure. Our constructions are via the
method of cutting and stacking.

The first main theorem of the paper cannot be obtained with categorical meth-
ods.

Theorem A. There exists an infinite measure-preserving rank-one transformation
that is spectrally weakly mixing and rigid, but not doubly ergodic.

The second main theorem of this paper can be obtained via the categorical
arguments outlined above, but we give a constructive proof.

Theorem B. There exists an infinite measure-preserving rank-one transformation
that has ergodic Cartesian square and is rigid.

In this paper, we also explore the compatibility of rigidity with rational ergod-
icity. Rational ergodicity and weak rational ergodicity were introduced in 1977 by
Aaronson [1]. When T : X → X is an invertible transformation that preserves a
probability measure, µ, the Birkhoff ergodic theorem states that ergodicity of T is
equivalent to

1

N

N−1∑
k=0

µ(T kA ∩B) = µ(A)µ(B) as N →∞,(1.1)

for every pair of measurable sets A,B ⊂ X. On the other hand, if X has infinite
measure, then the Cesaro averages above converge to 0 for all sets A,B of finite
measure. In [1] Aaronson showed that there exists no sequence of normalizing
constants so that (1.1) converges to µ(A)µ(B) and introduced the definitions of
rational ergodicity and weak rational ergodicity. Recently, in [12] and [14] these
notions were explored in the setting of rank-one transformations. In [3] Aaronson
proved that the set of weakly rationally ergodic transformations is a meager subset
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of the set of infinite measure-preserving transformations. In the same paper, it was
shown that rational ergodicity implies weak rational ergodicity, and the validity of
the reverse implication remains open. Thus, determining whether rational ergodic-
ity is compatible with rigidity must come from a construction. With that in mind,
we have the following theorem:

Theorem C. There exists an infinite measure-preserving rank-one transformation
that is rationally ergodic and rigid.

Finally, we use the ideas from the constructions in Theorems B and C to prove
the following theorems which give a set of conditions under which a given sequence
can be realized as a rigidity sequence for a transformation with ergodic Cartesian
square or a rationally ergodic transformation.

Theorem D. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. There exists an infinite measure-preserving rank-one transformation

that has ergodic Cartesian square and is rigid along (nm).

Theorem E. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. Furthermore, assume that nm+1 = 2kmnm + rm where 0 ≤ rm <

nm. There exists an infinite measure-preserving rank-one transformation that is
rationally ergodic and rigid along (nm).

In the next section, we provide definitions and briefly review the method of cut-
ting and stacking. In Section 3, we discuss rank-one constructions that are rigid and
weak mixing. In Section 4, we construct an example to show the compatibility of
rigidity with rational ergodicity. Finally, in Section 5, we analyze rigidity sequences
for weakly mixing transformations and rationally ergodic transformations.

2. Preliminaries

Let (X,B, µ) be a σ-finite measure space. We assume throughout this paper that
µ(X) =∞ and T : X → X is invertible and measure-preserving.

We begin with the definition of rigidity in this setting.

Definition 1. The transformation T is rigid if there exists an increasing sequence
of natural numbers (nm) such that

lim
m→∞

µ(TnmA4A) = 0

for all sets A of finite positive measure.

We now give three nonequivalent definitions of weak mixing for transformations
that preserve an infinite measure.

Definition 2. The transformation T is spectrally weakly mixing if f ∈ L∞ and
f ◦ T = λf for some λ ∈ C implies that f is constant almost everywhere.

Definition 3. The transformation T is doubly ergodic if for every pair of positive
measure sets A,B, there exists a time n such that

µ(TnA ∩A) > 0 and µ(TnA ∩B) > 0.

Definition 4. The transformation T has ergodic Cartesian square if T×T is ergodic
with respect to µ× µ.
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As was mentioned in the introduction, the following string of strict implications
was shown in [11]:

ergodic Cartesian square =⇒ double ergodicity =⇒ spectral weak mixing.

The following notation will be used in the definition of weak rational ergodicity.
Let F ∈ B be a set of finite positive measure. The intrinsic weight sequence of F
is given by

uk(F ) =
µ(F ∩ T kF )

µ(F )2
.

Furthermore, let

an(F ) =

n−1∑
k=0

uk(F ).

The following definition introduces a property in the spirit of (1.1) that may also
be satisfied by transformations that preserve an infinite measure.

Definition 5. A conservative ergodic transformation T is weakly rationally ergodic
if there exists an F ∈ B with 0 < µ(F ) <∞ such that

1

an(F )

n−1∑
k=0

µ(A ∩ T kB)→ µ(A)µ(B) as n→∞,

for all measurable A,B ⊆ F .

Finally, rational ergodicity (defined below) is stronger than weak rational er-
godicity and requires the transformation to satisfy a Renyi inequality on a finite
measure set.

Definition 6. A conservative ergodic transformation T is rationally ergodic if there
exists an M <∞ and F ∈ B with 0 < µ(F ) <∞ such that

(2.1)

∫
F

(
n−1∑
k=0

1F ◦ T k
)2

dµ ≤M

(∫
F

(
n−1∑
k=0

1F ◦ T k
)
dµ

)2

,

for all n ∈ N.

2.1. Basics of Cutting and Stacking. In this paper, we construct transforma-
tions that are rigid and exhibit each of the above types of weak mixing, as well
as transformations that are rigid and rationally ergodic. All of our examples are
obtained via cutting and stacking. That is, we inductively define a sequence of
towers, Cn, each of height hn. Each Cn is a column of hn disjoint intervals with
equal measure denoted by {In,0, ..., In,hn−1}. The elements of Cn are called levels.
We often refer to In,0 as the bottom level and In,hn−1 as the top level of Cn. A
transformation, Tn, is defined on {In,0, ..., In,hn−2} by moving up one level. That
is, Tn(In,i) = In,(i+1) for all 0 ≤ i < hn− 1. Note that Tn is not defined on the top
level of Cn. Thus, we must define Cn+1 by first cutting Cn into qn subcolumns of
equal width. That is, for each 0 ≤ i ≤ hn−1 we cut the ith level into qn pieces, and

we denote these pieces by I
[0]
n,i, I

[1]
n,i, ..., I

[qn−1]
n,i . We may then add any number of new

levels (called spacers) above each subcolumn. Now, we stack every subcolumn of
Cn above the subcolumn to its left to form Cn+1. Thus, Cn+1 consists of qn copies
of Cn which may be separated by spacers. Finally, we define T = limn→∞ Tn. The
transformation T is called a rank-one map.
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We now define a notion of rigidity related specifically to rank-one transforma-
tions.

Definition 7. The sequence (nm) is rigid for CN if

lim
m→∞

µ(TnmE4E) = 0

for every level E of CN .

Remark 1. If (nm) is rigid for every CN , then the transformation T is rigid along
(nm). A proof of this fact can be found in [10] Lemma 3.14.

The following two approximation lemmas will be used in the proofs of the main
theorems, so we state them here for completeness. Lemma 2.1 is a consequence of
the double approximation lemma, and a proof can be found in [11].

Lemma 2.1. Let A,B ⊂ [0,∞) be sets of positive measure and let the levels I, J ⊂
Cn be such that

µ(I ∩A) + µ(J ∩B) > δµ(I)

with the level J distance d above the level I (that is, T dI = J). If the levels I, J
are cut into n+ 2 equal pieces, I [0], . . . , I [n+1] and J [0], . . . , J [n+1], then there exists
k ∈ N such that

µ
(
I [k] ∩A

)
+ µ

(
J [k] ∩B

)
> δµ(I [k])

and J [k] is distance d above I [k] in Cn+1.

A higher dimensional version of the double approximation lemma can be found
in [15]. Using the same methods as [11] proves the following lemma.

Lemma 2.2. Let A,B ⊂ [0,∞) × [0,∞) be sets of positive measure and let the
levels I1, I2, J1, J2 ⊂ Cn be such that

µ× µ((I1 × J1) ∩A) + µ× µ(I2 × J2) ∩B) > δµ(I1)µ(J1)

where T d1I1 = I2 and T d2J1 = J2. If the levels I1, I2, J1, J2 are cut into n+2 equal

pieces, I
[0]
i , . . . , I

[n+1]
i and J

[0]
i , . . . , J

[n+1]
i for i = 1, 2, then there exists k, l ∈ N

such that

µ× µ
((
I
[k]
1 × J

[l]
1

)
∩A

)
+ µ× µ

((
I
[k]
2 × J

[l]
2

)
∩B

)
> δµ

(
I
[k]
1

)
µ
(
J
[l]
1

)
,

with I
[k]
2 distance d1 above I

[k]
1 and J

[l]
2 distance d2 above J

[l]
1 in Cn+1.

2.2. Hajian-Kakutani +1 Construction is Not Rigid. The Hajian-Kakutani
transformation was originally constructed in [19], and it is a classical example of
a rank-one map that preserves an infinite measure. A modified version called the
Hajian-Kakutani +1 (denoted HK(+1) for short) arises from adding one additional
spacer to the original construction. It was shown in [7] that the HK(+1) construc-
tion is spectrally weakly mixing. Thus, it is natural to ask if this transformation
is also rigid. It was shown in [18] that the HK(+1) transformation is not multiply
recurrent and hence not rigid. We give a different proof (via explicit calculation)
that the HK(+1) transformation is not rigid along any sequence.

We begin by describing the steps in the construction of HK(+1). The first stage,
C0, consists of the interval [0, 1). Thus, the initial height h0 = 1. In general, sup-
pose we have already constructed the Cn tower, which is a union of hn levels. To
construct Cn+1 from Cn do the following:
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(1) Cut Cn into 2 equal pieces.

(2) Stack the right subcolumn of Cn on top of the left subcolumn.

(3) Add 2hn + 1 spacers to the end to form Cn+1.

I
[0]
n,0 I

[1]
n,0

I
[0]
n,1 I

[1]
n,1

I
[0]
n,2 I

[1]
n,2

I
[0]
n,hn−1

I
[1]
n,hn−1

.

.

.
.
.
.

In+1,0

In+1,hn−1

In+1,hn+1−1

.

.

.

.

.

.

.

.

.

I
[0]
n,0

I
[0]
n,1

I
[0]
n,2

I
[0]
n,hn−1

I
[1]
n,0

I
[1]
n,hn−1

2hn + 1 spacers

Cn Cn+1

Figure 1. Construction of Cn+1 for the HK(+1) transformation.

At each stage of the construction, notice that the total height of the tower is
hn+1 = 4hn + 1.

Proposition 2.3. The HK(+1) construction is not rigid.

Proof. To show that this construction is not rigid, it suffices to find a set E of
positive finite measure such that lim infn→∞ µ(TnE4E) > 0.

Let E = [0, 1). Suppose for a contradiction, that lim infn→∞ µ(TnE4E) = 0.
Let ε > 0, and let N be such that N ∈ [hn, hn+1 − 1] and µ(TNE4E) < ε.

Before we proceed, we need some notation for how levels in Cn appear in Cn+3.
Let In,0 be the bottom level of the Cn-th tower.

Define

ej =


0, if j = 0, 2, 4, 6

2hn + 1, if j = 1, 5

10hn + 4, if j = 3.

Let kj for j = 0, 1, 2, . . . , 7 be defined by

k0 = 0, kj+1 = kj + hn + ej .
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Let

Yj =

hn−1⋃
i=0

T i+kjIn+3,0

for j = 0, 1, 2, . . . , 7. Then, Yj+1 = Thn+ejYj for j = 0, 1, 2, . . . , 6.
Notice that hn+1 = 4hn+1. Thus N = ahn+b where a = 1, 2, 3 and 0 ≤ b ≤ hn.

Let

ej,a =


ej , if a = 1

ej + ej+1, if a = 2

ej + ej+1 + ej+2, if a = 3.

Then TNYj = T ahn+bYj = T b−ej,aYj+a.

Suppose S1, S2 are two sets of positive measure. By S1
ε
≈ S2 we will mean

µ(S14S2) < ε. Thus,

TN (E ∩ Yj) = TNE ∩ TNYj
ε
≈ E ∩ T b−ej,aYj+a

for 0 ≤ j ≤ 7− a. Also notice that

TN (E ∩ Yj) = T b−ej,a(E ∩ Yj+a)

for 0 ≤ j ≤ 7−a. Putting these together we see that E∩Yj+a
ε
≈ T−b+ej,aE∩Yj+a.

Thus E
8ε
≈ T−b+ej,aE. Since we can find j, j′ such that |ej,a − ej′,a| = 8hn + 3, we

have that E
16ε
≈ T 8hn+3E.

Recall that E = [0, 1) and thus the set E is a proper subset of Yj ’s. Hence

E ∩ T 8hn+3E = ∅, which contradicts E
16ε
≈ T 8hn+3E.

�

3. Weakly Mixing Constructions

3.1. Spectral Weak Mixing and Rigidity. In this section, we explore trans-
formations that are barely weakly mixing and rigid. We do this by constructing a
transformation that is spectrally weakly mixing and rigid, but not doubly ergodic.
The existence of such a transformation does not follow from categorical methods
since the set of spectrally weakly mixing transformations that are not doubly er-
godic is of first category.

Theorem A. There exists an infinite measure-preserving rank-one transformation
that is spectrally weakly mixing and rigid, but not doubly ergodic.

We will begin by describing the construction. The first stage, C0, consists of the
interval [0, 1). Thus, the initial height h0 = 1. In general, suppose we have already
constructed the Cn-th tower, which is a union of hn levels. To construct Cn+1 from
Cn do the following:

(1) Cut Cn into n+ 2 equal pieces.

(2) Compute the quantity an = dn+2
3 e.



8 Rachel L. Bayless and Kelly B. Yancey

(3) Stack the subcolumns of Cn to form Cn+1 in the following order: anhn
stacks, two spacers, (n+ 2− an)hn stacks, 2hn − 1 spacers.

.

.

.

I
[0]
n,0

I
[0]
n,1

I
[an]
n,hn−1

I
[an+1]
n,0

I
[n+2]
n,hn−1

an pieces

n+ 2 pieces

.

.

.

.

.

.

.

.

.

I
[n+2]
n,hn−1

I
[an+1]
n,0

I
[an]
n,hn−1

I
[0]
n,1

I
[0]
n,0

anhn stacks

2 special spacers

(n+ 2− an)hn stacks

2hn − 1 spacers

Cn Cn+1

Figure 2. Construction of Cn+1 for a transformation that is spec-
trally weakly mixing and rigid, but not doubly ergodic.

At each stage of the construction, notice that the total height of the tower is
hn+1 = (n+ 4)hn + 1. The total number of spacers added to form Cn+1 is 2hn + 1,
and this ensures that our transformation preserves an infinite measure. That is,
T : [0,∞) → [0,∞). To see this, let Sn be the union of spacers that are added to
form the n-th tower Cn. Let εn = 2hn+1

(n+4)hn+1 . Then,

µ(Sn+1)

µ(Cn+1)
=

2hn + 1

hn+1
=

2hn + 1

(n+ 4)hn + 1
= εn.

Since
∑∞
n=0 εn+1 =∞, T preserves an infinite measure.

Intuitively, the “special spacers” (i.e. the two spacers placed over the an-th
subcolumn of Cn) are what allow us to prove spectral weak mixing, while at the
same time not destroying rigidity. Also, the fact that the number of special spacers
is two is what precludes double ergodicity. Before proving Theorem A, we need the
following two lemmas.
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Lemma 3.1. Suppose I is an interval and A is a set of positive measure such
that µ(A ∩ I) > 11

12µ(I). Furthermore suppose that the interval I is divided into
three equal pieces I1, I2, I3. Then there exists a positive measure set A′ such that
A′, A′ + 1

3µ(I) ⊂ A where A′ ⊂ I1. Moreover, µ(A′) > 1
10µ(I).

Proof. To begin, suppose that µ(I) = 1. Let Ai = A ∩ Ii for i = 1, 2. Since the
µ(A ∩ I) > 11

12 we have that

µ(Ai) ≥ µ(A ∩ I)− µ(I1)− µ(I2) >
11

12
− 2

3
=

1

4
.

Let A′ = A1 ∩
(
A2 − 1

3

)
. It remains to show that µ(A′) > 1

10 . Suppose for a

contradiction that µ(A′) ≤ 1
10 . Then,

1

3
= µ (I1) ≥ µ (A1) + µ

(
A2 −

1

3

)
− µ

(
A1 ∩

(
A2 −

1

3

))
>

1

4
+

1

4
− 1

10
=

2

5

which is a contradiction. Therefore A′ is our desired set.
�

Lemma 3.2. The map T 2 is ergodic.

Proof. Let A and B be subsets of [0,∞) of positive measure. To prove ergodicity
of T 2 we must find a time m such that µ(T 2mA ∩ B) > 0. Let n be large enough
so that µ(A ∩ I) > 23

24µ(I) and µ(B ∩ J) > 23
24µ(J) where I, J are levels of Cn.

Suppose J is above I in Cn and specifically T dI = J .
We now have two cases that depend on the parity of d.

Case 1: d is even
Let d = 2m. Then µ(T 2m(A ∩ I) ∩ (B ∩ J)) > 0 since I and J are both 11

12 full
of A and B respectively.
Case 2: d is odd

Let d = 2` + 1. Let Cn+M be the next stage in the construction such that
n+M+2 is an odd multiple of 3. Apply the double approximation lemma (Lemma
2.1) to the levels I and J of Cn, M consecutive times to obtain levels I, J of Cn+M
such that T dI = J and

µ(A ∩ I) + µ(B ∩ J) >

(
2− 1

12

)
µ(I).

Note that µ(I) = µ(J). Then,

µ(A ∩ I) >
11

12
µ(I)

µ(B ∩ J) >
11

12
µ(J).

Tower Cn+M is cut into n+M+2 = 3an+M pieces and the subcolumn an+M has
2 special spacers added above it to form the tower Cn+M+1. Let n + M + 2 = 3k
where k is odd. Since the levels I and J are 11

12 -full of the sets A and B respectively,
by Lemma 3.1 there exists sets A1 ⊂ A and B1 ⊂ B of positive measure such that
A1 belongs to the left third of the level I and T d(A1 + 1

3µ(I)) = B1.
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Consider the quantity khn+M + 2 + d. Since k, hn+M , and d are odd integers,
the sum khn+M + 2 + d is even. Let khn+M + 2 + d = 2m. Then,

µ(T 2mA1 ∩B1) = µ(T khn+M+2+dA1 ∩B1) = µ(B1) > 0.

�

The proof of Theorem A is given in the form of the following three lemmas,
where each lemma highlights the individual properties that the transformation, T ,
exhibits.

Lemma 3.3. The map T is spectrally weakly mixing.

Proof. Suppose for a contradiction that f ∈ L∞([0,∞)) is a nonconstant eigen-
function with eigenvalue λ. Thus f ◦T = λf . Our plan is to restrict the eigenfunc-
tion to a set of finite measure and apply standard arguments.

Let f = f �[0,1), and let x ∈ [0, 1). If k is such that T kx ∈ [0, 1), then

f(T kx) = f(T kx) = λkf(x) = λkf(x).

Note that f ∈ L2([0, 1)). Thus, we may approximate f be a linear combination of
characteristic functions. Let ε > 0. Let g ∈ L2([0, 1)) be such that

∥∥g − f∥∥
2
< ε

where g is a linear combination of characteristic functions of the levels of some Cn.
Note that g is only defined on the levels of Cn that belong to [0, 1). Also, assume
that ‖g‖2 = 1.

Now, let E1 ⊂ Cn be the rn := anhn bottom stacks of tower Cn+1 intersected

with [0, 1). That is, E1 =
(⋃anhn−1

i=0 In+1,i

)
∩ [0, 1). Then µ(E1) = an

n+2 > 1
4 .

Notice that g �E1= g ◦ T rn+2 �E1 and∥∥g ◦ T rn+2 �E1 −λrn+2g �E1

∥∥
2
≤

∥∥g ◦ T rn+2 �E1 −f ◦ T rn+2 �E1

∥∥
2

+
∥∥f ◦ T rn+2 �E1 −λrn+2f �E1

∥∥
2

+
∥∥λrn+2f �E1

−λrn+2g �E1

∥∥
2

≤ 2
∥∥g − f∥∥

2

< 2ε.

Putting these together, we see that∥∥g �E1
−λrn+2g �E1

∥∥
2
< 2ε

which implies ∣∣λrn+2 − 1
∣∣ ‖g �E1‖2 < 2ε.

Thus, ∣∣λrn+2 − 1
∣∣ < 2ε

‖g �E1
‖2

=
2ε√
µ(E1)

< 4ε.

Let E2 ⊂ Cn be the rn stacks of Cn+1 that follow the special spacer, intersected
with [0, 1). In a similar manner, you can show that |λrn − 1| < 4ε. Therefore,∣∣λ2 − 1

∣∣ =
∣∣λrn+2 − λrn

∣∣ < 8ε

and λ2 = 1. Consider,

f(T 2x) = λ2f(x) = f(x).

This is a contradiction since T 2 is ergodic by Lemma 3.2.
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�

Lemma 3.4. The map T is rigid along the height sequence.

Proof. To see that T is rigid consider the sequence of heights (hn). Let L be a
level of CN . Recall that L is cut into N + 2 equal pieces before being stacked to

form CN+1. Observe, µ(ThnL4L) ≤ 2µ(L)
n+2 for all n ≥ N . Hence T is rigid along

(hn).
�

Lemma 3.5. The map T is not doubly ergodic.

Proof. To show that T is not doubly ergodic we need to find two sets of positive
measure, A and B, such that there does not exist a time n ∈ N where µ(TnA∩A) >
0 and µ(TnA ∩B) > 0 simultaneously.

Let A = I1,0 and B = I1,1, that is A and B are the bottom two levels of C1.
Define NA,A and NA,B by

NA,A = {n ∈ N : µ(TnA ∩A) > 0}
NA,B = {n ∈ N : µ(TnA ∩B) > 0}.

Thus, we need to show that NA,A ∩NA,B = ∅. Since A and B are one level apart,
that is TA = B, it suffices to prove that the set of differences of NA,A does not
contain the element one. Hence, we need to show 1 6∈ (NA,A −NA,A).

Let Nn
A,A = NA,A ∩ {1, 2, . . . , hn − 1}. Then NA,A =

⋃∞
n=2N

n
A,A. We will show

that 2 is the smallest positive number in NA,A − NA,A by inductively analyzing
Nn
A,A −Nn

A,A.
First consider the tower C2. Let d1 = h1 + 2 and d2 = h1. Note that d1 and d2

are consecutive differences between the levels of A in C2. Then,

N2
A,A =


k′∑
i=k

di : 1 ≤ k ≤ k′ ≤ 2

 .

Clearly the smallest possible positive difference between elements of N2
A,A is 2.

Now consider the tower Cn for some n ≥ 2. Let d1, d2, . . . , dmn
be consecutive

differences between the levels of A in Cn, where mn = (n+1)!
2 − 1. Then

Nn
A,A =


k′∑
i=k

di : 1 ≤ k ≤ k′ ≤ mn

 .

By our inductive hypothesis, we can assume that the smallest positive difference
between elements of Nn

A,A is 2.
Consider the tower Cn+1. There are mn+1 + 1 levels of A in Cn+1. Let

d1, . . . , dmn+1
represent consecutive differences between the levels of A in Cn+1.

Notice that

d1+j = d1, d2+j = d2, . . . dmn+j = dmn ,

where j has the form j = k(mn + 1) (k a nonnegative integer) and mn + j ≤ mn+1.
Also,

dk(mn+1) =

{
hn − (d1 + · · ·+ dmn

) + 2, if k = an = dn+2
3 e

hn − (d1 + · · ·+ dmn
), otherwise.
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Thus, the smallest positive difference between elements of Nn+1
A,A is also 2. This

completes our inductive argument.
�

Remark 2. In the above construction, if we instead added only one special spacer
after the first anhn stacks and 2hn spacers at the end, then an argument almost
identical to the one in Lemma 3.3 shows that the resulting transformation is spec-
trally weakly mixing. It can also be shown that this construction is doubly ergodic
on the levels. That is, if I, J are levels of some CN , then there exists a time n such
that µ(TnI ∩ I) > 0 and µ(TnI ∩ J) > 0. It was, however, shown in [11] that there
exist transformations that are doubly ergodic on intervals but not doubly ergodic,
and the question of whether this transformation is doubly ergodic remains open.

3.2. Ergodicity of the Cartesian Square and Rigidity. In this section, we
give a constructive proof of the following theorem.

Theorem B. There exists an infinite measure-preserving rank-one transformation
that has ergodic Cartesian square and is rigid.

Let us begin by describing the construction. The first stage, C0, consists of
the interval [0, 1). Thus, the initial height is h0 = 1. Define the sequence (sn)
by s0 = 1, s1 = 2, s2 = 1, s3 = 2, s4 = 3, s5 = 1, . . .. It is clear that (sn) cycles
through every natural number infinitely often. In general, suppose we have already
constructed the Cn tower, which is a union of hn levels. To construct Cn+1 from
Cn do the following:

(1) Cut Cn into n+ 2 equal pieces.

(2) Compute the quantity an = dn+2
3 e.

(3) Stack the subcolumns of Cn to form Cn+1 in the following order: anhn
stacks, sn spacers, (n+ 2− an)hn stacks, 2hn + 1− sn spacers.

This construction is very similar to the previous construction in Section 3.1.
In particular, the number of total number of spacers added to form Cn+1 is still
2hn+1. Thus, as before, hn+1 = (n+4)hn+1, and T preserves an infinite measure.
The two constructions differ in the amount of special spacers that we place over
the an-th subcolumn. Intuitively, allowing the number of spacers added above the
an-th subcolumn to cycle through every number infinitely often is what allows us
to prove ergodicity of the Cartesian square, while at the same time not destroying
rigidity.

Before we prove Theorem B, we prove the following proposition.

Proposition 3.6. The transformation T is doubly ergodic and rigid.

Proposition 3.6 is indeed implied by our main result (Theorem B), as ergodicity
of the Cartesian square implies double ergodicity. We have, however, chosen to
include a separate statement and proof because the proof technique is similar to
that in Theorem B but much cleaner. Upon conclusion of the proof of Proposition
3.6, we will prove Theorem B.

The following counting lemma will be used in the proof of Proposition 3.6.
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Lemma 3.7. Suppose I is an interval and A is a set of positive measure such
that µ(A ∩ I) > 11

12µ(I). Furthermore suppose that the interval I is divided into
three equal pieces I1, I2, I3. Then there exists a positive measure set A′ such that
A′, A′ + 1

3µ(I), A′ + 2
3µ(I) ⊂ A.

Proof. To begin, suppose that µ(I) = 1. Let Ai = A ∩ Ii for i = 1, 2, 3. Since the
µ(A ∩ I) > 11

12 we have that

µ(Ai) ≥ µ(A ∩ I)− µ(I1)− µ(I2) >
11

12
− 2

3
=

1

4
.

Let A′ = (A1) ∩
(
A2 − 1

3

)
∩
(
A3 − 2

3

)
. It remains to show that A′ has positive

measure. Suppose for a contradiction that µ(A′) = 0. First observe that

µ

((
A2 −

1

3

)
∩
(
A3 −

1

3

))
≤ µ (I1)− µ (A1) <

1

3
− 1

4
=

1

12
.

Now,

6

12
< µ

(
A2 −

1

3

)
+ µ

(
A3 −

2

3

)
≤ µ

((
A2 −

1

3

)
∪
(
A3 −

2

3

))
+ µ

((
A2 −

1

3

)
∩
(
A3 −

2

3

))
< µ (I1) +

1

12
=

5

12

which is a contradiction. Therefore A′ is our desired set.
�

Proof of Proposition 3.6. Similar to the construction in Section 3.1, T is rigid
by Lemma 3.4. Thus, we need only show double ergodicity. To that end, let
A,B ⊂ [0,∞) be sets of positive measure. Our goal is show that there exists a time
m such that µ(TmA∩A) > 0 and µ(TmA∩B) > 0. Let n be large enough so that
µ(A∩I) ≥ 23

24µ(I) and µ(B∩J) ≥ 23
24µ(J) where I, J are levels of Cn. Without loss

of generality, suppose that the level J is d levels above I in Cn. That is, T dI = J .
Let Cn+M be the next stage in the construction such that the tower Cn+M has

d special spacers added above the an+M -th subcolumn to form Cn+M+1. Apply
the double approximation lemma (Lemma 2.1) to the levels I and J of Cn, M
consecutive times to obtain levels I, J of Cn+M such that T dI = J and

µ(A ∩ I) + µ(B ∩ J) > (2− 1

12
)µ(I).

Note that µ(I) = µ(J), so

µ(A ∩ I) >
11

12
µ(I)

µ(B ∩ J) >
11

12
µ(J).

To make the picture more clear, assume that n+M + 2 is divisible by 3. That
is, the tower Cn+M is cut into 3an+M pieces, and the an+M -th subcolumn has d
special spacers added above it to form the tower Cn+M+1. Since the levels I and J
are 11

12 -full of the sets A and B respectively, by Lemma 3.7 there exists sets A1 ⊂ A,
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A2 ⊂ A, and B ⊂ B of positive measure such that A1 belongs to the left third of
the level I, A1 + 1

3µ(I) = A2, and T d(A2 + 1
3µ(I)) = B.

.

.

.
d special spacers added to construct Cn+M+1

.

.

.

.

.

.

.

.

.
I

J

In+M,0

In+M,hn+M−1

A1 A2

B

an+M pieces

T d(I) = Jhn+M levels

Cn+M

Figure 3. Illustration of I and J in Cn+M along with the place-
ment of sets A1, A2, and B.

Now observe the following

T an+Mhn+M+dA1 = A2

T an+Mhn+M+dA2 = T d(A2 +
1

3
µ(I)) = B.

If we let m = an+Mhn+M + d, then we have the result.
�

We are now ready to prove Theorem B. Similar to the proof of double ergodicity,
finding levels in an advantageous location to approximate arbitrary sets is a critical
element of the proof.

Proof of Theorem B. Again, the argument in Lemma 3.4 shows that T is rigid.
Thus, our goal is to show that the map T × T is ergodic. That is, given sets
of positive measure, E1, E2 ⊂ [0,∞) × [0,∞), there exists a time m such that
µ× µ((T × T )mE1 ∩ E2) > 0.

Let n be large enough so that µ × µ(E1 ∩ (I1 × J1)) > 199
200µ(I1)µ(J1) and µ ×

µ(E2 ∩ (I2 × J2)) > 199
200µ(I2)µ(J2) where I1, I2, J1, J2 are levels of Cn. Without

loss of generality, suppose that I2 is above I1 and J2 is above J1 in Cn. Let d1, d2
be such that T d1I1 = I2 and T d2J1 = J2. Suppose that d1 > d2, and let k be such
that d1 = d2 + k.

Let Cn+M be the next stage in the construction such that the tower Cn+M has
k special spacers added above the an+M -th subcolumn to form Cn+M+1. Apply
Lemma 2.2 to the squares I1 × J1 and I2 × J2, M consecutive times to obtain
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squares I1 × J1 and I2 × J2 where I1, I2, J1, J2 are levels in Cn+M , T d1I1 = I2 and
T d2J1 = J2, and

µ× µ
(
E1 ∩

(
I1 × J1

))
+ µ× µ

(
E2 ∩

(
I2 × J2

))
>

(
2− 1

100

)
µ
(
I1
)
µ
(
J1
)
.

Then,

µ× µ
(
E1 ∩

(
I1 × J1

))
>

99

100
µ
(
I1
)
µ
(
J1
)

µ× µ
(
E2 ∩

(
I2 × J2

))
>

99

100
µ
(
I1
)
µ
(
J1
)
.

Let πi be the projection map onto the i-th coordinate. Notice that since µ ×
µ(Ei ∩ (Ii×Ji)) > 99

100µ(Ii)µ(Ji), we have that µ(π1(Ei)∩ Ii) > 99
100µ(Ii) >

11
12µ(Ii)

and µ(π2(Ei) ∩ Ji) > 99
100µ(Ji) >

11
12µ(Ji) for i = 1, 2.

To make the picture more clear, assume that n+M+2 is divisible by 3. That is,
the tower Cn+M is cut into 3an+M pieces, and the subcolumn an+M has k special
spacers added above it to form the tower Cn+M+1. Since the levels J1 and J2 are
11
12 -full of the sets π2(E1) and π2(E2) respectively, by Lemma 3.1 there exists sets

A2 ⊂ π2(E1) and B2 ⊂ π2(E2) of measure at least 1
10µ(J1) such that A2 belongs

to the left third of the level J1 and T d2(A2 + 1
3µ(J1)) = B2.

.

.

.
k special spacers added to construct Cn+M+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I1

I2

J1

J2

In+M,0

In+M,hn+M−1

T d1(I1) = I2

T d2(J1) = J2

A1

B1

A2

B2

an+M pieces

hn+M levels

Cn+M

Figure 4. Illustration of I1, I2, J1, and J2 in Cn+M along with
an example placement of sets A1, A2, B1, and B2.

A similar calculation can be carried out with levels I1 and I2 to obtain sets
A1 ⊂ π1(E1) and B1 ⊂ π1(E2) of measure at least 1

10µ(I1) such that A1 belongs to

the middle third of the level I1 and T d1(A1 + 1
3µ(I1)) = B1.
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Now observe the following

T an+Mhn+M+d1A1 = T d1
(
A1 +

1

3
µ(I1)

)
= B1

T an+Mhn+M+d1A2 = T d2
(
A2 +

1

3
µ(J1)

)
= B2.

Let m = an+Mhn+M + d1. Note that µ × µ(A1 × A2) > 1
100µ(I1)µ(J1) and

(T × T )m(A1 ×A2) = B1 ×B2. Since Ei is at least 199
200 -full of Ii × Ji we have that

µ × µ((A1 × A2) ∩ E1) > 0 and µ × µ((B1 × B2) ∩ E2) > 0. Hence, µ × µ((T ×
T )mE1 ∩ E2) > 0.

�
Recently, we learned of the work of Adams and Silva who produced an example of

an infinite measure-preserving rank-one transformation that has ergodic Cartesian
square and is rigid [8].

4. Rationally Ergodic Construction

In this section, we will show that rigidity is compatible with rational ergodicity.
Recall that rational ergodicity implies weak rational ergodicity, which is a meager
subset of the set of infinite measure-preserving transformations [3]. Thus, we can-
not establish compatibility through categorical arguments, and instead prove the
following theorem.

Theorem C. There exists an infinite measure-preserving transformation that is
rationally ergodic and rigid.

A recent theorem proved independently by Aaronson et al. [5] and Bozgan et
al. [12] shows that all rank-one transformations with a bounded number of cuts
are boundedly rationally ergodic. Bounded rational ergodicity is stronger than
rational ergodicity, and we will appeal to this theorem to prove rational ergodicity
of our construction. Note that the rigidity of our previous constructions hinged on
the number of cuts going to infinity. Thus, in an effort to reconcile two seemingly
contradictory properties, we will realize a rank-one construction with an unbounded
number of cuts as a rank-one construction with a bounded number of cuts by rarely
adding spacers.

Now, let us describe our construction. Begin with the interval [0, 1) as the first
stage, C0. The initial height is then h0 = 1. Define the sequence (sn) by

sn =

{
2hn if n = 2k for some k ∈ {0, 1, 2, . . .}
0 otherwise.

In general, suppose we have already constructed the Cn-th tower. To construct
Cn+1 do the following:

(1) Cut Cn into 2 equal pieces.

(2) Stack the subcolumns of Cn to form Cn+1 in the following order: 2hn stacks,
sn spacers.
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The construction resembles the Hajian-Kakutani transformation from 1970 [19],
but spacers are only added when the stage of the construction is a power of 2.

Proof of Theorem C. It is clear from the description that T is a rank-one trans-
formation with 1 cut. Appealing to the above mentioned theorem in [5] or [12], we
immediately obtain that T is rationally ergodic.

We now show that T is rigid along the sequence (nm) where nm = h2m−1+1.
This sequence was obtained from the heights of the towers that directly follow the
addition of spacers. Let E be a level of CN . Let M be the smallest positive integer
such that hN ≤ nM . Notice that to obtain C2M−1+1 from C2M−1 we cut the h2M−1

levels of C2M−1 into 2 equal pieces, stack the two subcolumns right on left, and then
add s2M−1 = 2h2M−1 spacers at the top. We wish to observe what happens to the
set E under nM iterations of T . Recall that nM is the height of tower C2M−1+1.
Since there are no spacers added again until the 2M stage of the construction, to
analyze TnME \ E it is best to consider E in the C2M+1 tower. Here we observe,

µ(TnME \ E) ≤ 1

22M−2M−1 µ(E) =
1

22M−1 µ(E).

Similarly, for all m such that hN ≤ nm we have

µ(TnmE4E) ≤ 2

22m−2m−1 µ(E) =
2

22m−1 µ(E) =
1

22m−1−1µ(E).

Since 1

22m−1−1
→ 0 as m→∞ we have rigidity.

�

Remark 3. Intuitively, the above construction can be thought of as a rank-one
construction where the Cm-th tower is of height nm. To obtain Cm+1 from Cm,

you cut Cm into 22
m−1

equal pieces and then stack as follows: 22
m−1

nm stacks and
2h2m spacers.

5. Rigidity Sequences

In this section we will explore which sequences can be realized as rigidity se-
quences for two different types of transformations preserving an infinite measure.
First, we prove a theorem on rigidity sequences for weakly mixing transformations
(inspired by a proposition in [10]). Second, we prove a theorem on rigidity sequences
for rationally ergodic transformations.

Theorem D. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. There exists a rank-one, infinite measure-preserving transformation

that has ergodic Cartesian square and is rigid along (nm).

Proof. Let (nm) be an increasing sequence of natural numbers such that nm+1

nm
→

∞. Without loss of generality, define n0 = 1 and suppose that nm+1

nm
≥ 4 for all

m ≥ 0. Our construction will be a variant of the construction in Section 3.2.
Write nm+1 as nm+1 = qmnm + rm where 0 ≤ rm < nm. Let pm be the least

positive integer such that pmnm+rm
nm+1

≥ 1
m+1 for all m ≥ 0. If we let εm = pmnm+rm

nm+1
,

then
∑∞
m=0 εm =∞ and εm → 0. Also notice that nm+1 can be written as nm+1 =

(qm − pm)nm + pmnm + rm where qm − pm ≥ 2 for all m ≥ 0 and qm − pm →∞.
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Now we will describe the construction. The sequence nm will be the height
of the Cm tower, that is hm = nm. The first stage, C0, consists of the inter-
val [0, 1). Thus the initial height h0 = 1 = n0. Define the sequence (sm) by
s0 = 1, s1 = 2, s2 = 1, s3 = 2, s4 = 3, s5 = 1, . . .. It is clear that (sm) cycles
through every natural number infinitely often. In general, suppose we have already
constructed the Cm tower, which is a union of hm = nm levels. To construct Cm+1

from Cm do the following:

(1) Cut Cm into qm − pm equal pieces.

(2) Compute the quantity am = d qm−pm3 e.

(3) Stack the subcolumns of Cm to form Cm+1 in the following order: amhm
stacks, sm spacers, (qm − pm − am)hm stacks, pmhm + rm − sm spacers.

Notice that since pmhm = pmnm > m+1 for all m ≥ 0 and sm ≤ m+1, there are
a positive number of spacers placed at the end of the Cm+1 tower. A proof similar
to that of Theorem B shows that this construction has ergodic Cartesian square
and is rigid along the sequence of heights, which is (nm). Also similar to before,
the fact that

∑∞
m=0 εm =∞ guarantees that T preserves an infinite measure.

�

Remark 4. Is there an example of an infinite measure-preserving rank-one transfor-
mation that is weakly mixing and rigid along a sequence (nm) where the ratios do
not tend to infinity? More specifically, does there exist a rank-one transformation
preserving an infinite measure that is weakly mixing and rigid along nm = 2m?

Motivated by the construction in Theorem C, we now generalize possible rigidity
sequences for rationally ergodic transformations.

Theorem E. Let (nm) be an increasing sequence of natural numbers such that
nm+1

nm
→ ∞. Furthermore, assume that nm+1 = 2kmnm + rm where 0 ≤ rm < nm.

Then there exists an infinite measure-preserving transformation that is rationally
ergodic and rigid along (nm).

Proof. Let (nm) be an increasing sequence of natural numbers such that nm+1

nm
→

∞. Without loss of generality, define n0 = 1 and suppose that nm+1

nm
≥ 5 for

all m ≥ 0. Suppose that nm+1 can be written as nm+1 = 2kmnm + rm where
0 ≤ rm < nm.

Let pm = 2km−1 and εm = pmnm+rm
nm+1

. Then εm > 1
4 for all m ≥ 0. Therefore,∑∞

m=0 εm = ∞. Before we explicitly describe the construction, we will try to give
the intuition. If we were to proceed in a manner similar to the previous theorem,
then we would cut the nm levels of Cm into 2km − pm = 2km−1 equal pieces, stack
them left to right and add pmnm+rm = 2km−1nm+rm spacers to the end. However,
this would not produce a rank-one transformation with a bounded number of cuts,
which is what we need in order to guarantee rational ergodicity. With that in mind,
we will cut the tower into 2 equal pieces and stack left to right. This process will
continue km−1 times, at which point we will add the appropriate number of spacers
to double the measure. Now we will describe the construction explicitly.
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Begin with the interval [0, 1) as the first stage, C0. The initial height is then
h0 = 1. Define the sequence (sn) by

sn =

{
2km−1nm + rm if n = km + km−1 + · · ·+ k0 − (m+ 2)

0 otherwise.

In general, suppose we have already constructed the Cn tower. To construct Cn+1

do the following:

(1) Cut Cn into 2 equal pieces.

(2) Stack the subcolumns of Cn to form Cn+1 in the following order: 2hn stacks,
sn spacers.

The first thing to notice about the construction is that most of the time you are
simply cutting the existing tower into two pieces and stacking them, much like an
odometer. However at certain times, namely along the sequence of times when sn
is nonzero, spacers are being added. The fact that

∑∞
m=0 εm =∞ guarantees that

T preserves an infinite measure. Also, it is clear that the number of cuts is bounded
and thus by a theorem in [5] or [12], T is rationally ergodic.

We now show that T is rigid along the sequence (nm). Note that n0 = 1 = h0
and in general nm = hkm−1+···+k0−m for m ≥ 1. Let E be a level of CN . Let M be
the smallest positive integer such that hN ≤ nM . We wish to observe what happens
to the set E under nM iterations of T . Similar to the proof of rigidity in Section
4, since there are no spacers added after the stage that has height nM until the
kM + · · ·+ k0 − (M + 2) stage of the construction, it is best to view E as a union
of levels in CkM+···+k0−(M+1). Observe,

µ(TnME \ E) ≤ 1

2kM−1
µ(E).

Similarly, for all m such that hN ≤ nm we have

µ(TnmE4E) ≤ 2

2km−1
µ(E).

Since 1
2km−1 → 0 as m→∞ we have rigidity.

�

Remark 5. In the above proof the key ingredients are that the ratios of the sequence
go to infinity and that we can realize the corresponding rank-one construction with
the number of cuts tending to infinity as a rank-one construction with a bounded
number of cuts. This observation leads to a generalization of the above theorem.

Theorem 5.1. Suppose (nm) is an increasing sequence of natural numbers such
that nm+1

nm
→∞ and write nm+1 = qmnm + rm. If there exists K > 0 such that for

all m ≥ 0 we can find numbers a1, . . . , a`m with ai ≤ K where d qm2 e = a1 · · · a`m
then there exists an infinite measure-preserving transformation that is rationally
ergodic and rigid along (nm).
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